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1. Introduction. Let (M, J, g) be a Kahlerian manifold of complex
dimension % with the almost complex structure J and the Kahlerian
metric g. i

S. Bochner [1] introduced so called Bochner curvature tensor B on
M as follows;

BX,Y)=RX,Y) — 2n1+ 1 [RXANY+ XARY+RJIXANJY
+ JXANRJY — 29(JX, RY)J — 29(JX, Y)R'~J]
trace R!

[XA Y +JXAJY — 20(JX, Y)J]

@n + 9@n + 2)

for any tangent vectors X and Y, where R and R' are the Riemannian
curvature tensor of M and a field of symmetric endomorphism which cor-
responds to the Ricei tensor R, of M, that is, g(R'X, Y) = R(X, Y),
respectively. X A Y denotes the endomorphism which maps Z upon
(Y, Z2)X — 9(X, 2)Y.

But we do not know what kind of transformations in M leave B
invariant [10].

The purpose of the present paper is to classify the restricted homo-
geneous holonomy group of M with vanishing B.

THEOREM. Let (M, J, g) be a connected Kdahlerian manifold of com-
plex dimension n (n = 2) with vanishing Bochner curvature tensor. Then
its restricted homogeneous holonomy group H,, at some point x,€ M is in
general the unitary group U(n) [10]. If H, s mot U(n), then we can
classify into the following two cases:

(I) H,, is identity and M s locally flat.
(II) H,, s Uk) x Un — k) and M is a locally product manifold of an
k-dimensional space of comstant holomorphic sectional curvature K and

an (n — k)-dimensional space of constant holomorphic sectional curvature
—K (K +#0).
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The above theorem seems to be a Kiahlerian analogue of Kurita’s
theorem for the holonomy groups of conformally flat Riemannian mani-
folds [6].

2. Preliminaries. Let (M,J,9) be a Kihlerian manifold with
vanishing B. Then its curvature tensor R is written as follows;

1
2n + 4
+ JX N RJY — 29(JX, R'Y)] — 29(JX, Y)R'-J]

trace R*
_ XAY+JIXAJY — 200X, Y)J] .
@n 1 Hen o XN T TIEA 297X, Y)J

@1) RX,7Y)= [RRXA Y+ XARY+ RIXAJY

There are following relations among ¢, J and R':

Jr=-1I,
9JX, Y) +9(X,JY) =0,
R'oJ=Jo R,

9(R'X,Y) =g(X, R'Y) .
Then, at a point wec M, we can take an orthonormal basis {e, -, e,,
Je,, -+, Je,} of tangent space T,(M) such that J and R' are represented
by the following 2n x 2n matrices with respect to the basis;
-1 Ny
-1 Ny

2.2 J= , R

And we have

R(e,-,Je,-):cfie,-/\Jei—I—T,-J—_l_RloJ (t=1,---,m),
n+ 2

(2.3) jR(ei, &) = aisle; A e; + Jei A Jey)
R(ei, Je,-) = 0';,-(61- ,/\ Jej — Je,; /\ e_,,') (7:,.7. = 1, e, ’n, ?: S j) N

where we have put
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[(n + DO + 1) — 4],

O.: = 1
Y2+ D(n + 2)
_ 1 L
2.4) ity g v L SR
1

T.i=
m + Dn + 2)
A=M 4N+ oe Ny

[4—(n+ DN,

Considering R(X, Y) for X, Ye T (M) as a linear endomorphism of
T.(M), R(e;, ¢;), R(e;, Je;) and R(e;, Je;) are represented by the following
2n x 2n matrices with respect to the above basis:

n+i

(2.5) R(e;, e;) = 0, M5,
where
i g n+i n+j
01 i
Mi(];) — -1 0 I
0 1 n+i
-1 0 Jn+i
(2.6) R(e;, Je;) = 0:;;Mi7
where
i j nt+i n+j
0 1 |
Mi(}’ = 1 0 |s
0 —1 n+i
._.1 0 n+g
C04i
(2.7) R(e,;, Je,-) = 2
—9i1
—0i—1
1—°ii+1_
Where 2(0'.,;1 + LU + 0'.;,-,__1 + 0',; —I‘ 0'.,;“.1 + .. " + ain) == 7\4,;.

94i+1

9in

n+i

b

Taking the bracket



188 H. TAKAGI AND Y. WATANABE

[Be:, €;), R(e;, Je;)] = Re;, e;)  Res, Je;) — Re;, Je;) o Ries, ¢5)

we get

(2.8) [R(e;, ¢;), R(e;, Je;)] = 204, M55,
where
i g n+i n+j
1 0 i
M = 0 -1 s
-1 0 nti
01 n+i .

The real representation of the Lie algebra wu(k) of a unitary group
U(k) consists of real 2k x 2k matrices in the form
o
-Q P
where P and Q are k x k matrices satisfying ‘P = — P and ‘Q = Q. The
element

Q P

of u(k) is an element of the Lie algebra su(k) of a special unitary group
SU(k) if and only if trace @ = 0.

We denote by &, the Lie algebra of the restricted homogeneous holo-
nomy group H, at x€ M. h, and H, are a Lie algebra of linear endomor-
phisms and a group of linear transformations of T,(M), respectively.
When the elements of %, and H, are represented by 2n X 2» matrices
with respect to the basis {e, «--,e,, Je, -+, Je,}, they are considered as
a Lie subalgebra of w(n) and a closed connected Lie subgroup of U(n),
respectively [2].

We denote by Uls,, ---, %] and SU[, ---, ¢,] subgroups of U(n) which
are represented by 2n x 2n matrices

o

[ U(k) ] (SU(k) ]
and
I'n,-—k In—k
with respect to the basis
{eip *r ey Gy, Jeily tt 0y Jeik’ Cirip * %y Gipy Jeik+1’ ) Jei,,,} )

and, by u[¢, ---, 4] and sul¢, ---,7,], we denote the Lie algebras of
Uliy, +++, 1] and SU[¢, ---, 7], respectively.
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3. Proof of theorem. In this section, the complex dimension n of
M is assumed to be greater than 2. The case n = 2 will be treated
in the next section.

LemMMA 3.1. At a point xe M, we take a basis {e,, «++, e,, Je,, «++, Je,}
of T (M) satisfying (2.2). If o;; defined in (2.4) is equal to zero for any
1,7 (1 # 7), then R=0 at =.

ProOOF. The assumption of the lemma is equivalent to

A—(m+ 1N +2)=0 for any 1,5 7).

This implies A, = Ay = v+ =N\, =0 as # =3, thatis, R* =0. Then R=0
by (2.1). q.e.d.

To prove the theorem, we first assume that M is not locally flat.
By lemma 3.1, there exists at least one point x,€ M where 0;; does not
vanish for some ¢, j (¢ # j). Then, H, contains SU[s, 5] by (2.5), (2.6), and
(2.8). Hence, there are following two cases:

(1) H,, contains SU(n).

(2) H,, does not contain SU(n).
Case (1): In this case, H, must be equal to U(n) or SU(n) itself, because
SU(n) is the only closed connected subgroup of dimension #* — 1 in U(n);
in fact, let us assume that U(n) contains a closed connected subgroup
G of dimension #* — 1 which does not coincide with SU(n). Then, the
dimension of su(n) Ng is n* — 2 where g is the Lie algebra of G. As
SU(n) is compact and simple, the Killing form @ of su(n) is negative
definite. Thus, we can take an orthonormal (with respect to —®) basis
{fi, =+, fus, fu} Of su(n) such that {f, ---,f,_.} is a basis of su(n)Ng
where m = n* — 1. Then we have

P Sos fuls fu) = P [y fu) =0 A =a=m—1)

which implies that [f,, f.] € su(n) N g as @ is definite. Of course, [f,, f] e
su(n)Ng 1 =a,b=<m—1). This means that su(n) Ng is an ideal of
su(n) which contradicts the fact that su(n) is simple.

On the other hand, H, = SU(n) occurs if and only if the Ricci tensor
R, vanishes identically by the following lemma.

LEMMA 3.2. [4] For a Kdahlerian manifold M of dimension w, the
restricted homogemeous holomomy group is contained in SU(n) if and only
if the Ricci temsor vamishes identically. But, by (2.1), this contradicts
the assumption that M is mot locally flat. Therefore, the case (1) occurs
when and only when H, = U(n).

1 This proof is due to T. Sakai. The authors wish to express their hearty thanks to
him.



190 H. TAKAGI AND Y. WATANABE

Case (2): In this case, there exist t <k <n — 1) and 3, +--, 7, such
that H, contains SU[i,, -+, 1,] but does not contain SUJs, .-, 4, j] for
any j. We change the indices suitably and assume that H, contains
SUI1, ---, k] but does not contain SUIL, -, k, j] for any 5,5 > k.

LEMMA 3.3. If h,, contains su[l, ---, k] and suli, j] for some <,j
satisfyiug L <1<k and k +1 =< j < n, then h,, contains su[l, -+, k, j].

ProoF. We can take as bases of su[l, ---, k] and sul4, j] the sets of
matrices

M.y, My, M§, -+, M\ ; 1=a<b=k}
and
{M-‘j” M-‘f’ M-‘?’}
LV %y 9 (%] b

respectively. On the other hand, we have the following equalities:
M7, M?] = — M2 l=prp<g<r=mn),
MY + M7 = M l<p<g=mn),
[M;7, M;P] = 2M;; l=p<r=mn).
This means that if h, contains su[l, ---, k] and su[s, j], then it contains
MB, M3, M3, M2, M, -+« MP, M? ; 1<a<b=k1=c=k}

ab y cj
which is a basis of sul[l, ---, £, j]. q.e.d.

By Lemma 3.3, H, can not contain SUla,u] (a=1,:--,k,u=
k+1,---,n) and we get

8.1) O =0 @=1,,kbu=k+1, -, m).
Then, by (2.4), we have
(3.2) M=o = M(FN), Ny = 200 = (S )
and
@3-3) (m+1—kn+Ek+1Dr=0,
from which we have A == ¢. Hence, we have
Tup = 2(n+1§(n+2)[(2n+2—k)x— m—ly] (QL=a<b=k,
1

- = —kn 2+ k E+1< <),
S m T Dm gl T T2eRe krlsu<vsm
which cannot vanish by (3.3). Hence, H, contains UJl, .-, k] X
Ulk + 1, «--, n] by (2.5), (2.6), (2.7) and (2.8).

Next, we take a point « in the neighborhood of x, and choose a
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basis {e,, «+-, e,, Je,, ++-Je,} of T,(M) satisfying (2.2) and hence (2.3). By
the continuity of characteristic roots of R', when « is sufficiently near
%, we may conclude that

0u+0 (1=Za<b=k),
Ow#0 (k+1=u<v=smn),

as they are so at »,. Hence, H, contains SU|[1, --., k] and SU[k+1, ---, n]
by (2.5), (2.6) and (2.8). If H, contains none of SUIL, ---, k, j], (3.1)
holds good. In the case k = n — 1, H, contains SUI[1, ---, n — 1] but
does not contain SUJ1, ---, n] as H, is isomorphic to H, by the connec-
tivity of M. Therefore, we consider the case k < n — 1.

We change the indices of ¢,y +*-, €,, Je,,, *+, Je,, Iin such a way
that H, contains SU[1, -+, k,k+1,---,k+ 7] (k+r=<mn— 1) and non
of SU[L, -+, k,k+1,---,k+ r,k + r + s], because H, is isomorphic to
H,. Then we get by the repetition of the above process

(3.4)

0,=0 (w=k+1, e b+rv=k+r+1 -+, m).

This contradicts (3.4). Thus we can take bases at each point of a neigh-
borhood V of , in such a way that (3.1) and (3.4) hold good with same
k.

Let W Dbe the set of the point € M such that for a suitable basis
of T.(M) satisfying (2.2), ¢;; does not vanish for some %, j (¢ # j), which
is an open set. Let W, be the connected component of #, in W. Then
it follows that % (in the above argument) is constant on W, and that
M) and p(x) are differentiable functions on W, by (3.3) and the fact that
kEx 4+ (n — k)¢ = (1/2) trace R' or trace (R'o R') is a differentiable function
on W, It should be remarked that Mz) = u(x) at each point xe W,. We
define two distributions on W, as follows:

T(v) = {Xe T(M): R'X = \Mx) X} ,
Tyx) = {Xe T.(M): R'X = ()X} ,

which are mutually orthogonal and J-invariant.
Let X, Ye T, and X', Y'e T,. Then we have

RX,Y)=K[XAY+JXAJY — 2(X, V)],

(3.5) RX'Y)= —K[X'ANY +JX'NJY' — 29(JX', Y)].] ,
\R(X,Y") =0,
by (2.1), (2.3), (3.1), (3.2) and (3.3), where we have put
1

[@n + 2 — k)N — (n — k)]

T2+ D + 2)
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which does not vanish by (8.3). J; and J, are defined by J.X = JX, J,. X' =
0 and J,X =0, J,.X’ = JX’, respectively.

LEMMA 3.4. T, and T, are parallel and K is constant.

ProoF. For any xe€ W,, we may choose a differentiable field of ortho-
normal basis {X, +--, X,, JX, -+, JX,} near z in W, in such a way that
(X, -, X, JX;, -+, JX3} and {X4, -+, X,, JX44, ¢+, JX,} are bases
near x in W, for T, and T,, respectively. This choice is possible by virtue

of the property Jo R' = R'oJ.
Now, in general, for a differentiable field of orthonormal basis
{Y, ---, Y,} in a Riemannian manifold (, g), we may put

(3.6) V.,, Yj = VYi Yj = g—: Aijk Yk )

where V; = V,, denotes the covariant differentiation for the Riemannian
connection, and A;;, = — A;;.
Hereafter, the indices run as follows:

a,b,c,-.- :1,ao-’k, u’v’w,"’ =k+1’00.,n.

Put X, = JX; for any <, then A4;;, = A;u+, Aijir = — A;jn, and ete. by the
property VJ = 0 for the Kihlerian manifold M. First, we shall prove
the case 2 < k =< n — 2. Taking account of (3.5), (3.6), we have (3.7):

-}E(V.,Rxxb, X,) = 24,7

+ 3 Al XA X+ Ko A Ki) + Al X A K= XA Ko)
k
o Z [A‘”“(Xb/\ Xc + Xb"/\ Xc*) + Aauc*(Xb/\ Xc* — Xb*/\ Xc)] ’

c=1

}1{—(va><&, X)) = —24,.0

n

+ D [Apo XA X+ XA Xop) + Ao (X A X — XA X))

v=k-+1

k
- Z [Abuc(Xc /\ Xa + Xc*/\ Xa*) + Abuc*(Xc"/\ Xu - Xc /\ Xu*)] ’

c=1

2 (VBX, X) = 2EXIOX A X+ X A X)

n

+ Z [Aua,v(Xv/\ Xb+ Xv‘/\ Xb‘) + Aua'v‘(Xv*/\ Xb - Xv/\ Xb"’)

v=k+1

+ Aub'u(Xa, /\ Xv + Xa‘ /\ Xv') + Aubv*(Xa/\Xv* - Xa*/\-Xv)] y
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where

> XN X

n
v=k+1

Jz"‘ch/\Xc*—

By the second Bianchi identity, we have
Ay = Ao =0,

and hence

Ape = Avoer = Qe = Ayprar = 0.
If we replace u by «* in (8.7), we have

Avrve = Apryer = Aprgra = Aprgos = 0
If we replace (u, a, b) by (a, u, v) or (a*, u,v) in (3.7), we have

Apw = Appr = Apprs = Aupur = 0

and

Apyy = Agryur = Aprpy = Aprpr = 0

Then we have X,K = 0 by (3.7). Similary X,K = 0. These facts show
that the lemma is valid for 2 <k < n — 2.

Next, we prove the case 2 <k =n — 1. The proof is accomplished,
applying the second Bianchi identity to the following equalities:

%(V‘,R)(Xb, X,) = 2400 Xw A X + 24,00

—g[Am(Xb/\ X+ X AXo) + Ay XA X — X A X
%(VbR)(X,,, X,) = 24,00 Xy A Xoe — 2Asu0ed

- 2 [Ape(X, A Xo + X A Xo)

+ Appe( X A Xy — X A X))

_IlE(vnR)(Xa, X)) = %(XnK)(Xa A X, + Xo A X

+ [A'na/n(X'n /\ Xb + Xn* /\ Xb*) + A’nan*(Xn*/\Xb - Xn/\Xb*)
+ A'nb'n(Xa/\ X'n + Xa*/\ X'n*) + Anbn*(Xa,/\ Xn' - Xu*/\ -X'n)] ’

1 4
—(V.R)(X ) = —=(X.K)X, A\ X,.
% VB(Xs, Xo) 7z EEK) X A

45 [AuneX, A Ko+ Ay Xor A X
+ Aan*an /\ Xc + Aanan /\ Xc"] ’
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Z (VaB)(X, X)) = 240Xe A X, + )

~ S A XA X+ XA K) + Aol Ko N K= XN Xo)]
L(VuB)(X,, X) = 2Aan(Xoe A Xy + )

- ”2_—.1 [An*nc(-Xa /\ Xc + Xa,* /\ Xc*)
+ An*nc‘(Xa, /\ Xc* - Xa* /\ Xc)] ’

where
J= XA X — 3 XA X q.ed.

Thus, W, is a locally product manifold of a k-dimensional space of
constant holomorphic sectional curvature 4K and an (n — k)-dimensional
space of constant holomorphic sectional curvature —4K [3]. Therefore,
by the connectivity of M and the continuity argument for the character-
istic roots of R', it follows that W, = M. In particular, M is locally
symmetric. On the other hand, it is easily seen that the restricted homo-
geneous holonomy group of an m-dimensional space of non-zero constant
holomorphic sectional curvature is U(m). Then, H, = U(k) x U(n — k)
[7], [5; vol. 1, p. 263].

4. Case n =2. To prove the theorem for n = 2, we assume that
M is not locally flat and that H, at x€ M does not coincide with U(2).
Then, H, can not contain SU(2) by the same argument as in the last
section. Then, we have o, = (1/12)(\; + \,) = 0 at any point of M. And
there exists at least one point x, such that A\, < 0. Let W, be the con-
nected component containing x, of W={xe M; A\, <0 at z}. A, (=—N#0)
is a differentiable function on W,. We have following two distributions
on W,
T(x) ={XeT,(M); RX=»)X}
Tyzx) ={X'eT(M); RX =xX'}
which are J-invariant. Let X, Ye T, and X’, Y'e T,. Then we have
RX,Y)=4\XANY,
RX',Y)= -INXANY,
RX, X)=0.

From the last equations, we can easily see that T, and T, are parallel
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and ), is constant. Hence, W, = M and H, = U() x U().
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