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ON PLESSNER POINTS OF MEROMORPHIC FUNCTIONS

HlDENOBU YOSHIDA

(Received July 19, 1971; Revised July 31, 1972)

The notion of a set of porosity was first formulated by Dolzhenko
[4] It was shown in [4], [5], [8] and [9] that this was useful for investi-
gation of cluster sets. In this paper, we make use of this notion and
sharpen some of Meier's results in [2], [3].

1. Notations and definitions. The geometry of the following is
greatly simplified by considering meromorphic functions defined in the
upper half plane, instead of the unit disc. Therefore unless otherwise
stated, we denote the upper half 2-plane {z; lm(z) > 0} by G and the real
axis by Γ, and let the function w = f(z) be meromorphic in G and take
values in the w-sphere Ω.

Let ζ e Γ. We denote by ρz(ψ) the chord of the upper half plane G
terminating at ζ and making an angle φ,0<ψ<π, with the positive
real axis, and by pζ(ψ; δ), 0 < δ < oo, the set of the points z = x + iy on
the chord pζ(ψ), which satisfy the condition 0 < y < δ. We denote by
Δάa, 0)s 0 < a < β < π, the open angular domain (the Stolz angle with
the vertex ζ) bounded by two chords ρζ{a), pζ(β)9 and by Λζ(α, β; δ), 0 <
δ < oo, the set of the points z = x + iy in the Stolz angle Aζ(a, β), which
satisfy the condition 0 < y < δ. In the case when no confusion occurs,
we use the simple notation Λζ without specifying α, β or a, β, δ.

We denote by Cp ^(f) the cluster set of f(z) on a chord ρζ(ψ) and
by CJζ{a,β)(f) the cluster set of f(z) on a Stolz angle Aζ{a, β). We say a
point ζ e Γ is a Plessner point of f(z), if CΔ (/) = Ω for any Stolz angle z/ζ.

Suppose a set TcΓ and a point ζeΓ are given. For an e > 0, we
denote a segment {ξ e Γ; ζ - e < ξ < ζ + ε} by Γ(ε, ζ). Let 7(ζ, ε, T) be
the largest of lengths of arcs contained in Γ(ε, ζ) and not intersecting
with T. The set T is said to be of porosity at ζ, if

lim -Ly(C, ε, T) > 0 .
£->o ε

A set T is said to be of porosity if it is so at each ζ e T. A set which
is a countable union of sets of porosity is said to be of σ-porosity. A set
of σ-porosity is of the first Baire category. It is easily seen that a set
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which is of porosity has no points of density with respect to outer measure.
Therefore every set of σ-porosity is of outer measure 0. But there exists
a set, which is of measure 0 and not of σ-porosity (see [7]).

2. Statement of results. In this section, we state two theorems
which are proved in this paper. Theorem 1 will be proved in the section
3 and Theorem 2 in the section 4.

THEOREM 1. Suppose that f(z) is meromorphic in the upper half
plane G. Then, except for a set of σ-porosity, every Plessner point ζeΓ
°f f(z) has either of the following two properties A), B):

A) every value on Ω, with at most two exceptions, is taken by f(z)
infinitely often in any Stolz angle Aζ with the vertex ζ. Thus, for each
exceptional value a e Ω, if any, there is a Stolz angle Aζ with the vertex
ζ where f(z) takes a, a finite number of times,

B) every value on Ω is either a cluster value of f(z) on all chords
pζ(ψ) terminating at ζ in the upper half plane G, or it is taken by f(z)
infinitely often in any Stolz angle Aζ with the vertex ζ.

REMARK 1. By Meier [3], it was shown that the above exceptional
set is a set of measure 0 and of the first Baire category.

THEOREM 2. Suppose thatf(z) is meromorphic in the upper half plane
G. Then, except for a set of σ-porosity, every Plessner point ζeΓ of
f(z) has the following property B*):

B*) every value on Ω is either a cluster value of f(z) on all chords
pζ(ψ) terminating at ζ except only one value of ψ, or it is taken by f(z)
infinitely often in any Stolz angle Aζ with the vertex ζ.

REMARK 2. Meier proved in [2] and [3] that the above exceptional set
is a set of measure 0 and of the first Baire category. See Noshiro [6].

3. Proof of Theorem 1. In the sections 3 and 4, the following nota-
tions are used.

Let {ct}t=1 be a sequence consisting of all complex numbers whose
real and imaginary parts are both rational. Let {rj ί = 1 be a sequence of
all rational numbers satisfying 0 < rt < π. We denote by ab(=ba) the
Euclidean length of the interval (α, b) on the real axis Γ.

We denote by E the set of points of Γ, for which neither A) nor B)
are satisfied. Then, for each point ζ e E, there exist three values a\, a\,
a\ efl,achord pζ(ψζ) and three Stolz angles Δ\, Δ\, A\, such that a\ g CPζ{ψζ)(f)
and f(z) Φ a\ for zeA\ (λ = 1, 2, 3).

We denote by P the set of points of E, at which the above three
values a\, a\, a\ are finite.
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Now we have to prove that no point of the set P is a Plessner point
of f(z) except for a set of σ-porosity. For the set E — P, we can see the
same conclusion without difficulty.

For positive integers mly ra2, ra3, nl9 n2, n3, p satisfying inequalities

( 1 ) < n χ <
P P

\cmi - cmj\ <M. {iφ j , ί,j = 1, 2, 3) ,
p

we define Pmi,m2,m3,nι,n2,n3,p as the set of points ζ of P, at which the fol-
lowing conditions are satisfied:

| / ( z ) - c m j > i 9 _ for zepζζ;
p \ p

f(z)Φa\ for z e Δ,(rnχ - -ί, r + 1 , A) (λ = 1, 2, 3) ,
\ p p p /

\*l-cmχ\ <— (λ = 1,2,3) .
P

Then we have (see Meier [3])

P — II P
m1,m2,m3,%1,»2»w3>2>

We define P*,,^,^,^,.,,^,,, as the set of points of Pmi9Ut,mvnί.nΛ.nvPf at which
-P«1,*2,«3.n1,»2,n3,p is not of porosity. Then at every point of the set

P — P*
x m1,m2>m3,%1,W2»%3»3> x w1,m2»m3,%1,%2>W3,p >

the set Pmi,m2,m,,nvn2,n3,p is of porosity. Therefore the set

p _ p*
-•• m^>m2>w3,ίίr^,W2>^3>?> -*• m^,m2,m3tn^,n2,n3tP

is a set of porosity.

We will show that no point of the set Pilf«2,*3>«1>»2f»8,p is a Plessner
point of f(z). In the following, we set

p — P and P* P*

Let ζ e P * . Since ζ e P , we can choose a positive number δ: which
satisfies

(2) sin(δζ) < sin {fζ). sin (±-) .

Now, we need the following lemma which will be verified at the end of
this proof of Theorem 1.

LEMMA 1. Let ζ e P * and z0 e ρζ(ψζ), z0 = ζ + Re^. We denote by Cf
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the disc {z; \z — zo\ < R sin (<5ζ)}. Then, if R is sufficiently small, there
exist ζλ(zQ) e P (λ = 1, 2, 3) such that

From this Lemma 1, if R is sufficiently small, three different complex
numbers αςl(f0>, α*2(fo), a*3(Zo) eΩ are not taken by f(z) in Cf. The remaining
part of the proof proceeds entirely analogously to Meier's [3, Satz 1], so
may be omitted.

Thus, we come to the conclusion that except for the set

U (P — P* )
m1,m2,mi,n1,n2,n3,p

of tf-porosity, no point of the set P is a Plessner point of f(z).
Now, to complete the proof of the theorem, we need only prove Lemma

1. Here, we will only prove the existence of d(^0) β P, since the existence
of ζ2(20), C3(z0) e P is proved by the analogous method.

Suppose that there exists a sequence {z% — ζ + Rne
iirή, zζ —>ζ (n—> oo)

such that fofa ), ξt(s%)) Π P = 0 , where we denote by £(3?) (or ξt(a*)) the
point on .Γ at which the chord, making the angle rΛ l — 1/p (or r%1 + 1/p)
with the positive real axis and tangent to the disc C*n from right (or
left), terminates. If we set

εn = max {ξ^z^ζ, ξ2(z%)Q ,

we have

eB <Ξ Rj % — +

from (1). Since £i(z?)£2(z?) is larger than

sin (- ί ) - sin (5

which is positive from (2), we have

7(C, e., P) ^ 2β κ(sin (^e) sin ( A ) _ s i n

Therefore, we have

HE -Ly(ζ, ε, P) ^ Ήm — 7 ( ζ , e., P) > 0 .

So the set P is of porosity at ζ, which contradicts the hypothesis C G P * .
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This completes the proof of Lemma 1 and hence of the theorem, q.e.d.

4. Proof of Theorem 2. We denote by E the set of points of Γ,
at which 1?*) is not satisfied. Then for every point ζ e E, there exist a
value aζeΩ, two chords pζ(aζ), ρζ{βζ), <*c < βζ and a Stolz angle Aζ such
that

aζ${Cw(f)l)CPζ{βζ)(f)} a n d f(z)Φaζ f o r zeAζ.

We denote by P the set of points of E, at which the above values
αζ 's are finite.

Now we will prove that no point of the set P is a Plessner point
of f(z) except for a set of σ-porosity. For the set E — P, we can prove
the same conclusion without difficulty.

For positive integers r, s, t, we define Pr,Sft as the set of points of P,
for which the following conditions are satisfied:

(1) rt>K rt + -<πf
s s

(2) f{z)Φaζ for ze Δζ(τt - -L, rt + 1 , λ) ,

— <cx,<βζ<π-— ,
O

(3) |o e -c r |< i- , |/(«)-c r |^- | for se jfc(αc;-ί) (J

Then we have (see Meier [2])

P = U Pr...t '
r,a,t

Next, for positive integers I, m^ m2 satisfying the inequality

— < r»! - 4- < r»! + -T < r»2 - 4" < r»2 + T- < π ~ — 'S I I I I s

we define TUmvm% as the set of points ζ e Pr,,,t> for which the following
conditions are satisfied:

(A\ ff; - « ; ^ 2 π βζ - α c 1
( j 4 > T ' T 4 > T '
(5) l«c-r m i |< j , |/3{-rMJ<i-,

(6) s i ( | ) ( l ) (
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for a positive number δζ satisfying

(7) sin2 ( 1 ) min jsin ( & ~ a<), cos ( βζ ~ a" + -j)} > sin (δ:) .

Then we have

Z,m1(m2

In fact, if ζ e P r, s > ί, we choose a <?ζ satisfying (7) and an I satisfying (4),
(6) and then we can choose rWl, rm2 satisfying (5) Thus we have ζ e ThmvW>2.

We define Γzfmpm2 as the set of points ζ e TlfmvV at which Γz,mi,m2 is
not of porosity. Then at every point of the set Thmvm2 — Γzfmi,m2, the set
Tι,mvm2 is of porosity. Therefore the set Tι>mi,m2 — Tt*mvm2 is a set of
porosity.

We will show that no point of the set T*mvm% is a Plessner point of
f(z). In the following, we set Tt,mi,mz = T and ϊf,mi,m2 = Γ*. We put

^i = rmi - —, f 2 = r m i + —, f 3 = rm2 - —, ψ, = rm2 + — .

Then we have

( 8 ) — < t i < ^c < ψ2 < ^8 < βζ < ψ* < π - —
s s

Now, we need the following lemma whose proof will be given later.

LEMMA 2. Let ζeT* and zo = ζ + Re{*eΔζ(ψ* - l/l, ψ* + 1/ί), ψ* =
(Ψ2 + ^3)/2. We denote by Cf the disc {z; \z - zo\ < i2 sin (δc - l/l)}. We
denote by ξλ(z0) the point on Γ at which the chord, passing through z0 and
making the angle ψx with the positive real axis, terminates (λ = 1, 2, 3, 4).
We denote by ξ'λ(z0) (λ = 1, 2, 3, 4) the point on Γ at which the chord,
making the angle ψλ+1 (λ = 1, 3) or ψλ^ (λ == 2, 4) with the positive real
axis and tangent to the disc Cf from left (λ = 1, 3) or right (λ = 2, 4).

Then, for every z0 e Aζ(ψ* — 1/Z, α/r* + 1/Z) with sufficiently small R,
there exist ζχ(z0) e T (λ = 1, 2, 3, 4) such that

ξ'fa) < ζλ(z0) < ξλ(z0) (λ = 1, 3)

or

From this Lemma 2 and (8), if R is sufficiently small, the chords

/°ci(*o>(αci(*o>)> Pw*Aaw*rf)i Pzs(z0)(βζ3(z0)) a n d Pz4(z0)(βζ4(z0))

intersect the disc Cf, and the quadrilateral Π bounded by these four



ON PLESSNER POINTS OF MEROMORPHIC FUNCTIONS 29

chords is contained in a quadrilateral 77' bounded by four chords

A n d a l s o t h i s q u a d r i l a t e r a l 77' i s c o n t a i n e d i n a d i s c 7)f = {z;\z — zQ\ < σζ},
w h e r e

<rζ = R sin (δc - 1 ) max {sec ( ^ 4 ~ ^ ) , cosec

Here, we use the following lemma whose proof will also be given later.

LEMMA 3. Let ζeT* and zo = ζ + Be**ez/ζ(^* - l/l, f* + 1/0, ψ* =
(Ψ2 + ψa)/2. TΛe^, for every z0 e ^ζ(τ/r* — 1/1, ψ* + 1/Z) with sufficiently
small R, there exists an η(z0) e T such that

From this Lemma 3, the above quadrilateral Π is contained in the
Stolz angle Av{H)(rt — 1/s, rt + 1/s), η(z0) e T. Therefore we obtain

\f(z) — cr I ^ — on every side of the quadrilateral 77

s

from (3) and

f(z) Φ aη{ZQ) in the quadrilateral 77

from (2),
The remaining part of the proof proceeds quite similarly to Meier's

[2], so may be omitted.
Thus, we come to the conclusion that except for the set

of σ-porosity, no point of the set Pr,s,t is a Plessner point of f(z), hence,
except for the set \Jr,s>t Pϊ,8,t of σ-porosity, no point of the set P is a
Plessner point of f(z).

Now, to complete the proof of the theorem, we need only prove Lemma
2 and Lemma 3.

PROOF OF LEMMA 2. Here, we will only prove the existence of
d(Zo) e Γ, since the existence of ζ2(z0), C8(s0), C*(So) e T is proved by the
analogous method.

Suppose that there exists a sequence
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such t h a t

(£(«?), £i(*?)) nτ= 0 .

If we set

we have

e. ^ Λ

tan (i)
from (8). Since £ί(z?)fi(z?) is larger than

sin(ge-|).sin(l)-Sin(|)

sin (tO sin

which is positive from (6), we have

Therefore, we have

Imϊ -7(ζ, ε, Γ) ^ TEί I-7(ζ, en, Γ) > 0 .

So the set T is of porosity at ζ, which contradicts the hypothesis ζ e Γ*.
This completes the proof of Lemma 2. q.e.d.

PROOF OF LEMMA 3. We denote by φfa) (or φ2(z0)) the point on Γ at
which the chord, making the angle rt — 1/s (or rt + 1/s) with the positive
real axis and tangent to the disc Df from right (or left), terminates.

Suppose that there exists a sequence

K = C + Λ.β***};-!, *? e J ζ ( ^ * - -ί, ψ* + y ) , 2? - ζ (n

such that (̂ i(20

n), Λ(2?)) Π Γ = 0 . If we set

εn = max {φi(z£)ζ,

we have

εn ^ Rjl +
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from (1). Since

from (4),

from (4) and sin (1/s) < sin (fn) from (8), 9&iθtf)0ί(s?) is larger than

in2(i-). min {sin ( B< ~ g< ), cos(-J. + & ~ α ; )} - sin (δt)
2Rn-

which is positive from (7). Clearly

sin2/'—\. min j s i n ( βζ ~ aζ ), cos( ^- + ^ ς . ^ l ^ - s i m

Therefore we have

Π5 -LΎ(C, e, Γ) ^ Ϊ H l-7(ζ, e,, T) > 0 .

So the set Γ is of porosity at ζ, which contradicts the hypothesis ζe T*.
This completes the proof of Lemma 3. q.e.d.
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