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In two previous papers [7], [8], the present authors studied a manifold
which admits a structure called homogeneous contact structure and at
the same time an almost product structure. See also [1],[2], [3], [4], [5],
and [6].

On the other hand, Patterson and one of the present authors studied in
[9], [10] the cotangent bundles, especially, vertical, complete and horizontal
lifts from a manifold to its cotangent bundle.

The main purpose of the present paper is to define the almost cotangent
structure and to study its properties in the light of the papers quoted
above.

1. Cotangent bundle and cotangent structure. Let M be an n-
dimensional differentiable manifold, T.(M) the tangent space at Pec M,
and T3%(M) the dual space of T,(M). Then the fibre bundle *T(M) with
the base space M and the fibre T%:(M) on P is called the cotangent bundle
of M. The cotangent bundle °T(M) is a 2n-dimensional differentiable
manifold with a special structure.

We cover the M by a system of coordinate neighborhoods {U; z"}(%,
1,5, +++=1,2 «++ m). Then an element of T%(M) at P being a covariant
vector at P, it is represented by its components p; with respect to the
natural frame defined by the local coordinate system. Thus a point of
the cotangent bundle °T(M) is represented by (x*, p,) in terms of the local
coordinate system thus introduced. We call this local coordinate system
that naturally induced from the local coordinate system in M. When we
fix the values of #* and give arbitrary values to p;,, we get a fibre of
‘T(M) at P(x").

We put p; = & and represent a point of °T(M) by («, 2% ---,
x®, a", 2¥, -+, &™), or (x*), where, here and in the sequel, the indices A*,
1*, 5%, <+« run over the range {1*,2*, ... n*} and the indices 4, B, C, ---
the range {1,2, ---, n,n + 1, - -+, 2n}, i* being equal to n + i. We use,
in addition to the ordinary summation convention, also the summation
convention such as a®b* = > a”b* = a*'b' + a"**b* + -+ 4 a?"b".
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Now, in °T(M) regarded as a 2n-dimensional differentiable manifold,
its fibre can be interpreted as the integral manifold of the n-dimensional
distribution given by

(1.1) de' =0,d2* =0, +-+,d2"=0.
To this distribution, corresponds a simple pseudo-n-form
1.2) @ =dx' ANdet A -0 A da",

where a pseudo-n-form means an n-form which is defined only up to a non-
vanishing scalar multiple.

In general, when a simple pseudo-n-form @& is written locally in the
form & = w' A @*A --- A @" of a product of n 1-forms, then the form &
defines a distribution given by @' = 0, ®* =0, -+, " = 0, and conversely,
when a global distribution is defined in each neighborhood by 7 linearly
independent equations @' = 0, * =0, ---, @ = 0, then a simple pseudo-
n-form @ is defined.

Let 7 be the projection °T(M)— M of the fibre bundle °T(M). To
each point b = (x*, ") of “T(M) corresponds a covariant vector p; (p; = ™
at a point nb whose coordinates are (x*). Thus there exists in °T(M) a
1-form :

(1.3) w = ade .

We call this 1-form the natural 1-form of °T(M). In the sequel, we
exclude from our considerations the points of °T(M) such that p, =
D= o= :p'nzo'

Thus, there exist in °T(M) the natural 1-form w and a simple pseudo-
n-form @&@. The natural 1l-form ® is completely determined but & is
determined only up to a non-vanishing scalar multiple. As is easily seen,
they satisfy

(1.4) 0 #0,dw)"+0,dd+0,
(1.5) ONOG=0.
When we regard the cotangent bundle °T(M) as a 2n-dimensional

differentiable manifold with a special structure, we call this structure the
cotangent structure.

The cotangent structure contains the natural 1-form ® and a simple
pseudo-n-form & satisfying (1.4) and (1.5), but it satisfies also other
conditions.

2. Almost cotangent structure and canonical coordinates. Since the
cotangent structure is a structure which a cotangent bundle possesses, if



ON ALMOST COTANGENT STRUCTURES 113

we use the local coordinate system (x*, p;) in the cotangent bundle, the
properties of @ and @ are completely determined by (1.2) and (1.3). The
properties (1.4) and (1.5) are obtained in this way. Though we have from
(1.2) d@ = 0 locally, since we can multiply @ by an arbitrary non-vanishing
scalar «, we have only d® = a A\ ® globally.

As a structure more general than the cotangent structure, we consider
a structure which satisfies only (1.4) and (1.5) and will call it an almost
cotangent structure. In the sequel we shall study properties of an almost
cotangent structure and try to characterize the cotangent structure as
almost cotangent structure satisfying certain conditions. We state

DEFINITION. Suppose that, in a 2n-dimensional differentiable manifold,
there are given globally a 1-form @ and a simple pseudo-n-form @ which
satisfy

@.1) =<0, ®=<0, (dw)" = 0
and
(2.2) WAN®=0.

Then the structure defined by (w, @) is called an almost cotangent structure.

This means that a 2n-dimensional differentiable manifold M with an
almost cotangent structure is a manifold with a global 1-form w satisfying
=<0, (dw)" =<0 everywhere and such that M is covered by a system of
open neighborhoods U,, A€ {\}, in each of which there exists a simple n-
form @, satisfying @,=<0,w A @, =0 in U, and satisfying @, = f,.®,
(£: not summed) if U,NU,=<©@ , f1 being a differentiable function such
that f,.f.2=11in U,;NU,. Besides, we are concerned only with properties
which are preserved by any reversible change of @;, @, — f;®,.

If (w,®) is an almost cotangent structure, then w and & satisfy
w=<0, (dw)"=<0, and consequently, following E. Cartan, we can choose
a local coordinate system (x*) in which w can be written as

2.3) o = xda’ .

In this local coordinate system, @ in @ = @' A w* A -+ A\ ®" can be
expressed in the form
(2.4) o' = Xide' + Xida™ .
In this case, if det (X}) ## 0, then we can choose ®' @ .., @™ in such
a way that o’ is of the form
(2.5) o' = dzt + Ardz

because @ is determined up to a non-vanishing scalar factor.
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If the rank m of the matrix (X}) is less than n, we can not put '
in the form (2.5) only choosing @’ suitably. But we can prove the follow-
ing theorem.

THEOREM 2.1. In a 2n-dimensional differentiable manifold M** with
an almost cotangent structure (w, @), there exists a system of coordinate
neighborhoods U, N € {\}, in each of which we have

o = xidal,
(2.6) Wi = dai + Atdz?
@; =W\ OIN -++ N\ O},
where @; 1s a simple n-form representing the structure @ in U,.

We prove Theorem 2.1 in §3. To state the following Theorem 2.2,
we give here the definition of canonical coordinates and that of almost
cotangent manifold.

DEFINITION. A local coordinate system in which equations (2.6) of
Theorem 2.1 hold is called a canonical coordinate system of the almost
cotangent structure.

DEFINITION. A manifold in which an almost cotangent structure is
defined is called an almost cotangent manifold.
We now state

THEOREM 2.2. If we take a canonical coordinate system in an almost
cotangent manifold, then w = x"@' and A™ appearing in (2.6) satisfy

@.7) g A =0 .
ProOF. Since w A @ = 0, ® can be written as
w = X0 .
Substituting
o' = dat + Atdat
into this, we find
a'det = Xdaot + X, Ada? .
Comparing first the coefficients of dx’, we find 2 = X;. Comparing next
the coefficients of dz*, we find
XAt =0.
Thus (2.7) is proved.
DEFINITION. /" appearing in (2.6) are called coefficients of the almost
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cotangent struture.
3. Proof of Theorem 2.1.

1° Preliminaries. Suppose that the rank of the matrix X = (X}) be
m < n. Then we can represent X as
X;=PQ; (r=12---,m)
where P = (P}) and @ = (Q}) are regular matrices. In this section, we
assume that
D,q,r= 1,2’ e, m,
t,tuyv=m+1m+2, -+, 0
and use the summation convention also for these indices. Let S be the

inverse matrix of P and change the choice of @’ so that Siw* may now
be written as ’, then, in stead of (2.4), we have

o® = Qdx’ + Xpda'",
a)t = X},df)(}j* .
Also, since, changing suitably the order of the coordinates «', «? ---, x",

we can assume that det (Q?) == 0, we can use the inverse matrix of (Q?)
and can put the above equations in the form

w? = do? + Xidae* + Xoda™,

3.1 )
®-1) 0 = Xhda' .
Thus, since @=<0,w A @ = 0, we see that the rank of the matrix
BFeeeg™ ™ o™ Qecereccons 0
) 0 Xi, o+oX! Xhieoeooo X5,
(3.2) 0..... 1 X/, eoe X XPeooons Xm
Qeevecncccncncannas 0 Xntte..Xmit
[ REEEPPRRRRP R P 0 Xleoenon X,

is m. Also, multiplying the second row of the matrix (3.2) by — z", the
third row by — 2%, ..+, the (m + 1)st row by — 2™, and adding these
rows thus obtained to the first row, we see that

(3.3) at — 2 Xr =0,

because the matrix thus obtained is still of rank » and the rank of the
matrix (X}) is » — m. Thus, since the rank of the matrix
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{ Qevooes 0 Qeececone 0 P XE cenns 7 X, )
Teeeenn 0 Xi.,---X! Leeeeoeosncsans XL
[ P 1 X7 eeeXm Xleeeernaenannns Xm,
Orevoos 0 Oececennes 0 X' leeeeeeanans Xmi
(0eeeens 0 Qeevenens 0 Xliveeroroneenens Xz |
is also n, we see that there exist X, ---, X, satisfying
(3.4) 2 X = X, XL .

The condition that (2.3) keeps the same form, that is,
(3.5) a"dat = x™'da”
under the transformation of local coordinates
(@, ) — (¥, ™)
is given by
x‘g—;”]— =
The transformation of variables (xf, x*') — (x¥, 2™) satisfying these con-

ditions is called a homogeneous contact transformation.
It is well known [2] that for a homogeneous contact transformation

we have

P a—
ox’ )

(3.6)

’

ox” _ oz o' _ _ oxf o0x _ _ ox”
o’ ox’  ox” ox™’ 0w Fr
If ® do not change under this transformation, from

Xide' + Xido" = Xido' + Xidao'

3.7)

we obtain
ox* ; ox*"
Xi. .
ox?’ M ox?’
Thus the rank m of the matrix (X?!) changes depending on the choice

of local coordinate system. To express this fact clearly we denote by
m(z*) the rank of (X}) when we use the local coordinate system (x*)."

(3.8) Xi = Xi

2" A lemma. We prove the following

1 Any local coordinate system we consider in the sequel is assumed to keep the form (2.3).
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LEMMA 3.1. In a meighborhood of a point P of an almost cotangent
manifold, let (z*) be a local coordinate system in which (8.1) holds for a
certain m such that m < n. If o™ = 0 and XL, # 0, then there exists
a local coordinate system (x*') in a meighborhood of P such that the rank

m(x?) of the matrixz (Xi) is greater than m.
Proor. We here use indices having the following ranges:

L &9 l=m+2,

We assume that for 2n — 4 variables x*, x*", o,

Enp=1,2 ¢c,m— EERIY

and «f*, we have

K

¥ =x, =2, o =2, ="

and for remaining 4 variables, a™, x»*V' ™ and at"" are funections of
b ’

™, ™, x™ and x™*"* only, but the functions z* satisfy (3.5). Then, from
(3.1) and (3.8), we have the following equations:
2 S
X3, = 6%,
ox™+* Qaptm+*
P A
= = Xan o™ + Xm'a - + X(m+1)* Py ’
+1 (m+1)*
2 vy Ox™ . .,  Ox
X(m+1)’ - Xm+1a (m+1)’ + Xm*a (mt1)’ + )Z(mﬂ)"a m+1)’
A __ 2
X r - Xe ’
XZL’ =0,
- axm Xm axm—H
m = o + m1TS
ox o0x
ox™ oxptm+*
+ Xz* a m’ + X(m-}_l)*W ’
xXn - ox™ - Ox™
(m+1)’ ax(m+1), m+1"ax(m+l),
ox™ ogim+ur
+ Xﬁ. 7 + (m+l)"'——7 ’
a (m+1) a (m+1)
&= Xgu ’
mi = (),
m+1 _ ymi1 0™ mir 0BT
m = S (mi o o
m+1 m—+1 axm‘ m+1 ax(m-H)*
ey = Ant oy + (s
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XZH —
7 —
X, =0,
ox™ o™
XZL —_ X’”n‘a o + X7m+1)*—67— )
oz L
7 — 7
X(m—H)' - X a (m+1)’ + X(m+1) a m+1)’ !
Xy =

If m <n — 1, then the matrix (Xi) can be written as
5,%: X X(lm-m' Xé
0 X D G ¢4
0 Xmt Xm0
0 X X, 0

and if m = n — 1, it can be written as

0 XL X3,
o X X~
0o X X
Thus in each of cases, if
Xz’ X(mmﬁ—l)'
3.9 #0,
( ) Xmit Xmm++11)'

then the rank of (X%) is greater than m. Computing the first member
of (3.9), we obtain
Xm;{—l a(xm’ wm‘)

™o, w
a(a™, wm )
o(x™, g™

m - a(xm+1’ xm*
(3.10) + Xm+1Xm~+lb(x—m,x(m—+l),)
mrr 0(@™H, g™

m
+ Xm-H (m+1)* a(x ,, x(m+1))

+1
+ X(mm+1)"

o(x™, a!™ %)
o™, g™ )

We now assume that a local coordinate system in a neighborhood of
a point P satisfies in addition to (3.1), x™ = 0, X% . # 0 at the point P.
We then consider a coordinate transformation under which xf, x**, af, o*

+ (Xz‘inm+-i—11)* - X{nm_(_”*ijl
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are not changed and x™, 2™, ™, x™+Y* are changed by

, plm+n™ ,

™= g™ 4+ ————gp™t

m*’
(m41)*%
&r
(3.11) =
* *7
xm o xm ,
x(m+1)* — __x(m+1)’xm*' .

It will be easily seen that this coordinate transformation satisfies (3.5).

As among the functional determinants appearing in (8.10), the only non-
Zero one is

o(x™, x'm")
o(x™ , o™t

o e
= —g"™ = —g™,

(3.10) becomes —ax™ X7, and is consequently not zero. Thus by the
transformation (3.11), the rank of the matrix (X?) increases at least one.
Thus the Lemma 3.1 is proved.

3" Proof of Theorem 2.1. We prove another lemma:

LEMMA 3.2. When we introduce, in a mneighborhood of a point P of
an almost cotangent manifold M**, a local coordinate system (x*) which
satisfies (3.1) for an integer m, there exists another local coordinate system
(x*) which satisfies equations having the same form as (3.1) and
™ = 0, XpH. #= 0 at P.

Proor. Since @ = 0, there exists a non-zero one among X%t ...

9 b
mt, If Xmi .+ 0, then we do nothing. But if X73%,,. = 0, we change

the coordinate system by the following equations:
¥=a", G=m+1),
gmtl — x(m+1)’ _ 2' a;x"' ,

" = g™ + a™t, (t#m+ 1) ’
x(’m‘l-l)* — x(m—i-l)*’ ,

where a; are constant and Y’ denotes the summation excluding the term
corresponding to ¢ = m + 1. It is easily seen that this coordinate trans-
formation satisfies (8.5). Also, since we have, in this case,
w? = da? + Xeda* + Xoda™
= dz” + X2, (dz™ — 3V a,dx’)
+ Xedaet' + Xodx™,
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w” can be written as
w? = (67 — X7, ) da? + Xbda* + XEda™

and ®‘ as
ot = Xidae* = Xh.da™ .

Since X7'!,. = 0, especially for ™', from
o™t =3 Xptda™
we have
o™t = 3 Xetdat 4+ > XnPada ™,
and consequently, in w™*' = X% 'dx®™', we have
Xty = 2 a; X5

Thus if we take a; (¢ = m + 1) suitably, we get X7, = 0. Also, if we
take |a;| sufficiently small, then det (6> — X%,,a,) is sufficiently close to
1, and consequently, taking suitably a linear combination '@w* = prw?
instead of w®?, we obtain

'w? = dx” + Xodx + XEdx™,
ot = XL.da™, Xrtw %= 0.
We rewrite this result as
w? = da* + Xrdx* + X2dx® ,
a)t - i&dwit, Xl”;j:l)t #* 0 .
Since, in such a coordinate system, we can change the order of ', @?
cee, O™ &, &P e e e, 2™ 2, &%, oo+, &™ arbitrarily but in the same way, we
can assume that 2™ # 0 unless 2" = 2* = ... = 2™ = 0. But the case in
which 2" =2 = ... = 2™ = 0 cannot happen, because if this happens,
then we get, from (8.3), 2" = 2 = ... = 2" = 0 and consequently w = 0,
which contradicts the assumption @ = 0. Thus the Lemma 3.2 is proved.
Theorem 2.1 is a consequence of Lemmas 3.1 and 3.2.

4. Examples of almost cotangent structures.

1° Almost cotangent structure in the cotangent bundle of an n-dimen-
sional differentiable manifold M”. As we may easily see °T(M) admits
an almost cotangent structure such that, with respect to a suitable local
coordinate system, we have 4 = 0. That is, the °T(M) is covered by a
system of canonical coordinates with respect to which 4 = 0.

Conversely is such an almost cotangent structure a cotangent struc-
ture? The answer is no in general. Suppose that a 2n-dimensional
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differentiable manifold is covered by a canonical coordinate system with
respect to which we have A = 0. The distribution defined by dz' =
dx* = +++ = da" = 0 is locally integrable, but, as the following example
shows, does not give globally a closed integral manifold.

Let X be a 2-dimensional topological space such that a point P of X
is represented as P(a, b) by an ordered pair (a, b) of two real numbers «
and b where 0 <a<1;0<b<1. We assume that P(a, b) = P(a’, b) if
and only if a =a and b =0 for 0<a,a'<1,0<b, b <1 and PO, d) =
PQ1,b), P(a,1) = Pa + «,0), or Pla + a —1,0) where a is an irrational
number such that 0 < @ < 1. We fix suitably the ranges of two variables
o' and 2" and choose also suitably two integers ' and ", then (v + I' —
al”, & + I") represents a point of X and consequently («!, ") is a local
coordinate system of X. We take a similar 2-dimensional topological space
Y and let (27 «*) be its local coordinate system in the above sense. In the
product space X x Y, we can use (', &%, ", #*') as a local coordinate system.
The transformation between two different local coordinate systems is of
the form

=" + ' —al", =2 + I — al”,

=" + I, o =+ T,
where ', I, [, I* are 0, +1,or —1. Since « is an irrational number, the
distribution dz' = dx* = 0 can not have a closed submanifold in X X Y as
its integral submanifold. Consequently, @ = xz"da' + 2¥da’, & = da* A da?
does not give the almost cotangent structure of a cotangent bundle.

2° Almost cotangent structure of an (w, &, @’)-structure. In a pre-
vious paper [7, 8], we have studied 2n-dimensional differentiable manifold
M having the following properties.

In M, there exist globally a 1-form @ and two simple n-forms @, &,
@ and @ being determined only up to non-vanishing scalar multiples,
such that

“4.1) ®#0,dw)"#0, 0N #0,0 N\ +*0
everywhere and there exist locally decompositions of @ and & satisfying
0 = W' N\ WA -+ N\ O (0 = 0),
(4.2) 00 = 0" N\ @A <+ A O (0+0),
dw = 0 \ @' .
In fact, (4.2) means that there exist a covering of M by a system of

open neighborhoods U,, » € {A\}, and local n-forms @&; and @&} representing
@ and @* respectively such that
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@y =W\ WIN <+ N\ @],
O = W5 N O N o0 A Wy,
dow = i N\ !
in Uz.
This manifold is called an even-dimensional contact manifold with a

contact almost product structure. Choosing a suitable local coordinate
system, we have

o = §dEt,
4.3) o' = d& + o™,
0" = d&" — I',dét,
where
(4.4) mr=0nqvr, =r,,.
Moreover we have put the condition
(4.5) It = 0

(see, for example, [8] p. 28). In this case, it will be easily seen that w
and & satisfy @ = £"w' and consequently

(4.6) ONG=0.
Conversely, if (4.6) holds, then @ can be written as
o = X;0'
and consequently substituting this into (4.3), we obtain
£7dgt = X,(d&F + IT*o™) ,
hence
(6" — X)dé = X II*a™
= X, IMdE" — I, dEP) .
Then comparing the coefficients of dé*, we obtain
4.7) X1+ =0,
and consequently,
X, =¢&".

Substituting this into (4.7), we obtain (4.5).
Thus the even-dimensional contact manifold with a contact almost
product structure we considered satisfies (4.6) in addition to (4.1) and
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(4.2). We call such a structure (w, @, &)-structure.
Evidently an (0, @, @)-structure contains an almost cotangent struc-
ture (o, @). ’

5. Integrable almost cotangent structure. We now consider the case
in which an almost cotangent structure (w, @) satisfies

(5.1) dd = a A @

for a 1-form a. Here and often in the sequel @ means a local n-form

representing the pseudo-n-form. This property (5.1) is preserved by a

change of &, @ — f®, if a is simultaneously changed by a« —dlog f + a.
In the canonical coordinate system, from

' = do' 4+ Atdat,
we have
dw® = dA™* N dz*
= 0;4dx’ A\ da** + 0; 4 da N\ dat
= 0,4 @’ N dat + (0;4 — A%95, A")dx” N da™
and consequently
d(@' N @* N\ <+« N\ ©O")
= — 0, A*dx* N\ W' AND* N o+ A @O
+FAANOPN e NO" =D NLNDN oo AN O
+ e+ (DO AN @A s AOVTEA R,
where
Q% = (0;.4% — AY9, A%)dx™ A da™ .

Thus, a necessary and sufficient condition in order that (5.1) holds is, as
we can see it comparing the coefficients of da' A daz* A «++ A dz™* A da™* A
dx® and so on, that Q% = 0, that is,

(5.2) 0¥t — 0. A* + AY0, A% — AY9, A% = 0 .
Thus we have proved the following

LEMMA 5.1. A mnecessary and sufficient condition that anm almost
cotangent structure (@, @) locally satisfies

ddd =a N\ &
for a certain 1l-form « is given by (5.2).

We next consider the case in which, for an almost cotangent structure
(w, @), there exist local scalar fields g, f*, f% «-+, f" such that
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(5.3) @ = RAf* NAfENA -or AdSf".
Then there exists a regular matrix A’ such that
(5.4) dft = Alw'.

In canonical coordinate system, this can be written as
o fidat + 0. fida® = Aldat + A¥dx™) ,
from which we get
o, f* = Al,
Ouft = AldA¥
Thus we have the following
LeMMA 5.2. In an almost cotangent structure (@, @), local scalar fields
o, f*, f% +o, ™ satisfying
(5.5) O'NDN s AO"=0adf* NdfEN «-+ Adf",
where
ot = dx' + A*dgt

satisfy
(5.6) odet 0," =1,
(5.7) Opft — A¥0, f* =0 .

Conversely, if there exist local scalar fields f*, f?, «++, f" satisfying (5.7)
and such that det (0;1*) %= 0, then we can determine o by (5.6) and get (5.5).

If there are n local scalar fields f* which satisfy (5.7) and det (0,f*) +=
0, then the system of partial differential equations

(5.8) 0nf — A¥0,f =0

is completely integrable. If f*, f* --., f"satisfying (5.7) satisfy det (0;/") =
0, then there exist ®,(+ 0) such that ®,0,f* = 0, but, following (5.7), @,
also satisfy ®,0,.f" = 0 and consequently f*, f? ---, /™ are not independent
functions. Thus the existence of f* satisfying (5.7) and det (0;/") # 0 is
equivalent to the complete integrability of (5.8). The complete integrability
of (5.8) is found to be

(5.9 0ol — Bpudhi  AY3, AW — A3 AM = 0O
and is equivalent to (5.2). Thus we have

THEOREM 5.3. In an almost cotangent structure (w, @), the evistence
of local scalar fields o, f*, f% «+-, f™ such that
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@ =0df  NdAfP N\ <o« ANdf"
and the existence of a local 1-form a such that
ddd =a N\ &
are equivalent.

If the condition of Theorem 5.3 is satisfied, then from w A @ = 0, we
see that there exist local scalar fields ®; such that w = @, df*. Since (dw)" +#
0, 2n functions f*, «--, f", @, +++, @, are independent and consequently
we can determine a local coordinate system putting 2' = f¢ 2™ = @,. This
is a canonical coordinate system satisfying

w = z¥da’, @ =dx N\ de A\ o0 A da.
Thus we have the following

COROLLARY. If the condition in Theorem 5.3 ts satisfied, them there
exists a canonical coordinate system such that

@ =dx* Ndx* N\ -0 A da™.
A differentiable manifold satisfying this condition is locally a cotangent
bundle, but globally not in general. We say that this manifold has an

integrable almost cotangent structure since the local distribution w' =
. = w" = 0 determined by @& is completely integrable.

6. Symmetric almost cotangent structure. We now consider the
case in which an almost cotangent structure (w, @) satisfies
6.1) doN®=0.
In this case, substituting da* = w* — A*¥*da"" into
de” AN de* AN @' A\ +oe AN @O" =0,
we find
(6.2) A7 = A%,

DEFINITION. An almost cotangent structure in which (6.1), that is,
(6.2) holds, is called a symmetric almost cotangent structure.

Integrable almost cotangent structure is a special symmetric almost
cotangent structure and the almost cotangent structure in an (w, @, @)
structure is also a symmetric almost cotangent structure.

In an almost cotangent manifold M*", we can derive, from w, the
2-form

dw = dz™ A dat
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and consequently a tensor field
0 —E,
E, 0

of type (0,2) where E, is the » X n unit matrix. Using this tensor we
can make correspond a covector (W;, W..) to a vector (X?, X*) of M** by

W, =— X*, W =X,
These X = (X', X*) and W = (W,, W,.) are incident, that is, they satisfy
XW,+ X*W,.=0.
DEFINITION. Two vectors X and Y in M** are said to be ¢-orthogonal
when they satisfy

(6-3) (SBA) = (

€. X2Y* =0,
that is,
XY - Xi'Y"=0.
DEFINITION. Suppose that there is given a vector X = (X4) in M*®*.

The covector W = (W,) given by W, = ¢,;,X* is said to be associated
with the vector X.

The fact that X and Y are c-orthogonal is equivalent to the fact that
the covector W associated with X and the vector Y are incident.
DEFINITION. A vector X in M*®" is said to be incident with & if it
satisfies
X+ A X" =0.
We also say that, in this case, X is a tangent vector of the distribution @.
A vector Y c-orthogonal to a veetor X which is incident with @
satisfies
XY + A XPYT =0,
that is,
(Y + AMY")X* =0,
and consequently, a necessary and sufficient condition that a vector Y is
¢-orthogonal to all the vector X incident with & is given by
Yi+ AMY"™ =0.
We also have
THEOREM 6.1. In an almost cotangent structure (®, @), a mecessary
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and sufficient condition that all the vectors incident with & are mutually
e-orthogonal is that the almost cotangent structure is symmetric.
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