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In a work [2] K. Nomizu studied a decomposition of generalized curva-
ture tensor fields on a Riemannian manifold. In this paper, we study its
Kahlerian analogous. For notations and the fundamental facts, we refer
to [1]. The present author gratefully acknowledges his debt to his teacher
S. Sasaki, who stimulated and guided his interest in differential geometry.
The author wishes to express his hearty thanks to Dr. S. Tanno and T.
Sakai for their kind advices. The author also thanks these people who
gave encouragement during his stay at Tδhoku and Hirosaki Universities.

1. Algebraic preliminaries. Let V be a 2^-dimensional real vector
space with a complex structure J and hermitian inner product g. A tensor
L of type (1, 3) over F, that is, an element of F(x)F*(x)F*(x)F*, where
F* is the dual space of F, can be considered as a bilinear mapping

(x, y) e F x V-+L(x, y) e Horn (F, F) .

Such a tensor L is called a K-curvature tensor on F if it has the following
properties:

(1) L(y,x) = -L(x,y);
(2) L(x, y) is a skew-symmetric endomorphism of F, i.e.

g(L(x, y)u, v) + g(u, L(x, y)v) = 0

(3) σL(x,y)z = 0 (the first Bianchi identity), where σ denotes the
cyclic sum over x, y and z;

(4) L(x,y)oJ=JoL(x,y).
We denote by J*?(V) the vector space of all if-curvature tensors over

F. It is a subspace of the tensor space of type (1, 3) over F and has a
natural inner product induced from that in F. For Le^f(V), the Ricci
tensor K = KL of type (1,1) is a symmetric endomorphism of F defined
by

K(x) — trace of the bilinear map: (y, z) e V x F—>L(x, y)zeV.

If {eu , e2n} is an orthonormal basis of F with respect to hermitian inner
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product g, then we have

K(x) = Σ L(x, eA)eA .
A=l

The trace of the Ricci tensor KL is called the scalar curvature of L.
Let P be a plane, that is, a 2-dimensional subspace in V and let x and
y be an orthonormal basis for P. We set

fc(P) = g(L(x, y)y, x) .

We see that k(P) is independent of the choice of an orthonormal basis for
P. In particular, if a 2-dimensional plane P is invariant by the complex
structure J and x is a unit vector in P, then {a?, Jo;} is an orthonormal
basis for P and

k(P) = g(L(x, Jx)Jx, x) .

We call that k(P) is the holomorphic sectional curvature for J-invariant P.
We now discuss some examples of incurvature tensors. For x, y e

V, we denote by x A y the skew-symmetric endomorphism of V defined by

(x A y)z = g(z, y)x - g(z, x)y .

Let A and B be two symmetric endomorphisms of V which commute with J
We define L = LAtB by

(a) L(x, y) = Ax A By + Bx A Ay + JAx A JBy + JBx A JAy

+ 2g(Ax, Jy)JB - 2g(Jx, By)JA .

L is a iί-curvature tensor (properties of A and B are used for (3) and (4)).
The Ricci tensor K is given by

K = (tr B)A + (tr A)B + 2(AB + BA) ,

and the scalar curvature of L is given by

tr K = 2(tr A)(tr B) + 4tr (AB) .

As special cases we obtain following examples:

EXAMPLE 1. Take A = el/8, B = I, where I is the identity transfor-
mation and c is a constant. Then L is given by

L(x, y) = c/4 {x A y + Jx A Jy + 2g(x, Jy)J) .

The Ricci tensor and the scalar curvature are

K= (n + l)cI/2 , tr K = n(n + l)c .

The holomorphic sectional curvatures k(P) for all planes P in V invariant
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by J is identically equal to c. It is well-known that if LeJ*f(V) has
constant holomorphic sectional curvature, say c, then it is of the above
form.

EXAMPLE 2. Take B = c7/4 and a symmetric endomorphism A which
commutes with J. Then L is given by

L(x, y) = c/4 {Ax A y + x A Ay + JAx Λ Jy + Jx Λ JAy

+ 2g(Ax, Jy)J - 2g(Jx, y)JA) .

The Ricci tensor K and the scalar curvature are

K = (w + 2)cA/2 + c(tr A)7/4 , tr ΛΓ = (ra + l)c(tr A) .

The significance of this example is clear from the Bochner tensor of a
Kahlerian manifold.

In order to get an orthogonal decomposition of £f(V) in [2], we define
to be the subspace of J*f(V) consisting of all Incurvature tensors

L(x, y) = c/4 {x A y + Jx A Jy + 2g{x, Jy)J} ,

where c is an arbitrary constant, i.e.,

— {L e J?f(V) with constant holomorphic sectional curvature} .

Let £f[L(V) be the orthogonal complement of £f[(V) in Se{V). Then,
we have the following:

PROPOSITION 1.

^ΊL{V) — {L e ^f(V) with vanishing scalar curvature]

and

£f(V) - &ί(V) Θ ^B(V) 0 ^2{V) {orthogonal)

where

= {LeJίf(V) with vanishing Ricci tensor} ,

— orthogonal complement of £fB(V) in = ^ 1 ( F ) .

PROOF. It is sufficient to show that ^f^{V) consists of all L e £?{V)
whose scalar curvature is 0. Since g is an hermitian inner product, we
have vectors eu , en of V such that {el9 , en, Jeu , Jen) is an ortho-
normal basis for V. Unless otherwise stated, Latin small indices i, j , k,
• run from 1 to n, while Latin capitals A, B, C, run through the
range 1, , n; ΐ , , ΰ (i = i + n). We set Je{ = e\. With respect to
the above orthonormal basis {eA} of F, let LABCD be the components of L:
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•L*{ec, βD)eB = 2^1 L
A

Since L satisfies the properties (1), (2), (3) and (4), we have the following
identities:

(a) -LiABDC — J

(D) -LJBACD — -

(C) LABCD + -L^ACDB +

(α) LtcΏAB — LΆBCD *

(e) LϊjCD — J^ijCDy L~ijCD = —L/i]CD, LiABkί ~ -L^ABklj -^ABkl = -^ABkϊ

For L ' e = ^ ( F ) , the inner product (L, L') is equal to

A ι •LJ

ABCDL/ABCD

Now if Z / ' e ^ ί F ) , then for some (unique) c we have,

= c/4 (δifc^ i - δ«5 i i b) ,

L / Γ ' _ _ 7 " ' _ _ 7 " ^ -

= c/4 (δίJfcδyι + ««δyfc + 2^.SW) ,

other components being 0. So, we see that

<L, Z/> = 4 Σ (LijkiLijkι + LijkϊLfjki)
i,j,k,l

- c Σ Lijkl(δikdn — δudjk)
i,j,k,l

+ c Σ £««(S«Ai + δ«δit + 2δyδH)

= 2c Σ (-Z'iiij + LijQ + L«iϊ)

= 2c Σ (i(y« + ϋ«G + LWj + L<Jί7)
i

— "G Z-λ L*ABAB
A,B

= 2c (scalar curvature of L),

because

Lΰfj = — Liffi — Liji

— — Lijji + Liji

= -Z' yίy + •ί'ϋίϊ

This proves our assertion.

PROPOSITION 2. .For L e ^ ( F ) , Zeί
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L = Lγ + LB + L2 ,

where

L, e jzi(V), LB e &>B(V), L2 e

Then we have

<*, y) = Lfe y) - ^ ^ { L , M V>

where K is the Ricci tensor L and LAfB is the tensor defined by the
equation (a).

PROOF. Since we can show easily that tensors L1 and LB belong to
Sf[(V) and £fB(V) respectively, it is sufficient to show that tensor L2

belongs to J*f2(V) Since the Ricci tensor K of L is a symmetric endo-
morphism which commutes with the complex structure J of V, if a non-
zero vector x is an eigen-vector of K with respect to an eigen-value λ,
then so is Jx. Therefore we can assume that an orthonormal basis {eί9 ,
β», e/βi, , Jen) of V possesses the following properties:

e4 and Je* are eigen-vectors of K with respect to the same eigen-value
Λi£

With respect to the above orthonormal basis {eA} of V, let LΛBCD and
LABCD be the components of L = 2(n + 2)L2 and Le^fB(V) respectively.
Then we have

λ z —

- ( ,
n

other components being 0. So, we see that
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<L, L>

— 2LJ \-L/ijki-L/ijki "Γ L/ijkjL/ijkl -Γ

= 4 Σ (λ* + λ, - 'ίjΛί

+ 4 Σ (̂λ* + λ, - -tϋL)^^, + δ,A»)

2(λ f c Â Z r-^ij/cZ

» » i

— Σ (^ίiii + îϊΐΐ + i'iϊiϊ)

= 32 Σ λ, (Σ L^) - 1 6 t r g Σ (Σ LiAiA)
i A Ύl i A

= 0 ,

because the Ricci tensor IT of L is identically equal to 0. This proves our
assertion.

For each Le^f(V), the ̂ B{V)-component LB is called the Bochner
tensor associated to L.

REMARK. If the Bochner tensor associated to a if-curvature tensor L
is 0, then

2(n + 2) I A(n + 1)

By setting

2(π + 2) 8(n + ΐ)(n + 2) '

we may write

L(a?, 2/) = LΛtI(x, y) ,

as in Example 2. Conversely, if A is an arbitrary symmetric endomorphism
of V which commutes with the complex structure J of V, then L given
above is a if-curvature tensor whose associated Bochner tensor is 0 .

2. Generalized ϋΓ-curvature tensor fields. Let M be a Kahler mani-
fold with Kahler metric g and complex structure J. For each point p of
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M we may consider if-curvature tensors in the sense of section 1 over
the tangent space TP(M) with inner product gp and complex structure Jp.
A (differentiate) tensor field L of type (1, 3) on M will be called a gen-
eralized K-curvature tensor field if for each point p the tensor Lp is a
Z-curvature tensor over TP(M). We shall say that L is proper if it
satisfies the second Bianchi identity, that is,

σ(VxL)(Y,Z) = 0,

where X, Y and Z are arbitrary vector fields on M.
Let L be a proper generalized incurvature tensor field on M and let

K be its Ricci tensor field. We prepare a few formulas (cf. [2])

- {VYK)X = - Σ ΦESL)(X, Y)EB ,

(2) (V,xίΓ)JΓ - {VJYK)JX = <yzK) Y - (VrK)X ,

(3) trace of {X — Σ (V£j!L)(X, Γ)#B}

= trace of {X->(VXK)Y} ,

(4) trace of {X — (Vxi5Γ) F} = — F(tr K) ,

where X and Y are any vector fields and {EB} is an orthonormal frame
field around p, for each point p of M. We can easily prove (1), (3) and
(4) analogously as in [2]. To prove (2), we use the property of L:

L(JX, JY) = L(X, Y)

and its immediate consequence

(5) (V,Ir)(/X, JY) = (V*L)(X, Y) .

By virtue of (3) and (5), we can easily prove (2). We shall now prove two
propositions.

PROPOSITION 3. Let L be a proper generalized K-curvature tensor
field on a connected Kdhler manifold M. If the Ricci tensor field K of
L satisfies Codazzi's equation

then VK = 0 on M.

PROOF. K satisfies JK = KJ. By a proposition and the proof of a
theorem in S. Tanno [4, p. 502], we have VK = 0.

PROPOSITION 4. On a Kdhler manifold M let A be a tensor field of
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type (1,1) which is symmetric at each point and commutes with the complex
structure J. Let LAfI be a generalized K-curvature tensor field defined by

LA)I(X, Y) = AXΛY+ I Λ AY+JAXΛJY+JXΛJAY

+ 2g(AX, JY)J + 2g(X, JY)JA .

If LAfI is proper and if tr A is constant, then A satisfies CodazzVs
equation.

PROOF. Since the Ricci tensor field K of L = LA)I is of the form

K - 2(n + 2)A + (tr A)I,

then we have tr K = i(n + 1) tr A. So, by virtue of (4), we have

trace of {X->(VXA)Y}

= trace of \x->\ {VXK)Y
I L2(n + 2) 2(n -\-

= i i
2(n + 2) 2

(n + 2)
= 0

Therefore we get

(6) g(Z,2±(VEBL)(X,Y)EB)

= g(Z, (VTA)X- {VXA)Y+{VJYA)JX- {VJXA)JY)

- 2g({VJZA)X, JY) ,

( 7) Σ (Vχ2/)(Γ, ̂ ) ^ = 2(w + 2)(VXA) Γ .
B
Σ

B=l

On the other hand, the second Bianchi identity implies that the left hand
side of (6) is equal to

, EB)EB + (VYL)(ES, X)EB}) .
B = ί

Therefore by virtue of (2), (6) and (7), we get

(8) g«7jgA)X, JY) = (n + l)g(Z, (VXA) Y - (VYA)X) .

By taking the cyclic sum over X, Y and Z, we get

(9) g{φ,zA)X, JY) + g((VJXA) Y, JZ)

+ g((VJYA)Z, JX) = 0.
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Using (2) and (VXA)J = J(VXA), we have

(10) g((VJZA)X, JY) = g((VxA) Y - (VYA)X, Z) .

From (8) and (10), we get

Therefore A satisfies Codazzi's equation. This proves our assertion.

3. Main results. If L is a generalized incurvature tensor field on
a Kahler manifold M, then applying the decomposition in Proposition 2 at
each point p of M we obtain

L = Lγ + LB + L2 ,

where Ll9 LB and L2 are generalized if-curvature tensor fields, which at
each point p, belong to J5^, £fB and £f\ over TV(M), respectively.
Then we have similar results to [2]:

THEOREM I. On a connected Kahler manifold M, let

L — Lι + LB + L2

be the natural decomposition of a proper generalized K-curvature tensor
field L. If the Riccί tensor field K of L satisfies Codazzi's equation, then
Ll9 LB and L2 are proper. Conversely, if Lu LB and L2 are proper and
if n ^ 2, then K satisfies Codazzi's equation.

PROOF. The first assertion is easy to prove. We prove the converse.
The Ricci tensor Kx of proper generalized iΓ-curvature tensor field LL is
of the form:

K - t r κτ
2n

If n 2> 2, by a generalization of Schur's theorem we have tr K is constant
on M. Since L2 is proper, we see that LKiI defined by the equation in
Proposition 4 is also proper. Hence we conclude that K satisfies Codazzi's
equation. This completes the proof of Theorem I.

COROLLARY. On a Kahler manifold M of complex dimension n^±2
let L be a proper generalized K-curvature tensor field whose scalar curva-
ture is constant. Then the associated Bochner curvature tensor field LB

is proper if and only if the Ricci tensor field K of L satisfies Codazzi's
equation.

Now let %f{M) be the vector space of all tensor fields A of type (1,1)
on a Kahler manifold M which satisfy the following conditions:
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1) A is symmetric at each point;
2) A commutes with the complex structure J of M;
3) A satisfies Codazzi's equation: (VXA)Y= (VYA)X.

Let £f(M) denote the vector space of all proper generalized incurvature
tensor fields whose Ricci tensor fields satisfy Codazzi's equation. Let n
be the complex dimension of M. We have a linear mapping Ae 1&(M)—+
LAe^f(M) given by

L = 1 T _ tr A T
A 2(n + 2) AtI 8(n + l)(n + 2)

Since the Ricci tensor field of LA is precisely A, the mapping is one-to-

one. We shall state the following result.

THEOREM II. If n = 1, A—>LA is a linear isomorphism of %f(M)
onto £f{M). If n ^ 2, it is a linear isomorphism onto the subspace

{LeJ^(M);LB = 0} .

PROOF. If n = 1, then the fact that the Ricci tensor field K of Le
commutes with the complex structure J implies

where λ is a function. From the assumption on K we see that K is
parallel by Proposition 3. Therefore λ is a constant. By Proposition 2,
we have

L2 = LB = 0 ,

L = L1 = —LItI = LXI.
o

Thus the mapping is onto. Next, if n ^ 2, then for L e £f(M) with LB =
0 we have

L = 1 L - t τ K L
2(n + 2) KfI 8(n + l)(n + 2) J>z

by Proposition 3, where K is the Ricci tensor field of L. Therefore the
mapping is onto. This completes the proof of Theorem II.

REFERENCES

[ 1 ] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Volumes I and II,
Interscience, 1963, 1969.

[2] K. NOMIZU, On the decomposition of generalized curvature tensor fields, Differential
Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 335-345.

[3] S. TACHIBANA, On the Bochner curvature tensor, Nat. Sci., Rep. Ochanomizu Univ., 18
(1967), 15-19.



ON THE DECOMPOSITION OF GENERALIZED INCURVATURE TENSOR FIELDS 235

[4] S. TANNO, 4-dimensional conformally flat Kahler manifolds, Tόhoku Math. J., 24 (1972),
501-504.

[5] S. TANNO, Curvature tensors and covariant derivatives, to appear.
[ 6 ] K. YANO AND S. BOCHNER, Curvature and Betti numbers, Ann. Math. Studies No. 32,

1953.

ICHINOSEKI TECHNICAL COLLEGE

ICHINOSEKI, IWATE JAPAN.






