
Tόhoku Math. Journ.
25(1973), 111-127.

ON ALMOST COTANGENT STRUCTURES

Dedicated to Professor Shigeo Sasaki on his 60th birthday

KENTARO YANO AND YOSIO MUΊΌ

(Received September 21, 1971)

In two previous papers [7], [8], the present authors studied a manifold
which admits a structure called homogeneous contact structure and at
the same time an almost product structure. See also [1], [2], [3], [4], [5],
and [6].

On the other hand, Patterson and one of the present authors studied in
[9], [10] the cotangent bundles, especially, vertical, complete and horizontal
lifts from a manifold to its cotangent bundle.

The main purpose of the present paper is to define the almost cotangent
structure and to study its properties in the light of the papers quoted
above.

1. Cotangent bundle and cotangent structure. Let M be an n-
dimensional differentiate manifold, TP(M) the tangent space at PeM,
and TP(M) the dual space of TP(M). Then the fibre bundle CT(M) with
the base space M and the fibre T%(M) on P is called the cotangent bundle
of M. The cotangent bundle CT(M) is a 2%-dimensional differentiate
manifold with a special structure.

We cover the M by a system of coordinate neighborhoods {U; xh}(h,
i, j , = 1, 2, , n). Then an element of Tί(M) at P being a covariant
vector at P, it is represented by its components p{ with respect to the
natural frame defined by the local coordinate system. Thus a point of
the cotangent bundle CT(M) is represented by (xh, p{) in terms of the local
coordinate system thus introduced. We call this local coordinate system
that naturally induced from the local coordinate system in M. When we
fix the values of xh and give arbitrary values to p{, we get a fibre of
CT(M) at P{xh).

We put Pi = xι* and represent a point of CT(M) by (x1, x2, ,
xn, xι\ x2\ •••, xn*), or (xA), where, here and in the sequel, the indices &*,
i*, j * f run over the range {1*, 2*, , n*} and the indices A, B, C,
the range {1, 2, , n, n + 1, , 2ri\, i* being equal to n + i. We use,
in addition to the ordinary summation convention, also the summation
convention such as a'Ψ = Σ «**&* = αn+1δι + an+ψ + + a2nbn.
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Now, in CT(M) regarded as a 2w-dimensional differentiable manifold,
its fibre can be interpreted as the integral manifold of the ^-dimensional
distribution given by

(1.1) dx1 = 0, dx2 = 0, , dx* = 0 .

To this distribution, corresponds a simple pseudo-?ι-form

(1.2) ώ = dx1 A dx2 A Λ dxn ,

where a pseudo-w-form means an w-form which is defined only up to a non-
vanishing scalar multiple.

In general, when a simple pseudo-w-form ώ is written locally in the
form ώ = ω1 A o)2A Λ o)n of a product of n 1-forms, then the form ώ
defines a distribution given by ωι = 0, ω2 = 0, , ωn = 0, and conversely,
when a global distribution is defined in each neighborhood by n linearly
independent equations ω1 — 0, of — 0, , ωn = 0, then a simple pseudo-
^-form ώ is defined.

Let π be the projection CT(M)-+M of the fibre bundle CT(M). To
each point b = (xh, xh*) of CT(M) corresponds a covariant vector p{ (p{ = x1*)
at a point πb whose coordinates are (xh). Thus there exists in CT(M) a
1-form

(1.3) ω = xi*dxi .

We call this 1-form the natural 1-form of CT(M). In the sequel, we
exclude from our considerations the points of CT(M) such that py —
ft = = P» = 0.

Thus, there exist in CT(M) the natural 1-form ω and a simple pseudo-
n-ΐorm ώ. The natural 1-form ω is completely determined but ώ is
determined only up to a non-vanishing scalar multiple. As is easily seen,
they satisfy

(1.4) ω Φ 0, (dω)n
 Φ 0, ώ Φ 0 ,

(1.5) ω Λ ώ = 0 .

When we regard the cotangent bundle CT(M) as a 2^-dimensional
differentiable manifold with a special structure, we call this structure the
cotangent structure.

The cotangent structure contains the natural 1-form ω and a simple
pseudo-w-form ώ satisfying (1.4) and (1.5), but it satisfies also other
conditions.

2. Almost cotangent structure and canonical coordinates. Since the
cotangent structure is a structure which a cotangent bundle possesses, if
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we use the local coordinate system (xh, Pi) in the cotangent bundle, the
properties of ω and ώ are completely determined by (1.2) and (1.3). The
properties (1.4) and (1.5) are obtained in this way. Though we have from
(1.2) dώ = 0 locally, since we can multiply ώ by an arbitrary non-vanishing
scalar a, we have only dώ = a A & globally.

As a structure more general than the cotangent structure, we consider
a structure which satisfies only (1.4) and (1.5) and will call it an almost
cotangent structure. In the sequel we shall study properties of an almost
cotangent structure and try to characterize the cotangent structure as
almost cotangent structure satisfying certain conditions. We state

DEFINITION. Suppose that, in a 2^-dimensional differentiate manifold,
there are given globally a 1-form ω and a simple pseudo-w-form ώ which
satisfy

(2.1) ω^O, ώ^O, (dω)*Φ 0

and

(2.2) ω A ω = 0 .

Then the structure defined by (ω, ώ) is called an almost cotangent structure.

This means that a 2%-dimensional differentiable manifold M with an
almost cotangent structure is a manifold with a global 1-form ω satisfying
ω =N= 0, (dω)n =N= 0 everywhere and such that M is covered by a system of
open neighborhoods Uλ,Xe{X), in each of which there exists a simple n-
form ώλ satisfying ώλ, ̂  0, ω A ώλ = 0 in Uλ and satisfying ώλ = fλκώκ

(tc: not summed) if Uλ Π Uκ =N= 0 , fλκ being a differentiable function such
that fλκfκλ = 1 in Uλ Π Uκ. Besides, we are concerned only with properties
which are preserved by any reversible change of ώh ώλ —> fλώλ.

If (ω, ώ) is an almost cotangent structure, then ω and ώ satisfy
ω ^ 0, (dω)n =̂= 0, and consequently, following E. Cartan, we can choose
a local coordinate system (xA) in which ω can be written as

(2.3) ω = xi*dxi .

In this local coordinate system, ωι in ώ = ωι A co2 A Λ o)n can be
expressed in the form

(2.4) ω* = X)dxj + X*dχT .

In this case, if det (X}) Φ 0, then we can choose ω\ ω2, , ωn in such
a way that ωι is of the form

(2.5) ω* = dxι + Λihdxh* ,

because ώ is determined up to a non-vanishing scalar factor.
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If the rank m of the matrix (X}) is less than n, we can not put co1

in the form (2.5) only choosing a)1 suitably. But we can prove the follow-
ing theorem.

THEOREM 2.1. In a 2n-dimensional differentiable manifold M2n with
an almost cotangent structure (ω, ώ), there exists a system of coordinate
neighborhoods Uλ, λe{λ}, in each of which we have

ω = xfdxi ,

(2.6) ω\ = dx\ + ΛfdxT ,

ώλ = ω\ Λ ω2

λ Λ - - Λ ω% ,

where ώλ is a simple n-form representing the structure ώ in Uλ.

We prove Theorem 2.1 in §3. To state the following Theorem 2.2,
we give here the definition of canonical coordinates and that of almost
cotangent manifold.

DEFINITION. A local coordinate system in which equations (2.6) of
Theorem 2.1 hold is called a canonical coordinate system of the almost
cotangent structure.

DEFINITION. A manifold in which an almost cotangent structure is
defined is called an almost cotangent manifold.

We now state

THEOREM 2.2. If we take a canonical coordinate system in an almost
cotangent manifold, then ω = xi*ωί and Λih appearing in (2.6) satisfy

(2.7) x*Aih = 0

PROOF. Since ω A ώ = 0, ω can be written as

ω = Xiύf .

Substituting

ω* = dxί + Λihdxh*

into this, we find

Comparing first the coefficients of dx\ we find xι* = X{. Comparing next
the coefficients of dxh*, we find

X,Aih = 0 .

Thus (2.7) is proved.

DEFINITION. Λih appearing in (2.6) are called coefficients of the almost
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cotangent struture.

3. Proof of Theorem 2.1.

1° Preliminaries. Suppose that the rank of the matrix X = (X}) be
m < n. Then we can represent X as

where P = (Pj) and Q = (Qj ) are regular matrices. In this section, we
assume that

p, q, r = 1, 2, . . . , ra ,

£, M, v = m + 1, m + 2, , n

and use the summation convention also for these indices. Let S be the
inverse matrix of P and change the choice of ωι so that Siωk may now
be written as ω\ then, in stead of (2.4), we have

ωp = QPdxj + Xfdx** ,

ω* = X^dxT .

Also, since, changing suitably the order of the coordinates x1, x2, *"9x
n

9

we can assume that det (Qj) Φ 0, we can use the inverse matrix of (Qj)
and can put the above equations in the form

(3.1)
ωp = dxp + Xζdxu + 2

ωι = X)Λxj* .

Thus, since ώ=N=O, ω A ώ = 0, we see that the rank of the matrix

x1*' -xm* x{m+1)* - xn* 0 0

(3.2) o l x:+1 ---x: x?

o. O Vn Vn

is tι. Also, multiplying the second row of the matrix (3.2) by — x1*, the
third row by — x2\ , the (m + l)st row by - xm% and adding these
rows thus obtained to the first row, we see that

(3.3) xtm - x**Xf = 0 ,

because the matrix thus obtained is still of rank n and the rank of the
matrix (JSΓ/ ) is n — m. Thus, since the rank of the matrix
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• 0 0 0

1 0 Xi+1. . XL

o o o o xr* xιr

is also n, we see that there exist Xm+1, , Xn satisfying

(3.4) xp*Xj* = XtX]* .

The condition that (2.3) keeps the same form, that is,

(3.5) x*dx* = tf*'dxir

under the transformation of local coordinates

is given by

(3.6)
dxj

The transformation of variables (x\ x1*) —> (xif, x1*') satisfying these con-
ditions is called a homogeneous contact transformation.

It is well known [2] that for a homogeneous contact transformation
we have

(3.7) dx*' dxj* dxif dxj*

dxj dx**'' dx3'* dx**'' dxj dxif

If ω* do not change under this transformation, from

X)dxj + Xydxj* = X],dx>'' + Xj*,dxj*' ,

we obtain

(3.8)

Thus the rank m of the matrix (Xf) changes depending on the choice
of local coordinate system. To express this fact clearly we denote by
m{xA) the rank of (X}) when we use the local coordinate system (α^).υ

2° A lemma. We prove the following

x) Any local coordinate system we consider in the sequel is assumed to keep the form (2.3).
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LEMMA 3.1. In a neighborhood of a point P of an almost cotangent
manifold, let (xA) be a local coordinate system in which (3.1) holds for a
certain m such that m < n. If xm* Φ 0 and X^γ)* Φ 0, then there exists
a local coordinate system {xA>) in a neighborhood of P such that the rank
m(xA') of the matrix (X* >) is greater than m.

PROOF, We here use indices having the following ranges:

K, λ, μ = 1, 2, , m - 1; ζ, η, ζ = m + 2, , n .

We assume that for 2w — 4 variables x% xκ\ xζ, and xζ*, we have

of = χκ, χκ*' = χκ\ χζ' = x*, χζ*r = χξ*

and for remaining 4 variables, xm', x{m+1)r, xm*' and ,x{m+1)*' are functions of

xm, xm+\ xm* and x{m+1)* only, but the functions xA' satisfy (3.5). Then, from

(3.1) and (3.8), we have the following equations:

μ, — Oμ ,

ps^m+l P)™m>* ^/y.(m+l)*

Z λ — Ύλ 0X J- Ύλ 0X j _ Ύλ 0X

i ΊΠ- - f i — — {τn-\-i)^ ~

Uth UJ(y

dxm+1

L m+1~

X™ = 0 ,

Zm 9ή?
m' = -r—χm dxm

γm dXm* , γm C

ξ' — Λζ >

^ 1 - 0 ,

^ + Z m + i 3a; ( m + 1 )*
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X?,+ι = 0 ,

X\, = 0 ,

X V — YV

dxm

dx< m+1)*
d x m

dx (m+1)'

X|, = 0 .

If m < n — 1, then the matrix {X)) can be written as

0

V Λ.m, Λ.{m+1),

and if m = n — 1, it can be written as

'δι

μ XL XΪ:

0 Xϊ,

0

Thus in each of cases, if

(3.9)

γ
m> Λ.n,_

Vm
-Λ-dn + D'

Vffl+1
-Λ ίm + l ) '

o,

then the rank of (X),) is greater than m. Computing the first member
of (3.9), we obtain

(3.10)

I J^-m + l α ^ , X )
( m + 1)* pj(^m' r(m+ll'\

i

"Γ

m + i y )

ra Vm+1

I / Vm ym + l Vm ym+"m ym+i\ °λ«E > ̂  j

We now assume that a local coordinate system in a neighborhood of
a point P satisfies in addition to (3.1), xm* Φ 0, XJΪ+D* Φ 0 at the point P.
We then consider a coordinate transformation under which xκ

9 xκ\ xζ, xξ*
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are not changed and x
m
, x

m+
\ x

m
\ x

(m+1)
* are changed by

x
M
"

(3.11) x
n + 1
 =

 χim+ί)
" ,

It will be easily seen that this coordinate transformation satisfies (3.5).
As among the functional determinants appearing in (3.10), the only non-
zero one is

(3.10) becomes —x^X^+v* and is consequently not zero. Thus by the
transformation (3.11), the rank of the matrix (Xf) increases at least one.
Thus the Lemma 3.1 is proved.

3° Proof of Theorem 2.1. We prove another lemma:

LEMMA 3.2. When we introduce, in a neighborhood of a point P of
an almost cotangent manifold M2n, a local coordinate system (xA) which
satisfies (3.1) for an integer m, there exists another local coordinate system
(xA') which satisfies equations having the same form as (3.1) and
xm*' Φ 0, XΓm+i)*' ̂  0 at P.

PROOF. Since ώ Φ 0, there exists a non-zero one among X?*+ί, ,
X™*+\ If Xlίίi)* Φ 0, then we do nothing. But if X?^* = 0, we change
the coordinate system by the following equations:

X1

xir

χ{m+1)*

= x*

= x{

= x<

= x{

" + a{x
[

m+l)*'
«

m +

»+l)*'

1),

> (i Φ m + 1).

where a{ are constant and Σ ' denotes the summation excluding the term
corresponding to i = m + 1. It is easily seen that this coordinate trans-
formation satisfies (3.5). Also, since we have, in this case,

ωp = dxp + Xζdxu
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ωp can be written as

ωp = (δp - Xp

m+1aq)dxq' + Xp,dxu' + X$»dx*'

and ωι as

ω< = X\>dx* = X^W .

Since X^+u* = 0, especially for ωm+\ from

ωm+ί = Σ ' X$+1dx* ,

we have

ωm+i = Σ , χ - + i ^ * ' + Σ ' X™+%dx{m+1)*' ,

and consequently, in ωm+1 = Xj^dαf*', we have

Thus if we take α< (i ^ m + 1) suitably, we get XΓm++o*' ̂  0 . Also, if we
take \a,i\ sufficiently small, then det (δP — Xl+1aq) is suίSciently close to
1, and consequently, taking suitably a linear combination fωp — ppω9

instead of ωp, we obtain

'ωp = dxpf + Xtdxu> + XlίΛvT ,

We rewrite this result as

Co* = do;7' + Z ^ t t + Xldx* ,

α>* - Xίdx*, -XίϊΪD ^ 0 .

Since, in such a coordinate system, we can change the order of co\ ω2,
• , ωm; x\ x2, , xm; xι\ x2*, , xm* arbitrarily but in the same way, we
can assume that xm* Φ 0 unless x1* = x2* = = £m* = 0. But the case in
which x1* = χ2* = . . . = χm* = 0 cannot happen, because if this happens,
then we get, from (3.3), x1* — x2* = = xn* = 0 and consequently ω = 0,
which contradicts the assumption ω Φ 0. Thus the Lemma 3.2 is proved.

Theorem 2.1 is a consequence of Lemmas 3.1 and 3.2.

4. Examples of almost cotangent structures.

1° Almost cotangent structure in the cotangent bundle of an ^-dimen-
sional differentiable manifold Mn. As we may easily see CT{M) admits
an almost cotangent structure such that, with respect to a suitable local
coordinate system, we have Λik = 0. That is, the CT(M) is covered by a
system of canonical coordinates with respect to which Λih = 0.

Conversely is such an almost cotangent structure a cotangent struc-
ture? The answer is no in general. Suppose that a 2^-dimensional
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differentiable manifold is covered by a canonical coordinate system with
respect to which we have Λih = 0. The distribution defined by dx1 =
dx2 = ••• = dxn — 0 is locally integrable, but, as the following example
shows, does not give globally a closed integral manifold.

Let X be a 2-dimensional topological space such that a point P of X
is represented as P(a, 6) by an ordered pair (α, 6) of two real numbers a
and b where 0 ^ α ^ 1; 0 ^ 6 ^ 1. We assume that P(a, b) = P(ά, b') if
and only if a = a and 6 = 6' for 0 < a, a < 1, 0 < 6, 6' < 1 and P(0, 6) =
P(l, 6), P(α, 1) = P(a + α, 0), or P(a + α — 1, 0) where a is an irrational
number such that 0 < a < 1. We fix suitably the ranges of two variables
xι and xι* and choose also suitably two integers ϊ1 and i1*, then (α;1 + I1 —
α F , α;1* + i1*) represents a point of X and consequently (α?1, α;1*) is a local
coordinate system of X. We take a similar 2-dimensional topological space
Y and let (x2, x2") be its local coordinate system in the above sense. In the
product space X x Y, we can use (x\ x\ xι\ or*) as a local coordinate system.
The transformation between two different local coordinate systems is of
the form

α;1 = χv + ϊ1 - alι\ x2 = x2' + I2 - aΨ ,

xι* = x1*' + Γ , x2* = of + Γ ,

where i1, i2, I1*, I2* are 0, + 1 , or — 1 . Since a is an irrational number, the
distribution dx1 = dx2 = 0 can not have a closed submanifold in X x Y as
its integral submanifold. Consequently, ω = xι*dxι + x2*dx2, ώ = dx1 Λ dx2

does not give the almost cotangent structure of a cotangent bundle.

2° Almost cotangent structure of an (ω, ώ, ώ*)-structure. In a pre-
vious paper [7, 8], we have studied 2π-dimensional differentiable manifold
M having the following properties.

In M, there exist globally a 1-form ω and two simple %-forms ώ, ώ\
ώ and ώ* being determined only up to non-vanishing scalar multiples,
such that

(4.1) ω Φ 0, (dω)n
 Φ 0, ώ Λ ώ* Φ 0, ω Λ ώ* ^ 0

everywhere and there exist locally decompositions of ώ and ώ* satisfying

σώ = ω1 A o)2f\ Λ con (σ Φ 0) ,

(4.2) pώ* = ω1* Λ ω2*Λ Λ ωn* (p Φ 0) ,

dω = ωί+ Λ coι .

In fact, (4.2) means that there exist a covering of M by a system of
open neighborhoods Uχ, λe{λ}, and local w-forms ώλ and ώf representing
ώ and ώ* respectively such that
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ώλ = ω\ A ω\ A Λ co-t ,

ώ\ = ωΐ A ωf Λ Λ ωj* ,

dω = ω\* A (ύ\

in Uλ.

This manifold is called an even-dimensional contact manifold with a
contact almost product structure. Choosing a suitable local coordinate
system, we have

ω = ξ*dξ*,

(4.3) ωι = dζι + Πikωkm ,

co* = dζ* - Γihdζh ,

where

(4.4) /7" = 77Λί, Γih = Γhi .

Moreover we have put the condition

(4.5) f**77** - 0

(see, for example, [8] p. 28). In this case, it will be easily seen that ω
and ώ satisfy ω = ξi*ωi and consequently

(4.6) ω A ω = 0 .

Conversely, if (4.6) holds, then ω can be written as

ω = X ίω
ί

and consequently substituting this into (4.3), we obtain

£*'W = XM* + Πihωh*) ,

hence

(f** - XJdξ* = XiΠikωkm

= X{n
ih{dih* - Γhkdξk) .

Then comparing the coefficients of dξh*, we obtain

(4.7) XiΠih = 0 ,

and consequently,

Substituting this into (4.7), we obtain (4.5).
Thus the even-dimensional contact manifold with a contact almost

product structure we considered satisfies (4.6) in addition to (4.1) and



ON ALMOST COTANGENT STRUCTURES 123

(4.2). We call such a structure (α>, ώ, ώ*)-structure.

Evidently an (ω, ώ, ώ*)-structure contains an almost cotangent struc-
ture (ω, ώ).

5. Integrable almost cotangent structure. We now consider the case
in which an almost cotangent structure (α>, ώ) satisfies

(5.1) dώ = a A ώ

for a 1-form a. Here and often in the sequel ώ means a local n-ΐorm
representing the pseudo-w-form. This property (5.1) is preserved by a
change of ώ, ώ —> fώ, if a is simultaneously changed by a —•* d log f + a.

In the canonical coordinate system, from

ω* = dxι + Λihdxh* ,

we have

dωι = dΛih A dxh*

= djΛ^dx* A dxh* + dj*Λihdxj* A dxh*

= d3 Λ
ihωj A dxh* + (ds*Aih - ΛkjdkΛ

ih)dxj* A dxh*

and consequently

d(ω' A ω2 A Λ ωn)

= - diΛihdxh* A ω'Aco2 A Λ ωn

+ Ω1 A ω2 A Λ ωn - ω1 A Ω2 A ω3 Λ Λ ωn

+ . . . + ( - iγ-ιωι A ω2 A Λ ωn~ι A Ωn ,

where

Ωk = (dj*Λki - ΛιidtΛ
ki)dxj* A dx* .

Thus, a necessary and sufficient condition in order that (5.1) holds is, as
we can see it comparing the coefficients of dxι A dx2 A Λ dxn~ι A dxj* A
dx** and so on, that Ωk = 0, that is,

(5.2) dj*Aki - d^Λ"3' + Λι%Λkj - Λι%Λki = 0 .

Thus we have proved the following

LEMMA 5.1. A necessary and sufficient condition that an almost
cotangent structure (α), ώ) locally satisfies

dώ = a A ώ

for a certain 1-form a is given by (5.2).

We next consider the case in which, for an almost cotangent structure
(ω, ώ), there exist local scalar fields /3, f\ f2, , fn such that
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(5.3) ώ = βdf1 A df2 A Λ dp .

Then there exists a regular matrix A\ such that

(5.4) dp = A$ω*.

In canonical coordinate system, this can be written as

dkf
hdxk + dk*fhdxk* = AS(dx* + Aijdxj*) ,

from which we get

Thus we have the following

LEMMA 5.2. In an almost cotangent structure (a), ώ), local scalar fields

σ, f\ f\ •", fn satisfying

(5.5) ωι A ω2 A Λ ωn = σdf1 A dp A Λ dp ,

where

satisfy

(5.6) σ det (djh) = 1 ,

(5.7) d^P - Ak%P - 0 .

Conversely, if there exist local scalar fields p, p, " ,fn satisfying (5.7)
and such that det (9</Λ) =£ 0, ίλe^ ^e cα^ determine σ by (5.6) ami ^eί (5.5).

If there are n local scalar fields fh which satisfy (5.7) and det (3</Λ) ^
0, then the system of partial differential equations

(5.8) d{*f - Λk%f = 0

is completely integrable. If f\ p, , p satisfying (5.7) satisfy det (difh) =
0, then there exist φh{φ 0) such that φhdiP = 0, but, following (5.7), φh

also satisfy φhd^fh = 0 and consequently f\ p, , fn are not independent
functions. Thus the existence of fh satisfying (5.7) and det (9*/*) Φ 0 is
equivalent to the complete integrability of (5.8). The complete integrability
of (5.8) is found to be

(5.9) dd*Λhi - d{,Λ
hj + Al%AKS - AlidxΛ

hi = 0

and is equivalent to (5.2). Thus we have

THEOREM 5.3. In an almost cotangent structure (o), ώ), the existence
of local scalar fields σ, f\ / 2, , p such that
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ώ = σdf1 A dp A Λ dp

and the existence of a local 1-form a such that

dώ = a A ώ

are equivalent.

If the condition of Theorem 5.3 is satisfied, then from ω A ώ = 0, we
see that there exist local scalar fields φ{ such that ω = 94f\ Since (dω)n Φ
0,2n functions f\ , /*, 'φlf , ψ% are independent and consequently
we can determine a local coordinate system putting x* = f\ x** = φi9 This
is a canonical coordinate system satisfying

ω = xi*dxi , ώ = dx1 A dx2 A Λ dxn .

Thus we have the following

COROLLARY. If the condition in Theorem 5.3 is satisfied, then there
exists a canonical coordinate system such that

& — dx1 A dx2 A Λ dx* .

A differentiate manifold satisfying this condition is locally a cotangent
bundle, but globally not in general. We say that this manifold has an
integrable almost cotangent structure since the local distribution ω1 =
. . . = o)n = 0 determined by ώ is completely integrable.

6. Symmetric almost cotangent structure. We now consider the
case in which an almost cotangent structure (ω, ώ) satisfies

(6.1) dω A ω = 0 .

In this case, substituting dxk = ωk - Λkhdxh* into

dxk* A dxk A ω1 A Λ ωn = 0 ,

we find

(6.2) Λjί = Λιi.

DEFINITION. An almost cotangent structure in which (6.1), that is,
(6.2) holds, is called a symmetric almost cotangent structure.

Integrable almost cotangent structure is a special symmetric almost
cotangent structure and the almost cotangent structure in an (ω, ώ, ώ*)
structure is also a symmetric almost cotangent structure.

In an almost cotangent manifold M2n, we can derive, from ω, the
2-form

dω = dx1* A dx{
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and consequently a tensor field

of type (0, 2) where En is the n x n unit matrix. Using this tensor we
can make correspond a covector (W{, Wt*) to a vector (X\ X1*) of M2n by

TΓ4 = - JF* , TFί* - X*.

These X = (X\ X**) and TΓ = (Wi9 W») are incident, that is, they satisfy

DEFINITION. TWO vectors X and Y in M2n are said to be ε-orthogonal
when they satisfy

that is,

X*Ύ* - X*Y* = 0 .

DEFINITION. Suppose that there is given a vector X = (XA) in M2n.
The covector W = (TΓ̂ ) given by WB = εBAX

A is said to be associated
with the vector X.

The fact that X and Y are ε-orthogonal is equivalent to the fact that
the covector W associated with X and the vector Y are incident.

DEFINITION. A vector X in M2n is said to be incident with ώ if it
satisfies

X* + ΛihXh* = 0 .

We also say that, in this case, X is a tangent vector of the distribution ώ.

A vector Y ε-orthogonal to a vector X which is incident with ώ
satisfies

that is,

and consequently, a necessary and sufficient condition that a vector Y is
ε-orthogonal to all the vector X incident with ώ is given by

Y* + ΛhiYh* = 0 .

We also have

THEOREM 6.1. In an almost cotangent structure (α>, ώ), a necessary
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and sufficient condition that all the vectors incident with ώ are mutually
^-orthogonal is that the almost cotangent structure is symmetric.
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