A NOTE ON THE DECOMPOSITION OF WILLE INCIDENCE GEOMETRY OF GRADE n

Dedicated to professor Shigeo Sasaki on his 60th birthday
C. J. Hsu

(Received February 28, 1973)

1. Preliminary and summary. Let p, q be two points in a lattice L with 0 , then p is said to be perspective to q (in symbol $p \sim q$) if there exists an element $x \in L$ such that $q \leqq p+x$ and $q x=0$ (F. Maeda [1]).

For a matroid lattice L, U. Sasaki and S. Fujiwara [2] have proved that
(1) $p \sim q$ is an equivalence relation,
(2) L is irreducible if and only if any two points of L are perspective to each other,
(3) L is a direct union of irreducible matroid lattices.

On the other hand, it was proved by R. Wille [3] that a lattice \mathscr{L} is isomorphic to the lattice of subspaces of a Wille geometry of grade n if and only if the lattice \mathscr{L} is matroid, and moreover for each element x of rank n the interval [$0 x$] is distributive and the interval [$x 1]$ is modular.

Thus, the facts (2) and (3) above can be applied for the study of the decomposition of the lattice of subspaces of a Wille geometry of order n.

Actually, in the case of projective geometry of infinite dimension (the special case of Wille geometry of grade $n=0$), the perspectivity has more concrete geometrical interpretation, as can be shown easily by using the so-called join theorem, that two distinct points p, q are perspective $(p \sim q)$ if and only if the line $p q$ is not degenerate, that is the line $p q$ contains at least three distinct points.

Under such interpretation of perspectivity in projective geometry, (2) and (3) reduce respectively to the following propositions:
(2') A projective space (or an atomic, upper-continuous, complemented modular lattice) is irreducible if and only if it does not contain any degenarate line.
(3') Any atomic, upper-continuous complemented modular lattice is a direct union of irreducible sublattices.
$\left(3^{\prime}\right)$ was proved by 0 . Frink [4] and (2^{\prime}) was given by him as a definition.

It is intended in this note to prove the following analogous rather concrete geometrical interpretation of perspectivity and related results for the Wille geometry of grade n :

Let \mathscr{L} be a matroid lattice such that for any n distinct points $\left\{p_{1}, \cdots, p_{n}\right\},\left[0 p_{1}+\cdots+p_{n}\right]$ is distributive and $\left[p_{1}+\cdots+p_{n} 1\right]$ is modular. In such a lattice $\mathscr{L}, p_{1}+\cdots+p_{n+1}$ is called a curve if the $n+1$ points $\left\{p_{1}, \cdots, p_{n}, p_{n+1}\right\}$ are distinct, and $p_{1}+\cdots+p_{n+1}+p_{n+2}$ is called a surface if the $(n+2)$ points $\left\{p_{1}, \cdots, p_{n+2}\right\}$ are distinct and $p_{1}+\cdots+p_{n+2}$ is not contained in a curve. Here a point r is said to be contained in a curve $p_{1}+\cdots+p_{n+1}$ if $p \leqq p_{1}+\cdots+p_{n+1}$, and a curve $p_{1}+\cdots+p_{n+1}$ is said to be contained in a surface $q_{1}+\cdots+q_{n+2}$ if $p_{1}+\cdots+p_{n+1} \leqq q_{1}+\cdots+q_{n+2}$, and so forth.

Theorem 1. Two distinct points p, q in \mathscr{L} are perspective $(p \sim q)$ if and only if for any $n+2$ distinct points $\left\{p, q, p_{1}, \cdots, p_{n}\right\}$ either they are contained in a curve or the surface determined by these points contains another point r distinct from these points and such that p, q are not contained in the curve determined by $\left\{p_{1}, \cdots, p_{n}, r\right\}$.

Corollary. If \mathscr{L} (stated above) is irreducible, then every surface contains at least $(n+3)$ distinct points. Converse does not hold generally.

Theorem 2. The lattice \mathscr{L} (stated above) is irreducible if and only if the sublattice $\left[p_{1}+\cdots+p_{n} 1\right]$ is irreducible for any set of n distinct points $\left\{p_{1}, \cdots, p_{n}\right\}$.
2. Proofs of the results. We need two lemmas for the proof of Theorem 1. Since $\left[0 p_{1}+\cdots+p_{n}\right]$ is distributive, it follows that $p_{1}+\cdots+p_{n}$ contains only these n distinct points $\left\{p_{1}, \cdots, p_{n}\right\}$. Hence, if $\left\{p_{1}, \cdots, p_{n}, p_{n+1}\right\}$ are $n+1$ distinct points, then $p_{n+1} \not \equiv p_{1}+\cdots+p_{n}$, and by the semi-modularity of $\mathscr{L}, p_{1}+\cdots+p_{n} \prec p_{1}+\cdots+p_{n}+p_{n+1}$. Then it follows:

Lemma 1. If $b \in \mathscr{L}$ contains at least n distinct points $\left\{p_{1}, \cdots, p_{n}\right\}$ and point $p \not \leq b$, then for any point $q \leqq p+b$, there is a point $r \leqq b$ such that $q \leqq p+r+p_{1}+\cdots+p_{n}$. (C. J. Hsu [5]).

Lemma 2. Let $q, q_{1}, \cdots, q_{n+1}, p_{1}$ be $n+3$ distinct points such that $q+q_{1}+\cdots+q_{n+1}$ is a surface. Then $q \leqq q_{1}+\cdots+q_{n-1}+q_{n}+p_{1}$ and $q \leqq q_{1}+\cdots+q_{n-1}+q_{n+1}+p_{1}$ do not hold simultaneously.

Proof. Suppose the contrary that these two relations hold simultaneously, then $q_{1}+\cdots+q_{n-1}+p_{1}+q \leqq q_{1}+\cdots+q_{n-1}+q_{n}+p_{1}, q_{1}+\cdots+$ $q_{n-1}+q_{n+1}+p_{1}$. Since $q, q_{1}, \cdots, q_{n-1}, p$ are distinct, $q \nsubseteq q_{1}+\cdots+q_{n-1}+p_{1}$. Hence, by semi-modularity, $q_{1}+\cdots+q_{n-1}+p_{1} \prec q_{1}+\cdots+q_{n-1}+p_{1}+q$,
and $q_{1}+\cdots+q_{n-1}+p_{1}<q_{1}+\cdots+q_{n-1}+q_{n}+p_{1}$. Hence, $q_{1}+\cdots+$ $q_{n-1}+p_{1}+q=q_{1}+\cdots+q_{n-1}+p_{1}+q_{n}$. Similarly, $q_{1}+\cdots+q_{n-1}+p_{1}+$ $q=q_{1}+\cdots+q_{n-1}+p_{1}+q_{n+1}$. Thus, $q, q_{1}, \cdots, q_{n+1}, p_{1}$ are contained in the curve $q_{1}+\cdots+q_{n+1}$, contradictory to $q \nsubseteq q_{1}+\cdots+q_{n+1}$.

Proof of Theorem 1. Suppose that p, q are distinct and that $p \sim q$. Let $\left\{p, q, p_{1}, \cdots, p_{n}\right\}$ be any $n+2$ distinct points. Since $p \sim q$, there exists an element $x \in \mathscr{L}$ such that $q \leqq p+x$ and $q \nsubseteq x$ (hence $p \not \leq x$). If x contains at most $n-1$ distinct points, then $p+x$ contains at most n distinct points and $q \leqq p+x, p \neq q$ imply that q must coincide with a point contained in x contradicting $q \not \equiv x$. Thus x contains at least n distinct points.

If x contains exactly n distinct points $\left\{p_{1}, \cdots, p_{n}\right\}$, then $x=p_{1}+\cdots+p_{n}$, and $q \leqq p+p_{1}+\cdots+p_{n}$. Hence, $q+p_{1}+\cdots+p_{n} \leqq p+p_{1}+\cdots+p_{n}$. Since $p_{1}+\cdots+p_{n}<q+p_{1}+\cdots+p_{n}, p+p_{1}+\cdots+p_{n}$, it follows that $p+p_{1}+\cdots+p_{n}=q+p_{1}+\cdots+p_{n}$ and $\left\{p, q, p_{1}, \cdots, p_{n}\right\}$ are contained in a curve.

If x containes at least $n+1$ distinct points, then by the above Lemma 1 , there exist $q_{1}, \cdots, q_{n+1} \leqq x$ such that $q \leqq p+q_{1}+\cdots+q_{n+1}$ and $q \not \equiv q_{1}+\cdots+q_{n+1}$.

Now if a) $p_{1} \leqq q_{1}+\cdots+q_{n+1}$, then by the above Lemma 1 , there exist $n+1$ distinct points $p_{1}, q_{1}^{\prime}, \cdots, q_{n}^{\prime} \leqq q_{1}+\cdots+q_{n+1}$ such that $q \leqq$ $p+p_{1}+q_{1}^{\prime}+\cdots+q_{n}^{\prime}$ and $q \not \equiv p_{1}+q_{1}^{\prime}+\cdots+q_{n}^{\prime}$.

Suppose next that b) $p_{1} \nsubseteq q_{1}+\cdots+q_{n+1}$, then $q \leqq p+q_{1}+\cdots+$ $q_{n+1}+p_{1}$.

If b_{1}) $q \not \equiv q_{1}+\cdots+q_{n+1}+p_{1}$, then by the Lemma 1 again, there exist $n+1$ distinct points $p_{1}, q_{1}^{\prime}, \cdots, q_{n}^{\prime} \leqq q_{1}+\cdots q_{n+1}+p_{1}$ such that $q \leqq p+p_{1}+q_{1}^{\prime}+\cdots+q_{n}^{\prime}$ and $q \not \equiv p_{1}+q_{1}^{\prime}+\cdots+q_{n}^{\prime}$.

If b_{2}) $q \leqq q_{1}+\cdots+q_{n+1}+p_{1}$, then $q_{1}+\cdots+q_{n+1}<q+q_{1}+\cdots+$ $q_{n+1} \leqq p_{1}+q_{1}+\cdots+q_{n+1}$, but $q_{1}+\cdots+q_{n+1} \prec p_{1}+q_{1}+\cdots+q_{n+1}$. Hence $q+q_{1}+\cdots+q_{n+1}=p_{1}+q_{1}+\cdots+q_{n+1}$. Similarly $q+q_{1}+$ $\cdots+q_{n+1}=p+q_{1}+\cdots+q_{n+1}$. Since $q, p, p_{1}, q_{1}, \cdots, q_{n+1}$ are distinct, $p+p_{1}+q_{1}+\cdots+q_{n-1}$ is a curve. By semi-modularity, we have either $\left.\mathrm{b}_{2 \mathrm{a}}\right) p+p_{1}+q_{1}+\cdots+q_{n-1}+q_{n}=p+p_{1}+q_{1}+\cdots+q_{n-1}$ or $\mathrm{b}_{2 \mathrm{~b}}$) $p+p_{1}+q_{1}+\cdots+q_{n-1}+q_{n}>p+p_{1}+q_{1}+\cdots+q_{n-1}$.

For the case $\mathrm{b}_{2 \mathrm{a}}$), $q \leqq p+p_{1}+q_{1}+\cdots+q_{n-1}+q_{n}+q_{n+1}=p+p_{1}+$ $q_{1}+\cdots+q_{n-1}+q_{n+1}$.

In the case $\mathrm{b}_{2 b}$) we have $p+p_{1}+q_{1}+\cdots+q_{n-1}+q_{n}+q_{n+1} \geqq p+$ $p_{1}+q_{1}+\cdots+q_{n-1}+q_{n+1}$. If the " $=$ " holds, then we have the same result as in $\mathrm{b}_{2 \mathrm{a}}$. If " $>$ " holds, then since $p+p_{1}+q_{1}+\cdots+q_{n-1}+$ $q_{n}+q_{n+1}=p+q_{1}+\cdots+q_{n+1}$ is a surface, $p+p_{1}+q_{1}+\cdots+q_{n-1}+$
q_{n+1} is a curve, hence $p+p_{1}+q_{1}+\cdots+q_{n-1}=p+p_{1}+q_{1}+\cdots+$ $q_{n-1}+q_{n+1}$. From this, it follows that $p+p_{1}+q_{1}+\cdots+q_{n-1}+q_{n+1}+$ $q_{n}=p+p_{1}+q_{1}+\cdots+q_{n-1}+q_{n}$.

Thus, in the case b_{2}) it is proved that either $q \leqq p+p_{1}+q_{1}+\cdots+$ $q_{n}+q_{n+1}=p+p_{1}+q_{1}+\cdots+q_{n-1}+q_{n}$ or $q \leqq p+p_{1}+q_{1}+\cdots+q_{n}+$ $q_{n+1}=p+p_{1}+q_{1}+\cdots+q_{n-1}+q_{n+1}$ hold. Now by the Lemma 2, if $q \leqq p_{1}+q_{1}+\cdots+q_{n-1}+q_{n}$, then $q \not \equiv p_{1}+q_{1}+\cdots+q_{n-1}+q_{n+1}$. Thus, it is proved that there exist $q_{1}^{\prime}, \cdots, q_{n}^{\prime}$ such that $q \leqq p+p_{1}+q_{1}^{\prime}+\cdots+q_{n}^{\prime}$ but $q \nsubseteq p_{1}+q_{1}^{\prime}+\cdots+q_{n}^{\prime}$.

By the same process, we can replace (q_{i}^{\prime} 's one by one by p_{2}, \cdots, p_{n} and finally we will get $q \leqq p+p_{1}+\cdots+p_{n}+r$ with $q \nsubseteq p_{1}+\cdots+p_{n}+r$ and hence $p \not \equiv p_{1}+\cdots+p_{n}+r$. Converse is obvious.

Proof of Corollary. If \mathscr{L} is irreducible, by (2), every pair of distinct points are perspective. Let $p_{1}+\cdots+p_{n+2}$ be any surface. Since p_{1}, p_{2} are perspective, by Theorem 1 , there exists a point p_{n+3} such that $p_{1} \leqq p_{2}+\cdots+p_{n+2}+p_{n+3}$ but $p_{1} \nsubseteq p_{3}+\cdots+p_{n+3}$. Then $p_{1}+p_{3}+\cdots+$ $p_{n+3}=p_{2}+p_{3}+\cdots+p_{n+3}=p_{1}+p_{2}+p_{3}+\cdots+p_{n+2}$.

In the case $n=0$, by (2^{\prime}), if every line $p q$ contains at least three points, then \mathscr{L} is irreducible. But generally, the converse of the corollary does not hold as shown by the following counter example.

For the case $n=1$, suppose that \mathscr{L} consists of six points: $p, q, q_{1}, q_{2}, q_{3}, q_{4}$; eleven lines: $p+q, p+q_{1}, p+q_{2}, p+q_{3}+q_{4}, p+q_{1}+q_{2}$, $q+q_{3}, q+q_{4}, q_{1}+q_{3}, q_{1}+q_{4}, q_{2}+q_{3}, q_{2}+q_{4}$; and six planes: $p+q+q_{1}+q_{2}$, $p+q+q_{3}+q_{4}, \quad p+q_{1}+q_{3}+q_{4}, \quad p+q_{2}+q_{3}+q_{4}, \quad p+q_{1}+q_{2}+q_{3}$ and $q+q_{1}+q_{2}+q_{4}$. Then \mathscr{L} is a matroid lattice of the nature under consideration, each of whose planes contains four distinct points. But it is easily seen that in \mathscr{L}, p is not perspective to q.

Proof of theorem 2. Let \mathscr{L} be the lattice stated above, then by considering a curve in \mathscr{L} which contains $\left\{p_{1}, \cdots, p_{n}\right\}$ a new point, and a surface in \mathscr{L} which contains $\left\{p_{1}, \cdots, p_{n}\right\}$ a new line, then $\left[p_{1}+\cdots+p_{n} 1\right]$ is the lattice of subspaces of a projective geometry (of infinite dimension) with such new elements (C. J. Hsu [6]).

Suppose now that \mathscr{L} is irreducible, and let $p+p_{1}+\cdots+p_{n}$ and $q+p_{1}+\cdots+p_{n}$ be new points in the corresponding projective geometry. Since $p \sim q$, by Theorem 1 , either $p+p_{1}+\cdots+p_{n}=q+p_{1}+\cdots+p_{n}$ or there is a point $r \in \mathscr{L}$ such that $q \leqq p+p_{1}+\cdots+p_{n}+r$ and $q \nsubseteq p_{1}+\cdots+p_{n}+r, p \nsubseteq p_{1}+\cdots+p_{n}+r$. In the former case, the two new points $p+p_{1}+\cdots+p_{n}$ and $q+p_{1}+\cdots+p_{n}$ coincide. In the latter case these two new points and the new point $r+p_{1}+\cdots+p_{n}$ are
distinct and they are contained in the same new line $p+p_{1}+\cdots+p_{n}+r=$ $q+p_{1}+\cdots+p_{n}+r$. Thus, by $\left(2^{\prime}\right)$ the lattice $\left[p_{1}+\cdots+p_{n} 1\right]$ is irreducible. Conversely, let $p, q, \in \mathscr{L}$ be any two distinct points and let $p_{1}, \cdots, p_{n} \in \mathscr{L}$ be any n points such that $p, q, p_{1}, \cdots, p_{n}$ are distinct. Then either the two new points $p+p_{1}+\cdots+p_{n}$ and $q+p_{1}+\cdots+p_{n}$ coincide or on the new line $p+p_{1}+\cdots+p_{n}+q$ determined by these two new points, there is a new point $r+p_{1}+\cdots+p_{n}$ which is distinct from these two new points. Then $p+p_{1}+\cdots+p_{n}+q=r+p_{1}+\cdots+$ $p_{n}+q=r+p_{1}+\cdots+p_{n}+p$ is a surface in \mathscr{L}, and hence $q \leqq p+$ $p_{1}+\cdots+p_{n}+r$ and $q \not \equiv p_{1}+\cdots+p_{n}+r$. Thus p is perspective to q, and \mathscr{L} is irreducible.

References

[1] F. MaEda, Lattice theoretic characterization of abstract geometries, J. Sci. Hiroshima Univ. 15A, (1951), 87-96.
[2] U. Sasaki and S. Fujiwara, The decomposition of matroid lattices, J. Sci. Hiroshima Univ. 15, (1952), 183-188.
[3] O. Frink, Complemented modular lattices and projective spaces of infinite dimension. Trans. Amer. Math. Soc., 60 (1946), 452-467.
[4] R. Wille, Verbands theoretische Charakterisierung n-stufiger Geometrien, Arch. Math. (Basel), 18 (1967), 465-468.
[5] C. J. Hsu, A note on the modularity of an atomistic upper-continuous lattice. To appaer.
[6] C. J. Hsu, A version of Birkhoff-Frink's theorem in the abstract geometry. To appear.
Kansas State University

