Tôhoku Math. Journ. 25 (1973), 521-525.

A NOTE ON THE DECOMPOSITION OF WILLE INCIDENCE GEOMETRY OF GRADE n

Dedicated to professor Shigeo Sasaki on his 60th birthday

C. J. Hsu

(Received February 28, 1973)

1. Preliminary and summary. Let p, q be two points in a lattice L with 0, then p is said to be perspective to q (in symbol $p \sim q$) if there exists an element $x \in L$ such that $q \leq p + x$ and qx = 0 (F. Maeda [1]).

For a matroid lattice L, U. Sasaki and S. Fujiwara [2] have proved that

(1) $p \sim q$ is an equivalence relation,

(2) L is irreducible if and only if any two points of L are perspective to each other,

(3) L is a direct union of irreducible matroid lattices.

On the other hand, it was proved by R. Wille [3] that a lattice \mathcal{L} is isomorphic to the lattice of subspaces of a Wille geometry of grade n if and only if the lattice \mathcal{L} is matroid, and moreover for each element x of rank n the interval [0 x] is distributive and the interval [x 1] is modular.

Thus, the facts (2) and (3) above can be applied for the study of the decomposition of the lattice of subspaces of a Wille geometry of order n.

Actually, in the case of projective geometry of infinite dimension (the special case of Wille geometry of grade n = 0), the perspectivity has more concrete geometrical interpretation, as can be shown easily by using the so-called join theorem, that two distinct points p, q are perspective $(p \sim q)$ if and only if the line pq is not degenerate, that is the line pqcontains at least three distinct points.

Under such interpretation of *perspectivity* in projective geometry, (2) and (3) reduce respectively to the following propositions:

(2') A projective space (or an atomic, upper-continuous, complemented modular lattice) is irreducible if and only if it does not contain any degenarate line.

(3') Any atomic, upper-continuous complemented modular lattice is a direct union of irreducible sublattices.

(3') was proved by O. Frink [4] and (2') was given by him as a definition.

It is intended in this note to prove the following analogous rather concrete geometrical interpretation of perspectivity and related results for the Wille geometry of grade n:

Let \mathscr{L} be a matroid lattice such that for any n distinct points $\{p_1, \dots, p_n\}, [0 \ p_1 + \dots + p_n]$ is distributive and $[p_1 + \dots + p_n \ 1]$ is modular. In such a lattice $\mathscr{L}, p_1 + \dots + p_{n+1}$ is called a *curve* if the n+1 points $\{p_1, \dots, p_n, p_{n+1}\}$ are distinct, and $p_1 + \dots + p_{n+1} + p_{n+2}$ is called a *surface* if the (n+2) points $\{p_1, \dots, p_{n+2}\}$ are distinct and $p_1 + \dots + p_{n+2}$ is not contained in a curve. Here a point r is said to be contained in a curve $p_1 + \dots + p_{n+1}$ if $p \leq p_1 + \dots + p_{n+1}$, and a curve $p_1 + \dots + p_{n+1}$ is said to be contained in a surface $q_1 + \dots + q_{n+2}$ if $p_1 + \dots + p_{n+1} \leq q_1 + \dots + q_{n+2}$, and so forth.

THEOREM 1. Two distinct points p, q in \mathcal{L} are perspective $(p \sim q)$ if and only if for any n + 2 distinct points $\{p, q, p_1, \dots, p_n\}$ either they are contained in a curve or the surface determined by these points contains another point r distinct from these points and such that p, q are not contained in the curve determined by $\{p_1, \dots, p_n, r\}$.

COROLLARY. If \mathscr{L} (stated above) is irreducible, then every surface contains at least (n + 3) distinct points. Converse does not hold generally.

THEOREM 2. The lattice \mathscr{L} (stated above) is irreducible if and only if the sublattice $[p_1 + \cdots + p_n \ 1]$ is irreducible for any set of n distinct points $\{p_1, \dots, p_n\}$.

2. Proofs of the results. We need two lemmas for the proof of Theorem 1. Since $[0 \ p_1 + \cdots + p_n]$ is distributive, it follows that $p_1 + \cdots + p_n$ contains only these *n* distinct points $\{p_1, \dots, p_n\}$. Hence, if $\{p_1, \dots, p_n, p_{n+1}\}$ are n+1 distinct points, then $p_{n+1} \leq p_1 + \cdots + p_n$, and by the semi-modularity of \mathcal{L} , $p_1 + \cdots + p_n \prec p_1 + \cdots + p_n + p_{n+1}$. Then it follows:

LEMMA 1. If $b \in \mathscr{L}$ contains at least *n* distinct points $\{p_1, \dots, p_n\}$ and point $p \leq b$, then for any point $q \leq p + b$, there is a point $r \leq b$ such that $q \leq p + r + p_1 + \dots + p_n$. (C. J. Hsu [5]).

LEMMA 2. Let $q, q_1, \dots, q_{n+1}, p_1$ be n+3 distinct points such that $q + q_1 + \dots + q_{n+1}$ is a surface. Then $q \leq q_1 + \dots + q_{n-1} + q_n + p_1$ and $q \leq q_1 + \dots + q_{n-1} + q_{n+1} + p_1$ do not hold simultaneously.

PROOF. Suppose the contrary that these two relations hold simultaneously, then $q_1 + \cdots + q_{n-1} + p_1 + q \leq q_1 + \cdots + q_{n-1} + q_n + p_1, q_1 + \cdots + q_{n-1} + q_{n+1} + p_1$. Since $q, q_1, \cdots, q_{n-1}, p$ are distinct, $q \leq q_1 + \cdots + q_{n-1} + p_1$. Hence, by semi-modularity, $q_1 + \cdots + q_{n-1} + p_1 \prec q_1 + \cdots + q_{n-1} + p_1 + q$,

522

DECOMPOSITION OF WILLE INCIDENCE GEOMETRY OF GRADE n 523

and $q_1 + \cdots + q_{n-1} + p_1 \prec q_1 + \cdots + q_{n-1} + q_n + p_1$. Hence, $q_1 + \cdots + q_{n-1} + p_1 + q = q_1 + \cdots + q_{n-1} + p_1 + q_n$. Similarly, $q_1 + \cdots + q_{n-1} + p_1 + q_{n-1}$. Thus, $q, q_1, \cdots, q_{n+1}, p_1$ are contained in the curve $q_1 + \cdots + q_{n+1}$, contradictory to $q \leq q_1 + \cdots + q_{n+1}$.

PROOF OF THEOREM 1. Suppose that p, q are distinct and that $p \sim q$. Let $\{p, q, p_1, \dots, p_n\}$ be any n+2 distinct points. Since $p \sim q$, there exists an element $x \in \mathscr{L}$ such that $q \leq p + x$ and $q \leq x$ (hence $p \leq x$). If x contains at most n-1 distinct points, then p+x contains at most n distinct points and $q \leq p + x, p \neq q$ imply that q must coincide with a point contained in x contradicting $q \leq x$. Thus x contains at least n distinct points.

If x contains exactly n distinct points $\{p_1, \dots, p_n\}$, then $x = p_1 + \dots + p_n$, and $q \leq p + p_1 + \dots + p_n$. Hence, $q + p_1 + \dots + p_n \leq p + p_1 + \dots + p_n$. Since $p_1 + \dots + p_n \prec q + p_1 + \dots + p_n$, $p + p_1 + \dots + p_n$, it follows that $p + p_1 + \dots + p_n = q + p_1 + \dots + p_n$ and $\{p, q, p_1, \dots, p_n\}$ are contained in a curve.

If x containes at least n+1 distinct points, then by the above Lemma 1, there exist $q_1, \dots, q_{n+1} \leq x$ such that $q \leq p + q_1 + \dots + q_{n+1}$ and $q \leq q_1 + \dots + q_{n+1}$.

Now if a) $p_1 \leq q_1 + \cdots + q_{n+1}$, then by the above Lemma 1, there exist n+1 distinct points $p_1, q'_1, \cdots, q'_n \leq q_1 + \cdots + q_{n+1}$ such that $q \leq p + p_1 + q'_1 + \cdots + q'_n$ and $q \leq p_1 + q'_1 + \cdots + q'_n$.

Suppose next that b) $p_1 \nleq q_1 + \cdots + q_{n+1}$, then $q \leqq p + q_1 + \cdots + q_{n+1} + p_1$.

If b_i) $q \leq q_1 + \cdots + q_{n+1} + p_i$, then by the Lemma 1 again, there exist n+1 distinct points $p_i, q'_i, \cdots, q'_n \leq q_1 + \cdots + q_{n+1} + p_i$ such that $q \leq p + p_1 + q'_1 + \cdots + q'_n$ and $q \leq p_1 + q'_1 + \cdots + q'_n$.

If b_2) $q \leq q_1 + \cdots + q_{n+1} + p_1$, then $q_1 + \cdots + q_{n+1} < q + q_1 + \cdots + q_{n+1} \leq p_1 + q_1 + \cdots + q_{n+1}$, but $q_1 + \cdots + q_{n+1} < p_1 + q_1 + \cdots + q_{n+1}$. Hence $q + q_1 + \cdots + q_{n+1} = p_1 + q_1 + \cdots + q_{n+1}$. Similarly $q + q_1 + \cdots + q_{n+1} = p + q_1 + \cdots + q_{n+1}$. Since $q, p, p_1, q_1, \cdots, q_{n+1}$ are distinct, $p + p_1 + q_1 + \cdots + q_{n-1}$ is a curve. By semi-modularity, we have either b_{2a}) $p + p_1 + q_1 + \cdots + q_{n-1} + q_n = p + p_1 + q_1 + \cdots + q_{n-1}$ or b_{2b}) $p + p_1 + q_1 + \cdots + q_n > p + p_1 + q_1 + \cdots + q_{n-1}$.

For the case b_{2a} , $q \leq p + p_1 + q_1 + \cdots + q_{n-1} + q_n + q_{n+1} = p + p_1 + q_1 + \cdots + q_{n-1} + q_{n+1}$.

In the case b_{2b}) we have $p + p_1 + q_1 + \cdots + q_{n-1} + q_n + q_{n+1} \ge p + p_1 + q_1 + \cdots + q_{n-1} + q_{n+1}$. If the "=" holds, then we have the same result as in b_{2a}). If ">" holds, then since $p + p_1 + q_1 + \cdots + q_{n-1} + q_n + q_{n+1} = p + q_1 + \cdots + q_{n+1}$ is a surface, $p + p_1 + q_1 + \cdots + q_{n-1} + q_n + q_$

 q_{n+1} is a curve, hence $p + p_1 + q_1 + \cdots + q_{n-1} = p + p_1 + q_1 + \cdots + q_{n-1} + q_{n+1}$. From this, it follows that $p + p_1 + q_1 + \cdots + q_{n-1} + q_{n+1} + q_n = p + p_1 + q_1 + \cdots + q_{n-1} + q_n$.

Thus, in the case b₂) it is proved that either $q \leq p + p_1 + q_1 + \cdots + q_n + q_{n+1} = p + p_1 + q_1 + \cdots + q_{n-1} + q_n$ or $q \leq p + p_1 + q_1 + \cdots + q_n + q_{n+1} = p + p_1 + q_1 + \cdots + q_{n-1} + q_{n+1}$ hold. Now by the Lemma 2, if $q \leq p_1 + q_1 + \cdots + q_{n-1} + q_n$, then $q \leq p_1 + q_1 + \cdots + q_{n-1} + q_{n+1}$. Thus, it is proved that there exist q'_1, \cdots, q'_n such that $q \leq p + p_1 + q'_1 + \cdots + q'_n$ but $q \leq p_1 + q'_1 + \cdots + q'_n$.

By the same process, we can replace (q'_i) 's one by one by p_2, \dots, p_n and finally we will get $q \leq p + p_1 + \dots + p_n + r$ with $q \leq p_1 + \dots + p_n + r$ and hence $p \leq p_1 + \dots + p_n + r$. Converse is obvious.

PROOF OF COROLLARY. If \mathscr{L} is irreducible, by (2), every pair of distinct points are perspective. Let $p_1 + \cdots + p_{n+2}$ be any surface. Since p_1, p_2 are perspective, by Theorem 1, there exists a point p_{n+3} such that $p_1 \leq p_2 + \cdots + p_{n+2} + p_{n+3}$ but $p_1 \leq p_3 + \cdots + p_{n+3}$. Then $p_1 + p_3 + \cdots + p_{n+3} = p_2 + p_3 + \cdots + p_{n+3} = p_1 + p_2 + p_3 + \cdots + p_{n+2}$.

In the case n = 0, by (2'), if every line pq contains at least three points, then \mathcal{L} is irreducible. But generally, the converse of the corollary does not hold as shown by the following counter example.

For the case n = 1, suppose that \mathscr{L} consists of six points: p, q, q_1, q_2, q_3, q_4 ; eleven lines: $p + q, p + q_1, p + q_2, p + q_3 + q_4, p + q_1 + q_2, q + q_3, q + q_4, q_1 + q_3, q_1 + q_4, q_2 + q_3, q_2 + q_4$; and six planes: $p + q + q_1 + q_2, p + q + q_3 + q_4, p + q_1 + q_3 + q_4, p + q_2 + q_3 + q_4, p + q_1 + q_2 + q_3$ and $q + q_1 + q_2 + q_4$. Then \mathscr{L} is a matroid lattice of the nature under consideration, each of whose planes contains four distinct points. But it is easily seen that in \mathscr{L} , p is not perspective to q.

PROOF OF THEOREM 2. Let \mathscr{L} be the lattice stated above, then by considering a curve in \mathscr{L} which contains $\{p_1, \dots, p_n\}$ a new point, and a surface in \mathscr{L} which contains $\{p_1, \dots, p_n\}$ a new line, then $[p_1 + \dots + p_n 1]$ is the lattice of subspaces of a projective geometry (of infinite dimension) with such new elements (C. J. Hsu [6]).

Suppose now that \mathscr{L} is irreducible, and let $p + p_1 + \cdots + p_n$ and $q + p_1 + \cdots + p_n$ be new points in the corresponding projective geometry. Since $p \sim q$, by Theorem 1, either $p + p_1 + \cdots + p_n = q + p_1 + \cdots + p_n$ or there is a point $r \in \mathscr{L}$ such that $q \leq p + p_1 + \cdots + p_n + r$ and $q \leq p_1 + \cdots + p_n + r$, $p \leq p_1 + \cdots + p_n + r$. In the former case, the two new points $p + p_1 + \cdots + p_n$ and $q + p_1 + \cdots + p_n$ coincide. In the latter case these two new points and the new point $r + p_1 + \cdots + p_n$ are

DECOMPOSITION OF WILLE INCIDENCE GEOMETRY OF GRADE n 525

distinct and they are contained in the same new line $p + p_1 + \cdots + p_n + r = q + p_1 + \cdots + p_n + r$. Thus, by (2') the lattice $[p_1 + \cdots + p_n + r]$ is irreducible. Conversely, let $p, q, \in \mathscr{L}$ be any two distinct points and let $p_1, \dots, p_n \in \mathscr{L}$ be any n points such that p, q, p_1, \dots, p_n are distinct. Then either the two new points $p + p_1 + \cdots + p_n$ and $q + p_1 + \cdots + p_n$ coincide or on the new line $p + p_1 + \cdots + p_n + q$ determined by these two new points, there is a new point $r + p_1 + \cdots + p_n + q = r + p_1 + \cdots + p_n + q = r + p_1 + \cdots + p_n + q = r + p_1 + \cdots + p_n + q = r + p_1 + \cdots + p_n + q = r + p_1 + \cdots + p_n + q = r + p_1 + \cdots + p_n + q = r + p_1 + \cdots + p_n + p$ is a surface in \mathscr{L} , and hence $q \leq p + p_1 + \cdots + p_n + r$ and $q \leq p_1 + \cdots + p_n + r$. Thus p is perspective to q, and \mathscr{L} is irreducible.

References

- F. MAEDA, Lattice theoretic characterization of abstract geometries, J. Sci. Hiroshima Univ. 15A, (1951), 87-96.
- [2] U. SASAKI AND S. FUJIWARA, The decomposition of matroid lattices, J. Sci. Hiroshima Univ. 15, (1952), 183-188.
- [3] O. FRINK, Complemented modular lattices and projective spaces of infinite dimension. Trans. Amer. Math. Soc., 60 (1946), 452-467.
- [4] R. WILLE, Verbands theoretische Charakterisierung n-stufiger Geometrien, Arch. Math. (Basel), 18 (1967), 465-468.
- [5] C. J. HSU, A note on the modularity of an atomistic upper-continuous lattice. To appaer.

[6] C. J. HSU, A version of Birkhoff-Frink's theorem in the abstract geometry. To appear.

KANSAS STATE UNIVERSITY