ON THE HOLONOMY GROUPS OF KÄHLERIAN MANIFOLDS WITH VANISHING BOCHNER CURVATURE TENSOR

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Hitoshi Takagi and Yoshiyuki Watanabe
(Received June 29, 1972; Revised September 8, 1972)

1. Introduction. Let (M, J, g) be a Kählerian manifold of complex dimension n with the almost complex structure J and the Kählerian metric g.
S. Bochner [1] introduced so called Bochner curvature tensor B on M as follows;

$$
\begin{aligned}
B(X, Y)= & R(X, Y)-\frac{1}{2 n+4}\left[R^{1} X \wedge Y+X \wedge R^{1} Y+R^{1} J X \wedge J Y\right. \\
& \left.+J X \wedge R^{1} J Y-2 g\left(J X, R^{1} Y\right) J-2 g(J X, Y) R^{1} \circ J\right] \\
& +\frac{\operatorname{trace} R^{1}}{(2 n+4)(2 n+2)}[X \wedge Y+J X \wedge J Y-2 g(J X, Y) J]
\end{aligned}
$$

for any tangent vectors X and Y, where R and R^{1} are the Riemannian curvature tensor of M and a field of symmetric endomorphism which corresponds to the Ricci tensor R_{1} of M, that is, $g\left(R^{1} X, Y\right)=R_{1}(X, Y)$, respectively. $\quad X \wedge Y$ denotes the endomorphism which maps Z upon $g(Y, Z) X-g(X, Z) Y$.

But we do not know what kind of transformations in M leave B invariant [10].

The purpose of the present paper is to classify the restricted homogeneous holonomy group of M with vanishing B.

Theorem. Let (M, J, g) be a connected Kählerian manifold of complex dimension $n(n \geqq 2)$ with vanishing Bochner curvature tensor. Then its restricted homogeneous holonomy group $H_{x_{0}}$ at some point $x_{0} \in M$ is in general the unitary group $U(n)$ [10]. If $H_{x_{0}}$ is not $U(n)$, then we can classify into the following two cases:
(I) $H_{x_{0}}$ is identity and M is locally flat.
(II) $H_{x_{0}}$ is $U(k) \times U(n-k)$ and M is a locally product manifold of an k-dimensional space of constant holomorphic sectional curvature K and an ($n-k$)-dimensional space of constant holomorphic sectional curvature $-K(K \neq 0)$.

The above theorem seems to be a Kählerian analogue of Kurita's theorem for the holonomy groups of conformally flat Riemannian manifolds [6].
2. Preliminaries. Let (M, J, g) be a Kählerian manifold with vanishing B. Then its curvature tensor R is written as follows;
(2.1) $R(X, Y)=\frac{1}{2 n+4}\left[R^{1} X \wedge Y+X \wedge R^{1} Y+R^{1} J X \wedge J Y\right.$

$$
\begin{aligned}
& \left.+J X \wedge R^{1} J Y-2 g\left(J X, R^{1} Y\right) J-2 g(J X, Y) R^{1} \circ J\right] \\
& -\frac{\operatorname{trace} R^{1}}{(2 n+4)(2 n+2)}[X \wedge Y+J X \wedge J Y-2 g(J X, Y) J]
\end{aligned}
$$

There are following relations among g, J and R^{1} :

$$
\begin{gathered}
J^{2}=-I \\
g(J X, Y)+g(X, J Y)=0 \\
R^{1} \circ J=J \circ R^{1} \\
g\left(R^{1} X, Y\right)=g\left(X, R^{1} Y\right)
\end{gathered}
$$

Then, at a point $x \in M$, we can take an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right.$, $\left.J e_{1}, \cdots, J e_{n}\right\}$ of tangent space $T_{x}(M)$ such that J and R^{1} are represented by the following $2 n \times 2 n$ matrices with respect to the basis;

And we have

$$
\left\{\begin{array}{l}
R\left(e_{i}, J e_{i}\right)=\sigma_{i} e_{i} \wedge J e_{i}+\tau_{i} J-\frac{1}{n+2} R^{1} \circ J \quad(i=1, \cdots, n), \tag{2.3}\\
R\left(e_{i}, e_{j}\right)=\sigma_{i j}\left(e_{i} \wedge e_{j}+J e_{i} \wedge J e_{j}\right) \\
R\left(e_{i}, J e_{j}\right)=\sigma_{i j}\left(e_{i} \wedge J e_{j}-J e_{i} \wedge e_{j}\right) \quad(i, j=1, \cdots, n, i \neq j)
\end{array}\right.
$$

where we have put

$$
\left\{\begin{array}{l}
\sigma_{i j}=\frac{1}{2(n+1)(n+2)}\left[(n+1)\left(\lambda_{i}+\lambda_{j}\right)-\Lambda\right], \tag{2.4}\\
\sigma_{i}=\frac{1}{(n+1)(n+2)}\left[2(n+1) \lambda_{i}-\Lambda\right], \\
\tau_{i}=\frac{1}{(n+1)(n+2)}\left[\Lambda-(n+1) \lambda_{i}\right], \\
\Lambda=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n} .
\end{array}\right.
$$

Considering $R(X, Y)$ for $X, Y \in T_{z}(M)$ as a linear endomorphism of $T_{x}(M), R\left(e_{i}, e_{j}\right), R\left(e_{i}, J e_{j}\right)$ and $R\left(e_{i}, J e_{i}\right)$ are represented by the following $2 n \times 2 n$ matrices with respect to the above basis:

$$
\begin{equation*}
R\left(e_{i}, e_{j}\right)=\sigma_{i j} M_{i j}^{(1)}, \tag{2.5}
\end{equation*}
$$

where

$$
M_{i j}^{(1)}=\left(\begin{array}{rrrr}
{ }^{i} & j & { }^{n+i} & { }^{n+j} \\
0 & 1 & & \\
-1 & 0 & & \\
& & 0 & 1 \\
& & -1 & 0
\end{array}\right)^{n+j}
$$

where

$$
\begin{equation*}
R\left(e_{i}, J e_{j}\right)=\sigma_{i j} M_{i j}^{(2)}, \tag{2.6}
\end{equation*}
$$

$$
M_{i}^{(2)}=\left(\begin{array}{cccc}
{ }^{i} & j^{j} & \begin{array}{c}
n+i \\
\\
\\
\\
0
\end{array} & \begin{array}{c}
n+j \\
1
\end{array} \\
-1 & 0 & & 0 \\
-1
\end{array}\right)_{i}^{i}
$$

where $2\left(\sigma_{i 1}+\cdots+\sigma_{i i-1}+\sigma_{i}+\sigma_{i i+1}+\cdots+\sigma_{i n}\right)=\lambda_{i}$. Taking the bracket

$$
\left[R\left(e_{i}, e_{j}\right), R\left(e_{i}, J e_{j}\right)\right]=R\left(e_{i}, e_{j}\right) \circ R\left(e_{i}, J e_{j}\right)-R\left(e_{i}, J e_{j}\right) \circ R\left(e_{i}, e_{j}\right)
$$

we get

$$
\begin{equation*}
\left[R\left(e_{i}, e_{j}\right), R\left(e_{i}, J e_{j}\right)\right]=2 \sigma_{i j}^{2} M_{i j}^{(3)}, \tag{2.8}
\end{equation*}
$$

where

$$
M_{i j}^{(3)}=\left(\begin{array}{rrrr}
i & j & { }^{n+i} & { }^{n+j} \\
& & 1 & 0 \\
& & 0 & -1 \\
-1 & 0 & & \\
0 & 1 & &
\end{array}\right)_{n+j}^{i}
$$

The real representation of the Lie algebra $u(k)$ of a unitary group $U(k)$ consists of real $2 k \times 2 k$ matrices in the form

$$
\left(\begin{array}{rr}
P & Q \\
-Q & P
\end{array}\right)
$$

where P and Q are $k \times k$ matrices satisfying ${ }^{t} P=-P$ and ${ }^{t} Q=Q$. The element

$$
\left(\begin{array}{rr}
P & Q \\
-Q & P
\end{array}\right)
$$

of $u(k)$ is an element of the Lie algebra $s u(k)$ of a special unitary group $S U(k)$ if and only if trace $Q=0$.

We denote by h_{x} the Lie algebra of the restricted homogeneous holonomy group H_{x} at $x \in M . \quad h_{x}$ and H_{x} are a Lie algebra of linear endomorphisms and a group of linear transformations of $T_{x}(M)$, respectively. When the elements of h_{x} and H_{x} are represented by $2 n \times 2 n$ matrices with respect to the basis $\left\{e_{1}, \cdots, e_{n}, J e_{1}, \cdots, J e_{n}\right\}$, they are considered as a Lie subalgebra of $u(n)$ and a closed connected Lie subgroup of $U(n)$, respectively [2].

We denote by $U\left[i_{1}, \cdots, i_{k}\right]$ and $S U\left[i_{1}, \cdots, i_{k}\right]$ subgroups of $U(n)$ which are represented by $2 n \times 2 n$ matrices

$$
\left(\begin{array}{cc}
U(k) & \\
& I_{n-k}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
S U(k) & \\
& I_{n-k}
\end{array}\right)
$$

with respect to the basis

$$
\left\{e_{i_{1}}, \cdots, e_{i_{k}}, J e_{i_{1}}, \cdots, J e_{i_{k}}, e_{i_{k+1}}, \cdots, e_{i_{n}}, J e_{i_{k+1}}, \cdots, J e_{i_{n}}\right\}
$$

and, by $u\left[i_{1}, \cdots, i_{k}\right]$ and $s u\left[i_{1}, \cdots, i_{k}\right]$, we denote the Lie algebras of $U\left[i_{1}, \cdots, i_{k}\right]$ and $S U\left[i_{1}, \cdots, i_{k}\right]$, respectively.
3. Proof of theorem. In this section, the complex dimension n of M is assumed to be greater than 2. The case $n=2$ will be treated in the next section.

Lemma 3.1. At a point $x \in M$, we take a basis $\left\{e_{1}, \cdots, e_{n}, J e_{1}, \cdots, J e_{n}\right\}$ of $T_{x}(M)$ satisfying (2.2). If $\sigma_{i j}$ defined in (2.4) is equal to zero for any $i, j(i \neq j)$, then $R=0$ at x.

Proof. The assumption of the lemma is equivalent to

$$
\Lambda-(n+1)\left(\lambda_{i}+\lambda_{j}\right)=0 \quad \text { for any } \quad i, j(i \neq j)
$$

This implies $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$ as $n \geqq 3$, that is, $R^{1}=0$. Then $R=0$ by (2.1).
q.e.d.

To prove the theorem, we first assume that M is not locally flat. By lemma 3.1, there exists at least one point $x_{0} \in M$ where $\sigma_{i j}$ does not vanish for some $i, j(i \neq j)$. Then, $H_{x_{0}}$ contains $S U[i, j]$ by (2.5), (2.6), and (2.8). Hence, there are following two cases:
(1) $H_{x_{0}}$ contains $S U(n)$.
(2) $H_{x_{0}}$ does not contain $S U(n)$.

Case (1): In this case, $H_{x_{0}}$ must be equal to $U(n)$ or $S U(n)$ itself, because $S U(n)$ is the only closed connected subgroup of dimension $n^{2}-1$ in $U(n)$; in fact, let us assume that $U(n)$ contains a closed connected subgroup G of dimension $n^{2}-1$ which does not coincide with $S U(n)$. Then, the dimension of $s u(n) \cap g$ is $n^{2}-2$ where g is the Lie algebra of G. As $S U(n)$ is compact and simple, the Killing form φ of $s u(n)$ is negative definite. Thus, we can take an orthonormal (with respect to $-\varphi$) basis $\left\{f_{1}, \cdots, f_{m-1}, f_{m}\right\}$ of $\operatorname{su}(n)$ such that $\left\{f_{1}, \cdots, f_{m-1}\right\}$ is a basis of $s u(n) \cap g$ where $m=n^{2}-1$. Then we have

$$
\varphi\left(\left[f_{a}, f_{m}\right], f_{m}\right)=\varphi\left(f_{a},\left[f_{m}, f_{m}\right]\right)=0 \quad(1 \leqq a \leqq m-1)
$$

which implies that $\left[f_{a}, f_{m}\right] \in s u(n) \cap g$ as φ is definite. Of course, $\left[f_{a}, f_{b}\right] \in$ $s u(n) \cap g(1 \leqq a, b \leqq m-1)$. This means that $s u(n) \cap g$ is an ideal of $s u(n)$ which contradicts the fact that $s u(n)$ is simple ${ }^{1)}$.

On the other hand, $H_{x_{0}}=S U(n)$ occurs if and only if the Ricci tensor R_{1} vanishes identically by the following lemma.

Lemma 3.2. [4] For a Kählerian manifold M of dimension n, the restricted homogeneous holonomy group is contained in $S U(n)$ if and only if the Ricci tensor vanishes identically. But, by (2.1), this contradicts the assumption that M is not locally flat. Therefore, the case (1) occurs when and only when $H_{x_{0}}=U(n)$.

[^0]Case (2): In this case, there exist $k(2 \leqq k \leqq n-1)$ and i_{1}, \cdots, i_{k} such that $H_{x_{0}}$ contains $S U\left[i_{1}, \cdots, i_{k}\right]$ but does not contain $S U\left[i_{1}, \cdots, i_{k}, j\right]$ for any j. We change the indices suitably and assume that $H_{x_{0}}$ contains $S U[1, \cdots, k]$ but does not contain $S U[1, \cdots, k, j]$ for any $j, j>k$.

Lemma 3.3. If $h_{x_{0}}$ contains su[1, $\left.\cdots, k\right]$ and $s u[i, j]$ for some i, j satisfyiug $1 \leqq i \leqq k$ and $k+1 \leqq j \leqq n$, then $h_{x_{0}}$ contains su $[1, \cdots, k, j]$.

Proof. We can take as bases of $s u[1, \cdots, k]$ and $s u[i, j]$ the sets of matrices

$$
\left\{M_{a b}^{(1)}, M_{a b}^{(2)}, M_{12}^{(3)}, \cdots, M_{1 k}^{(3)} ; \quad 1 \leqq a<b \leqq k\right\}
$$

and

$$
\left\{M_{i j}^{(1)}, M_{i j}^{(2)}, M_{i j}^{(3)}\right\}
$$

respectively. On the other hand, we have the following equalities:

$$
\begin{aligned}
{\left[M_{p q}^{(1)}, M_{q r}^{(2)}\right] } & =-M_{p r}^{(2)} & & (1 \leqq p<q<r \leqq n), \\
M_{1 p}^{(3)}+M_{p q}^{(3)} & =M_{1 q}^{(3)} & & (1<p<q \leqq n), \\
{\left[M_{p r}^{(2)}, M_{p r}^{(3)}\right] } & =2 M_{p r}^{(1)} & & (1 \leqq p<r \leqq n) .
\end{aligned}
$$

This means that if $h_{x_{0}}$ contains $s u[1, \cdots, k]$ and $s u[i, j]$, then it contains

$$
\left\{M_{a b}^{(1)}, M_{c j}^{(1)}, M_{a b}^{(2)}, M_{c j}^{(2)}, M_{12}^{(3)}, \cdots, M_{1 k}^{(3)}, M_{1 j}^{(3)} ; \quad 1 \leqq a<b \leqq k, 1 \leqq c \leqq k\right\}
$$

which is a basis of $s u[1, \cdots, k, j]$. q.e.d.

By Lemma 3.3, $H_{x_{0}}$ can not contain $S U[a, u](a=1, \cdots, k, u=$ $k+1, \cdots, n)$ and we get

$$
\begin{equation*}
\sigma_{a u}=0 \quad(a=1, \cdots, k, u=k+1, \cdots, n) \tag{3.1}
\end{equation*}
$$

Then, by (2.4), we have

$$
\begin{equation*}
\lambda_{1}=\cdots=\lambda_{k}(=\lambda), \lambda_{k+1}=\cdots=\lambda_{n}(=\mu) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(n+1-k) \lambda+(k+1) \mu=0 \tag{3.3}
\end{equation*}
$$

from which we have $\lambda \neq \mu$. Hence, we have

$$
\begin{aligned}
& \sigma_{a b}=\frac{1}{2(n+1)(n+2)}[(2 n+2-k) \lambda-(n-k) \mu] \quad(1 \leqq a<b \leqq k), \\
& \sigma_{u v}=\frac{1}{2(n+1)(n+2)}[-k \lambda+(n+2+k) \mu] \quad(k+1 \leqq u<v \leqq n),
\end{aligned}
$$

which cannot vanish by (3.3). Hence, $H_{x_{0}}$ contains $U[1, \cdots, k] \times$ $U[k+1, \cdots, n]$ by (2.5), (2.6), (2.7) and (2.8).

Next, we take a point x in the neighborhood of x_{0} and choose a
basis $\left\{e_{1}, \cdots, e_{n}, J e_{1}, \cdots J e_{n}\right\}$ of $T_{x}(M)$ satisfying (2.2) and hence (2.3). By the continuity of characteristic roots of R^{1}, when x is sufficiently near x_{0}, we may conclude that

$$
\begin{cases}\sigma_{a b} \neq 0 & (1 \leqq a<b \leqq k) \tag{3.4}\\ \sigma_{u v} \neq 0 & (k+1 \leqq u<v \leqq n)\end{cases}
$$

as they are so at x_{0}. Hence, H_{x} contains $S U[1, \cdots, k]$ and $S U[k+1, \cdots, n]$ by (2.5), (2.6) and (2.8). If H_{x} contains none of $S U[1, \cdots, k, j]$, (3.1) holds good. In the case $k=n-1, H_{x}$ contains $S U[1, \cdots, n-1]$ but does not contain $S U[1, \cdots, n]$ as H_{x} is isomorphic to $H_{x_{0}}$ by the connectivity of M. Therefore, we consider the case $k<n-1$.

We change the indices of $e_{k+1}, \cdots, e_{n}, J e_{k+1}, \cdots, J e_{n}$, in such a way that H_{x} contains $S U[1, \cdots, k, k+1, \cdots, k+r](k+r \leqq n-1)$ and non of $S U[1, \cdots, k, k+1, \cdots, k+r, k+r+s]$, because H_{x} is isomorphic to $H_{x_{0}}$. Then we get by the repetition of the above process

$$
\sigma_{u v}=0 \quad(u=k+1, \cdots, k+r: v=k+r+1, \cdots, n) .
$$

This contradicts (3.4). Thus we can take bases at each point of a neighborhood V of x_{0} in such a way that (3.1) and (3.4) hold good with same k.

Let W be the set of the point $x \in M$ such that for a suitable basis of $T_{x}(M)$ satisfying (2.2), $\sigma_{i j}$ does not vanish for some $i, j(i \neq j)$, which is an open set. Let W_{0} be the connected component of x_{0} in W. Then it follows that k (in the above argument) is constant on W_{0} and that $\lambda(x)$ and $\mu(x)$ are differentiable functions on W_{0} by (3.3) and the fact that $k \lambda+(n-k) \mu=(1 / 2)$ trace R^{1} or trace $\left(R^{1} \circ R^{1}\right)$ is a differentiable function on W_{0}. It should be remarked that $\lambda(x) \neq \mu(x)$ at each point $x \in W_{0}$. We define two distributions on W_{0} as follows:

$$
\begin{aligned}
& T_{1}(x)=\left\{X \in T_{x}(M): R^{1} X=\lambda(x) X\right\} \\
& T_{2}(x)=\left\{X \in T_{x}(M): R^{1} X=\mu(x) X\right\}
\end{aligned}
$$

which are mutually orthogonal and J-invariant.
Let $X, Y \in T_{1}$ and $X^{\prime}, Y^{\prime} \in T_{2}$. Then we have

$$
\left\{\begin{array}{l}
R(X, Y)=K\left[X \wedge Y+J X \wedge J Y-2 g(J X, Y) J_{1}\right] \tag{3.5}\\
R\left(X^{\prime}, Y^{\prime}\right)=-K\left[X^{\prime} \wedge Y^{\prime}+J X^{\prime} \wedge J Y^{\prime}-2 g\left(J X^{\prime}, Y^{\prime}\right) J_{2}\right] \\
R\left(X, Y^{\prime}\right)=0
\end{array}\right.
$$

by (2.1), (2.3), (3.1), (3.2) and (3.3), where we have put

$$
K=\frac{1}{2(n+1)(n+2)}[(2 n+2-k) \lambda-(n-k) \mu]
$$

which does not vanish by (3.3). J_{1} and J_{2} are defined by $J_{1} X=J X, J_{1} X^{\prime}=$ 0 and $J_{2} X=0, J_{2} X^{\prime}=J X^{\prime}$, respectively.

Lemma 3.4. T_{1} and T_{2} are parallel and K is constant.
Proof. For any $x \in W_{0}$, we may choose a differentiable field of orthonormal basis $\left\{X_{1}, \cdots, X_{n}, J X_{1}, \cdots, J X_{n}\right\}$ near x in W_{0} in such a way that $\left\{X_{1}, \cdots, X_{k}, J X_{1}, \cdots, J X_{k}\right\}$ and $\left\{X_{k+1}, \cdots, X_{n}, J X_{k+1}, \cdots, J X_{n}\right\}$ are bases near x in W_{0} for T_{1} and T_{2}, respectively. This choice is possible by virtue of the property $J \circ R^{1}=R^{1} \circ J$.

Now, in general, for a differentiable field of orthonormal basis $\left\{Y_{1}, \cdots, Y_{n}\right\}$ in a Riemannian manifold (M, g), we may put

$$
\begin{equation*}
\nabla_{i} Y_{j}=\nabla_{Y_{i}} Y_{j}=\sum_{k=i}^{n} A_{i j k} Y_{k} \tag{3.6}
\end{equation*}
$$

where $\nabla_{i}=\nabla_{Y_{i}}$ denotes the covariant differentiation for the Riemannian connection, and $A_{i j k}=-A_{i k j}$.

Hereafter, the indices run as follows:

$$
a, b, c, \cdots=1, \cdots, k, \quad u, v, w, \cdots=k+1, \cdots, n
$$

Put $X_{i^{*}}=J X_{i}$ for any i, then $A_{i j k}=A_{i j^{*} k^{*}}, A_{i j k^{*}}=-A_{i j^{*} k}$ and etc. by the property $\nabla J=0$ for the Kählerian manifold M. First, we shall prove the case $2 \leqq k \leqq n-2$. Taking account of (3.5), (3.6), we have (3.7):

$$
\begin{aligned}
\frac{1}{K}\left(\nabla_{a} R\right)\left(X_{b}, X_{u}\right)= & 2 A_{a b u^{*}} J \\
& +\sum_{v=k+1}^{n}\left[A_{a b v}\left(X_{v} \wedge X_{u}+X_{v^{*}} \wedge X_{u^{*}}\right)+A_{a b v^{*}}\left(X_{v^{*}} \wedge X_{u}-X_{v} \wedge X_{u^{*}}\right)\right] \\
& -\sum_{c=1}^{k}\left[A_{a u c}\left(X_{b} \wedge X_{c}+X_{b^{*}} \wedge X_{c^{*}}\right)+A_{a u c^{*}}\left(X_{b} \wedge X_{c^{*}}-X_{b^{*}} \wedge X_{c}\right)\right] \\
\frac{1}{K}\left(\nabla_{b} R\right)\left(X_{u}, X_{a}\right)= & -2 A_{b a u^{*}} J \\
& +\sum_{v=k+1}^{n}\left[A_{b a v}\left(X_{u} \wedge X_{v}+X_{u^{*}} \wedge X_{v^{*}}\right)+A_{b a v^{*}}\left(X_{u} \wedge X_{v^{*}}-X_{u^{*}} \wedge X_{v}\right)\right] \\
& -\sum_{c=1}^{k}\left[A_{b u c}\left(X_{c} \wedge X_{a}+X_{c^{*}} \wedge X_{a^{*}}\right)+A_{b u c^{*}}\left(X_{c^{*}} \wedge X_{a}-X_{c} \wedge X_{a^{*}}\right)\right] \\
\frac{1}{K}\left(\nabla_{u} R\right)\left(X_{a}, X_{b}\right)= & \frac{1}{K}\left(X_{u} K\right)\left(X_{a} \wedge X_{b}+X_{a^{*}} \wedge X_{b^{*}}\right) \\
& +\sum_{v=k+1}^{n}\left[A_{u a v}\left(X_{v} \wedge X_{b}+X_{v^{*}} \wedge X_{b^{*}}\right)+A_{u a v^{*}}\left(X_{v^{*}} \wedge X_{b}-X_{v} \wedge X_{b^{*}}\right)\right. \\
& \left.+A_{u b v}\left(X_{a} \wedge X_{v}+X_{a^{*}} \wedge X_{v^{*}}\right)+A_{u v^{*}}\left(X_{a} \wedge X_{v^{*}}-X_{a^{*}} \wedge X_{v}\right)\right]
\end{aligned}
$$

where

$$
J=-\sum_{c=1}^{k} X_{c} \wedge X_{c^{*}}-\sum_{v=k+1}^{n} X_{v} \wedge X_{v^{*}}
$$

By the second Bianchi identity, we have

$$
A_{u a v}=A_{u a v^{*}}=0
$$

and hence

$$
A_{u v a}=A_{u v a^{*}}=A_{u v^{*} a}=A_{u v^{*} a^{*}}=0
$$

If we replace u by u^{*} in (3.7), we have

$$
A_{u^{*} v a}=A_{u^{*} v a^{*}}=A_{u^{*} v^{*} a}=A_{u^{*} v^{*} a^{*}}=0
$$

If we replace (u, a, b) by (a, u, v) or $\left(a^{*}, u, v\right)$ in (3.7), we have

$$
A_{a b u}=A_{a b u^{*}}=A_{a b^{*} u}=A_{a b^{*} u^{*}}=0
$$

and

$$
A_{a^{*} b u}=A_{a^{+} b u^{*}}=A_{a^{*} b^{*} u}=A_{a^{*} b^{*} u^{*}}=0
$$

Then we have $X_{u} K=0$ by (3.7). Similary $X_{a} K=0$. These facts show that the lemma is valid for $2 \leqq k \leqq n-2$.

Next, we prove the case $2 \leqq k=n-1$. The proof is accomplished, applying the second Bianchi identity to the following equalities:

$$
\begin{aligned}
\frac{1}{K}\left(\nabla_{a} R\right)\left(X_{b}, X_{n}\right)= & 2 A_{a b n^{*}} X_{n^{*}} \wedge X_{n}+2 A_{a b n^{*}} J \\
& -\sum_{c=1}^{n-1}\left[A_{a n c}\left(X_{b} \wedge X_{c}+X_{b^{*}} \wedge X_{c^{*}}\right)+A_{a n c^{*}}\left(X_{b} \wedge X_{c^{*}}-X_{b^{*}} \wedge X_{c}\right)\right] \\
\frac{1}{K}\left(\nabla_{b} R\right)\left(X_{n}, X_{a}\right)= & 2 A_{b a n^{*}} X_{n} \wedge X_{n^{*}}-2 A_{b a n^{*}} J \\
& -\sum_{c=1}^{n-1}\left[A_{b n c}\left(X_{c} \wedge X_{a}+X_{c^{*}} \wedge X_{a^{*}}\right)\right. \\
& \left.+A_{b n c^{*}}\left(X_{c^{*}} \wedge X_{a}-X_{c} \wedge X_{a^{*}}\right)\right] \\
\frac{1}{K}\left(\nabla_{n} R\right)\left(X_{a}, X_{b}\right)= & \frac{1}{K}\left(X_{n} K\right)\left(X_{a} \wedge X_{b}+X_{a^{*}} \wedge X_{b^{*}}\right) \\
& +\left[A_{n a n}\left(X_{n} \wedge X_{b}+X_{n^{*}} \wedge X_{b^{*}}\right)+A_{n a n^{*}}\left(X_{n^{*}} \wedge X_{b}-X_{n} \wedge X_{b^{*}}\right)\right. \\
& \left.+A_{n b n}\left(X_{a} \wedge X_{n}+X_{a^{*}} \wedge X_{n^{*}}\right)+A_{n b n^{*}}\left(X_{a} \wedge X_{n^{*}}-X_{a^{*}} \wedge X_{n}\right)\right] \\
\frac{1}{K}\left(\nabla_{a} R\right)\left(X_{n}, X_{n^{*}}\right)= & -\frac{4}{K}\left(X_{a} K\right) X_{n} \wedge X_{n^{*}} \\
& -4 \sum_{c=1}^{n-1}\left[A_{a n c} X_{c} \wedge X_{n^{*}}+A_{a n c^{*}} X_{c^{*}} \wedge X_{n^{*}}\right. \\
& \left.+A_{a n^{*} c} X_{n} \wedge X_{c}+A_{a n c} X_{n} \wedge X_{c^{*}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{K}\left(\nabla_{n} R\right)\left(X_{n^{*}}, X_{a}\right)= & 2 A_{n a n}\left(X_{n^{*}} \wedge X_{n}+J\right) \\
& -\sum_{c=1}^{n-1}\left[A_{n n^{*} c}\left(X_{c} \wedge X_{a}+X_{c^{*}} \wedge X_{a^{*}}\right)+A_{n n^{*} c^{*}}\left(X_{c^{*}} \wedge X_{a}-X_{c} \wedge X_{a^{*}}\right)\right] \\
\frac{1}{K}\left(\nabla_{n^{*}} R\right)\left(X_{a}, X_{n}\right)= & 2 A_{n^{*} a n^{*}}\left(X_{n^{*}} \wedge X_{n}+J\right) \\
& -\sum_{c=1}^{n-1}\left[A_{n^{*} n c}\left(X_{a} \wedge X_{c}+X_{a^{*}} \wedge X_{c^{*}}\right)\right. \\
& \left.+A_{n^{*} n c^{*}}\left(X_{a} \wedge X_{c^{*}}-X_{a^{*}} \wedge X_{c}\right)\right]
\end{aligned}
$$

where

$$
J=-X_{n} \wedge X_{n^{*}}-\sum_{c=1}^{n-1} X_{c} \wedge X_{c^{*}}
$$

Thus, W_{0} is a locally product manifold of a k-dimensional space of constant holomorphic sectional curvature $4 K$ and an $(n-k)$-dimensional space of constant holomorphic sectional curvature $-4 K$ [3]. Therefore, by the connectivity of M and the continuity argument for the characteristic roots of R^{1}, it follows that $W_{0}=M$. In particular, M is locally symmetric. On the other hand, it is easily seen that the restricted homogeneous holonomy group of an m-dimensional space of non-zero constant holomorphic sectional curvature is $U(m)$. Then, $H_{x_{0}}=U(k) \times U(n-k)$ [7], [5; vol. 1, p. 263].
4. Case $n=2$. To prove the theorem for $n=2$, we assume that M is not locally flat and that H_{x} at $x \in M$ does not coincide with $U(2)$. Then, H_{x} can not contain $S U(2)$ by the same argument as in the last section. Then, we have $\sigma_{12}=(1 / 12)\left(\lambda_{1}+\lambda_{2}\right)=0$ at any point of M. And there exists at least one point x_{0} such that $\lambda_{1} \lambda_{2}<0$. Let W_{0} be the connected component containing x_{0} of $W=\left\{x \in M ; \lambda_{1} \lambda_{2}<0\right.$ at $\left.x\right\} . \quad \lambda_{1}\left(=-\lambda_{2} \neq 0\right)$ is a differentiable function on W_{0}. We have following two distributions on W_{0} :

$$
\begin{aligned}
& T_{1}(x)=\left\{X \in T_{x}(M) ; \quad R^{1} X=\lambda_{1} X\right\} \\
& T_{2}(x)=\left\{X^{\prime} \in T_{x}(M) ; \quad R^{1} X^{\prime}=\lambda_{2} X^{\prime}\right\}
\end{aligned}
$$

which are J-invariant. Let $X, Y \in T_{1}$ and $X^{\prime}, Y^{\prime} \in T_{2}$. Then we have

$$
\left\{\begin{array}{l}
R(X, Y)=4 \lambda_{1} X \wedge Y \\
R\left(X^{\prime}, Y^{\prime}\right)=-4 \lambda_{1} X^{\prime} \wedge Y^{\prime} \\
R\left(X, X^{\prime}\right)=0
\end{array}\right.
$$

From the last equations, we can easily see that T_{1} and T_{2} are parallel
and λ_{1} is constant. Hence, $W_{0}=M$ and $H_{x_{0}}=U(1) \times U(1)$.

References

[1] S. Bochner, Curvature and Betti numbers II. Ann. of Math., 50 (1949), 77-93.
[2] A. Borel and A. Lichnerowicz, Groupes d'holonomie des variétés Riemanniennes, C. R. Acad. Sci. Paris, 234 (1952), 1835-1837.
[3] J-I. Hano and Y. Matsushima, Some studies of Kählerian homogeneous spaces, Nagoya Math. J., 11 (1957), 77-92.
[4] H. Iwamoto, On the structure of Riemannion spaces whose holonomy groups fix a null system, Tôhoku Math. J., 1 (1950), 109-135.
[5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I, II, Intersci. Publ., 1963, 1969.
[6] M. Kurita, On the holonomy group of conformally flat Riemannian manifold, Nagoya Math. J., 9 (1955), 161-171.
[7] A. Nijenhuis, On the holonomy group of linear connections IA, IB, Indag. Math., 15 (1953), 233-249; II, 16 (1954), 17-25.
[8] K. Sekigawa and H. Takagi, On conformally flat spaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J., 23 (1971), 1-11.
[9] S. Tachibana, On the Bochner curvature tensor, Nat. Sci. Rep. of the Ochanomizu Univ., 18 (1967), 15-19.
[10] S. Tachibana and R. C. Liu, Notes on Kählerian metric with vanishing Bochner curvature tensor, Kōdai Math. Sem. Rep., 22 (1970), 313-321.

```
College of General Education,
Tôhoku University
Sendai, Japan
Faculity of Science,
Toyama University
Toyama, Japan
```


[^0]: ${ }^{1)}$ This proof is due to T. Sakai. The authors wish to express their hearty thanks to him.

