Tôhoku Math. Journ. 25 (1973), 487-498.

SOME CRITICAL MAPPINGS

Dedicated to Professor Shigeo Sasaki on his 60th birthday

Yosio Mutō

(Received February 17, 1973)

Let (N, h) and (M, g) be connected compact orientable Riemannian manifolds of dimension n and m respectively, where $n \ge m$. Let μ be a differentiable mapping of rank m everywhere. There exists on M an m-form φ naturally induced from the metric g. The pull back ψ of φ is a closed m-form on N and the integral

$$J[\mu] = \int_N (\psi, \psi) dV_N$$

is a functional of the mapping μ . A critical point $\overline{\mu}$ of $J[\mu]$ is called in the present paper a critical mapping. The purpose of the present paper is to study some properties of such critical mappings.

Let (M_1, f) , (M_2, g) , and (M_3, h) be connected compact orientable Riemannian manifolds where dim $M_1 = \dim M_2 \leq \dim M_3$. If $\mu_{12}: M_2 \to M_1$ and $\mu_{23}: M_3 \to M_2$ are critical mappings, then $\mu_{13} = \mu_{12}\mu_{23}$ is a critical mapping of M_3 onto M_1 . If a critical mapping μ is homeomorphic, its inverse μ^{-1} is also a critical mapping. When a set of Riemannian manifolds $\{(M_\lambda, g_\lambda), \lambda \in \Lambda\}$ of the same dimension is given where each manifold is connected, compact and orientable, the set of homeomorphic critical mappings forms a groupoid. Some examples of critical mappings are also given.

1. The functional $J[\mu]$ and its critical point. Let us consider connected compact orientable Riemannian manifolds (M, g) and (N, h) of dimension m and n respectively, such that $n \ge m$ and admitting differentiable mappings $\mu: N \to M$ of rank m everywhere. Local coordinates in M are denoted by x^h and those in N by y^k . We use indices $h, i, j, \dots = 1, \dots, m$ for M and indices $\kappa, \lambda, \mu, \dots = 1, \dots, n$ for N. The metric tensors of M and N are denoted by g_{ji} and $h_{\mu\lambda}$ respectively. When a mapping μ is expressed locally by $x^h = x^h(y^1, \dots, y^n)$, we get connecting tensors

$$B^{h}_{\kappa}=rac{\partial x^{h}}{\partial y^{\kappa}}\ ,\qquad B^{h_{1}\cdots h_{p}}_{\kappa_{1}\cdots\kappa_{p}}=B^{h_{1}}_{\kappa_{1}}\cdots B^{h_{p}}_{\kappa_{p}}$$

of the mapping. The *m*-form

$$\sqrt{\det(g_{ji})}dx^1\cdots dx^m$$

is a closed form on M and

$$B^{[1\cdots m]}_{\lambda_1\cdots\lambda_m}\sqrt{\det{(g_{ji})}}dy^{\lambda_1}\cdots dy^{\lambda_m}$$

is its pull back with respect to the mapping μ . From this *m*-form let us define a functional $J[\mu]$ by

(1.1)
$$J[\mu] = \int_{N} B^{[1\cdots m]}_{\mu_{1}\cdots\mu_{m}} B^{[1\cdots m]}_{\lambda_{1}\cdots\lambda_{m}} h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}} \det (g_{ji}) dV_{N} ,$$
$$dV_{N} = \sqrt{\det (h_{\mu\lambda})} dy^{1}\cdots dy^{n} .$$

Let us consider the space $\mathfrak{M} = \mathfrak{M}(N, M)$ of all such mappings μ . Let μ_0 be a point of \mathfrak{M} and let $\mathscr{C}: [0, 1] \to \mathfrak{M}$ be a curve $\{\mu(t), 0 \leq t \leq 1\}$ in \mathfrak{M} where $\mu(0) = \mu_0$ and $\mu(t)$ is expressed locally by differentiable functions $x^{\hbar}(y^1, \dots, y^n; t)$. For this curve \mathscr{C} we define $\eta^{\hbar} = Dx^{\hbar}$ by

$$Dx^h = \left(rac{\partial x^h}{\partial t}
ight)_{t=0}$$

and $DJ[\mu]$ by

$$DJ[\mu] = \left(rac{dJ[\mu(t)]}{dt}
ight)_{t=0}$$

If μ_0 is such that for all such curves $\mathcal{C} J[\mu]$ vanishes, then μ_0 is a critical point $\overline{\mu}$ of the functional $J[\mu]$ defined by (1.1).

A critical point of $J[\mu]$ is called a critical mapping with respect to the integral $J[\mu]$. Let us define a necessary and sufficient condition of a critical mapping μ in tensor form.

For this purpose we use the connecting tensor $H_{\mu\lambda}{}^{h}$ defined as the van der Waerden-Bortolotti derivative of B_{λ}^{h} , namely

(1.2)
$$H_{\mu\lambda}{}^{h} = \partial_{\mu}B_{\lambda}^{h} + \left\{ egin{matrix} h \\ ji \end{bmatrix} B_{\mu\lambda}{}^{ji} - \left\{ egin{matrix} \kappa \\ \mu\lambda \end{bmatrix} B_{\kappa}^{h}$$

where $\begin{pmatrix} h \\ ji \end{pmatrix}$ and $\begin{pmatrix} \kappa \\ \mu \lambda \end{pmatrix}$ are the Christoffels of g_{ji} and $h_{\mu\lambda}$ respectively.

As we have

$$DJ[\mu] = \int_{N} D[B^{[1\cdots m]}_{\mu_{1}\cdots\mu_{m}} B^{[1\cdots m]}_{\lambda_{1}\cdots\lambda_{m}} h^{\mu_{1}\lambda_{1}\cdots} h^{\mu_{m}\lambda_{m}} \det(g_{ji})] dV_{N}$$

and

$$egin{aligned} DB^h_{\kappa} &= \partial_{\kappa} \gamma^h \ , \ DB^{[1 \dots m]}_{\mu_1 \dots \mu_m} &= m (DB^{[1}_{\lfloor \mu_1}) B^{2 \dots m]}_{\mu_2 \dots \mu_m]} \ &= m (\partial_{\lfloor \mu_1} \gamma^{[1}) B^{2 \dots m]}_{\mu_2 \dots \mu_m]} \ , \ Dg &= g g^{ji} \gamma^k \partial_k g_{ji} \ , \end{aligned}$$

where $g = \det(g_{ji})$, we get

$$egin{aligned} DJ[\mu] &= \int_{N} [2m(\partial_{[\mu_1} \eta^{[1]}) B^{2\dots m]}_{\mu_2\dots \mu_m}] B^{[1\dots m]}_{\lambda_1\dots \lambda_m} h^{\mu_1\lambda_1} \cdots h^{\mu_m\lambda_m} g \ &+ B^{[1\dots m]}_{\mu_1\dots \mu_m} B^{[1\dots m]}_{\lambda_1\dots \lambda_m} h^{\mu_1\lambda_1} \cdots h^{\mu_m\lambda_m} g g^{ji} \eta^k \partial_k g_{ji}] d\, V_N \;. \end{aligned}$$

Since $\partial_{[\mu_1} B^{2...m}_{\mu_2...\mu_m]}$ always vanish, we get from the above expression

$$DJ[\mu] = \int_{N} FdV_{N}$$

where

$$egin{aligned} F&=&-2m\eta^{[1}B^{2\dots m]}_{[\mu_{2}\dots \mu_{m}}(\partial_{\mu_{1}]}B^{[1\dots m]}_{\lambda_{1},\dots,\lambda_{m}})h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g\ &-&2m\eta^{[1}B^{2\dots m]}_{[\mu_{2}\dots \mu_{m}}(\partial_{\mu_{1}]}(h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}))B^{[1\dots m]}_{[\lambda_{1}\dots \lambda_{m}]}g\ &-&2m\eta^{[1}B^{2\dots m]}_{[\mu_{2}\dots \mu_{m}}B^{k}_{\mu_{1}]}g^{ji}(\partial_{k}g_{ji})B^{[1\dots m]}_{\lambda_{1}\dots \lambda_{m}}h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g\ &-&m\eta^{[1}B^{2\dots m]}_{[\mu_{2}\dots \mu_{m}}(\partial_{\mu_{1}]}h_{\omega\nu})h^{\omega\nu}B^{[1\dots m]}_{\lambda_{1}\dots \lambda_{m}}h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g\ &+&B^{[1\dots m]}_{\mu_{1}\dots \mu_{m}}B^{[1\dots m]}_{\lambda_{1}\dots \lambda_{m}}h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g^{ji}\eta^{k}\partial_{k}g_{ji}\ . \end{aligned}$$

On the other hand, we have

$$egin{aligned} \partial_{\mu}B^{[1,\ldots,m]}_{\lambda_{1}}&=\partial_{\mu}B^{[1,\ldots,m]}_{[\lambda_{1},\ldots,\lambda_{m}]}\ &=m(\partial_{\mu}B^{[1}_{[\lambda_{1}]})B^{2,\ldots,m]}_{\lambda_{2},\ldots,\lambda_{m}]}\ &=mH_{\mu[\lambda_{1}}{}^{[1}B^{2,\ldots,m]}_{\lambda_{2},\ldots,\lambda_{m}]}+\ miggl\{ \kappa\ \mu[\lambda_{1}\ \end{pmatrix}B^{[1\,2,\ldots,m]}_{|\kappa|\lambda_{2},\ldots,\lambda_{m}]}\ &-B^{k}_{\mu}iggl\{ j\ kj iggr\}B^{[1\,\ldots,m]}_{\lambda_{1},\ldots,\lambda_{m}} \end{aligned}$$

where we have used (1.2) and the identity

$$miggl\{egin{aligned} 1\kj \end{pmatrix}\!B^{[j]2\cdots m]}_{[\lambda_1\cdots\lambda_m]} &= iggl\{egin{aligned} j\kj \end{pmatrix}\!B^{[1\cdots m]}_{[\lambda_1\cdots\lambda_m]} \,.$$

We also have

$$\begin{split} & m \eta^{[1} B^{2 \dots m]}_{[\mu_2 \dots \mu_m} B^k_{\mu_1]} \\ &= \eta^1 B^{2 \dots m}_{[\mu_2 \dots \mu_m} B^k_{\mu_1]} - \sum_{t=2}^m \eta^t B^{[2 \dots 1 \dots m]}_{[\mu_2 \dots \mu_m]} B^k_{\mu_1]} \\ &= \eta^k B^{[1 \dots m]}_{\mu_1 \dots \mu_m} \,. \end{split}$$

Substituting these identities into the expression of F we get

$$F = -2m^{2}\gamma^{[1}B_{[\mu_{2}\cdots\mu_{m}]}^{2\cdotsm]}H_{\mu_{1}][\lambda_{1}}^{[1}B_{\lambda_{2}\cdots\lambda_{m}]}^{2\cdotsm]}h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g$$

$$-2m^{2}\gamma^{[1}B_{[\mu_{2}\cdots\mu_{m}]}^{2\cdotsm]}\binom{\kappa}{\mu_{1}][\lambda_{1}}B_{[\kappa\lambda_{2}\cdots\lambda_{m}]}^{[12\cdotsm]}h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g$$

$$+2\gamma^{k}B_{\mu_{1}\cdots\mu_{m}}^{[1\cdotsm]}\binom{j}{kj}B_{\lambda_{1}\cdots\lambda_{m}}^{[1\cdotsm]}h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g$$

$$-2m^{2}\gamma^{[1}B_{[\mu_{2}\cdots\mu_{m}]}^{2\cdotsm}(\partial_{\mu_{1}]}h^{\mu_{1}\lambda_{1}})h^{\mu_{2}\lambda_{2}}\cdots h^{\mu_{m}\lambda_{m}}B_{[\lambda_{1}\cdots\lambda_{m}]}^{[1\cdotsm]}g$$

$$-B_{[\mu_{1}\cdots\mu_{m}]}^{[1\cdotsm]}B_{\lambda_{1}\cdots\lambda_{m}}^{1\cdotsm]}h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g^{ji}\gamma^{k}(\partial_{k}g_{ji})g$$

$$-2m\gamma^{[1}B_{[\mu_{2}\cdots\mu_{m}]}^{2\cdotsm}\binom{\omega}{\mu_{1}]\omega}B_{\lambda_{1}\cdots\lambda_{m}}^{[1\cdotsm]}h^{\mu_{1}\lambda_{1}}\cdots h^{\mu_{m}\lambda_{m}}g$$

Since we have

$$\begin{cases} \kappa \\ \mu[\lambda_{1}] B_{[\iota|\lambda_{1}]}^{[1,\dots,m]} B_{[\iota|\lambda_{2}\dots\lambda_{m}]}^{[1,\dots,m]} h^{[\mu_{1}|\lambda_{1}]} \cdots h^{\mu_{m}|\lambda_{m}} \\ = \begin{cases} \lambda_{1} \\ \mu\alpha \end{cases} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} h^{[\mu_{1}|\alpha|} h^{\mu_{2}|\lambda_{2}|} \cdots h^{\mu_{m}|\lambda_{m}} \\ = \begin{cases} \lambda_{1} \\ \mu\alpha \end{cases} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} h^{[\mu_{1}|\alpha|} h^{\mu_{2}|\lambda_{2}|} \cdots h^{\mu_{m}|\lambda_{m}} \\ = \begin{cases} \lambda_{1} \\ \mu\alpha \end{cases} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} h^{[\mu_{1}|\alpha|} h^{\mu_{2}|\lambda_{2}|} \cdots h^{\mu_{m}|\lambda_{m}} \\ = \begin{cases} \lambda_{1} \\ \mu\alpha \end{cases} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} h^{[\mu_{1}|\alpha|} h^{\mu_{2}|\lambda_{2}|} \cdots h^{\mu_{m}|\lambda_{m}} \\ = \begin{cases} \lambda_{1} \\ \mu\alpha \end{cases} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} h^{[\mu_{1}|\alpha|} h^{\mu_{2}|\lambda_{2}|} \cdots h^{\mu_{m}|\lambda_{m}|} \\ = \begin{cases} \lambda_{1} \\ \mu\alpha \end{cases} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} h^{[\mu_{1}|\alpha|} h^{\mu_{2}|\lambda_{2}|} \cdots h^{\mu_{m}|\lambda_{m}|} \\ = 2m^{2} \gamma^{[1} B_{\mu_{2}\dots\mu_{m}}^{[2,\dots,m]} \left\{ \lambda_{1} \\ \mu_{1} \right\} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} h^{\mu_{1}\alpha} h^{\mu_{2}\lambda_{2}|} \cdots h^{\mu_{m}\lambda_{m}} \\ + 2m^{2} \gamma^{[1} B_{\mu_{2}\dots\mu_{m}}^{[2,\dots,m]} \left\{ \lambda_{1} \\ \mu_{1} \right\} h^{\mu_{1}\alpha} h^{\mu_{2}\lambda_{2}|} \cdots h^{\mu_{m}\lambda_{m}} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} \\ + 2m^{2} \gamma^{[1} B_{\mu_{2}\dots\mu_{m}}^{[2,\dots,m]} \left\{ \lambda_{1} \\ \mu_{1} \right\} h^{\mu_{1}\alpha} h^{\mu_{2}\lambda_{2}|} \cdots h^{\mu_{m}\lambda_{m}} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} \\ = 2m^{2} \gamma^{[1} B_{\mu_{2}\dots\mu_{m}}^{[2,\dots,m]} \left\{ \mu_{1} \\ \mu_{1} \right\} h^{\mu_{1}\lambda} h^{\mu_{2}\lambda_{2}|} \cdots h^{\mu_{m}\lambda_{m}} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} \\ = 2m \gamma^{[1} B_{\mu_{2}\dots\mu_{m}}^{[2,\dots,m]} \left\{ \mu_{1} \\ \mu_{2} \\ \omega\alpha \end{matrix} \right\} h^{\mu_{1}\lambda} h^{\mu_{2}\lambda_{2}|} \cdots h^{\mu_{m}\lambda_{m}} B_{\lambda_{1}\dots\lambda_{m}}^{[1,\dots,m]} \\ - 2m \sum_{i=2}^{m} \gamma^{[1} B_{\mu_{2}\dots\mu_{m}]}^{[2,\dots,m]} \left\{ \mu_{1} \\ \mu_{1$$

But the second term in the last member vanishes because of $\begin{pmatrix} \mu_1 \\ \mu_t \alpha \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \alpha \mu_t \end{pmatrix}$ and we get

as the sum of the second and the fourth terms in the expression of F in (1.3). This cancels the last term. Moreover, it is easy to see that the third term cancels the fifth term.

Hence we have

$$F = -2m^2\eta^{[1}B_{[\mu_2\cdots\mu_m}^{2\cdots\mu_m}H_{\mu_1][\lambda_1}^{[1}B_{\lambda_2\cdots\lambda_m]}^{2\cdots\mu_m]}h^{\mu_1\lambda_1}\cdots h^{\mu_m\lambda_m}g$$
 .

A critical mapping is characterized by the vanishing of F for all η^k . Thus μ is a critical mapping if and only if

(1.4)
$$\eta^{[j_1}B^{j_2\cdots j_m]}_{\mu_2\cdots \mu_m}H_{\mu_1\lambda_1}{}^{[i_1}B^{i_2\cdots i_m]}_{\lambda_2\cdots \lambda_m}h^{[\mu_1[\lambda_1}\cdots h^{\mu_m]\lambda_m]}=0$$

is satisfied by every vector field η^h of M.

Let us define H^{jih} , H^{h} , $'h^{ji}$ and $'h_{ji}$ by

$$egin{array}{lll} H^{jih} &= B^{ji}_{\mu\lambda}H^{\mu\lambda h} = B^{ji}_{\omega
u}h^{\omega\mu}h^{
u\lambda}H_{\mu\lambda}{}^h \;, \qquad H^h &= H_{\mu\lambda}{}^h h^{\mu\lambda} = H^{\omega}{}_{\omega}{}^h \;, \ & 'h^{ji} &= B^{ji}_{\mu\lambda}h^{\mu\lambda} \;, \qquad 'h_{ji}'h^{jh} = \delta^h_i \;. \end{array}$$

As we have

$$m\eta^{[j_1}B^{j_2\cdots j_m]}_{\mu_2\cdots \mu_m}H_{\mu_1\lambda_1}{}^{[i_1}B^{i_2\cdots i_m]}_{\lambda_2\cdots \lambda_m}h^{[\mu_1[\lambda_1}\cdots h^{\mu_m]\lambda_m]}=\eta^{[j_1}B^{j_2\cdots j_m]}_{\mu_2\cdots \mu_m}H_{\mu_1\lambda_1}{}^{[i_1}B^{i_2\cdots i_m]}_{\lambda_2\cdots \lambda_m}\ imes \left(h^{\mu_1\lambda_1}h^{\mu_2\lambda_2}\cdots h^{\mu_m\lambda_m}-\sum_{t=2}^m h^{\mu_1\lambda_t}h^{\mu_2\lambda_2}\cdots h^{\mu_t\lambda_1}\cdots h^{\mu_m\lambda_m}
ight),$$

we can write (1.4) in the form

$$\begin{split} \eta^{[j_1} H^{[i_1'} h^{j_2 i_2} \cdots h^{j_m]i_m]} \\ &- \sum_{t=2}^m \eta^{[j_1} H^{[i_t j_t i_1'} h^{j_2 i_2} \cdots h^{j_{t-1} i_{t-1}'} h^{j_{t+1} i_{t+1}} \cdots h^{j_m]i_m]} = 0 \end{split},$$

hence

(1.5)
$$\eta^{[j_1}H^{[i_1'}h^{j_2i_2}\cdots h^{j_m]i_m]} + (m-1)\eta^{[j_1}H^{[i_1j_2i_2'}h^{j_3i_3}\cdots h^{j_m]i_m]} = 0.$$

Since i_1, \dots, i_m and j_1, \dots, j_m run only the range $\{1, \dots, m\}$, an equality of the form

$$A^{[j_1[i_1j_2i_2'}h^{j_3i_3}\cdots h^{j_m]i_m]}=0$$

is equivalent to

$$A^{j_1i_1j_2i_2}({}^{\prime}h_{j_1i_1}{}^{\prime}h_{j_2i_2}-{}^{\prime}h_{j_2i_1}{}^{\prime}h_{j_1i_2})=0\;.$$

Hence we get from (1.5)

$$\eta^{j}H^{i\prime}h_{ji}+\eta^{j}(H^{_{kli}}-H^{_{ilk}})'h_{jk}'h_{_{li}}=0$$
 ,

and we can conclude that μ is a critical mapping if and only if μ satisfies

(1.6)
$$H^{i} - H^{kji'}h_{kj} + H^{ikj'}h_{kj} = 0.$$

Thus we have obtained the following theorem.

THEOREM 1.1. Let (M, g) and (N, h) be connected compact orientable Riemannian manifolds of dimension m and n respectively, where $n \ge m$, and $\mu: N \to M$ be a differentiable mapping of rank m everywhere. Then a necessary and sufficient condition for μ to be a critical mapping is that μ satisfies the equations

(1.7)
$$H_{\mu\lambda}{}^{h}h^{\mu\lambda} - H_{\omega\nu}{}^{h}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{ji\prime}h_{ji} + H_{\omega\nu}{}^{j}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{hk\prime}h_{kj} = 0.$$

2. Some special cases. Let us consider the case where dim $M = \dim N = m$. Then we can define B_{i}^{κ} by $B_{i}^{h}B_{i}^{\kappa} = \delta_{i}^{h}$ and get

$${}^{\prime}h_{ji}=B_{ji}^{\mu\lambda}h_{\mu\lambda}$$
 , $\qquad B_{\mu\lambda}^{ji}{}^{\prime}h_{ji}=h_{\mu\lambda}$.

Hence we have in this special case

$$H_{\omega\nu}{}^{h}h^{\omega\mu}h^{\nu\lambda}B^{ji\prime}_{a\lambda}h_{ji} = H_{\omega\nu}{}^{h}h^{\omega\nu}$$
 .

This proves the following theorem.

THEOREM 2.1. Let (M, g) and (N, h) be connected compact orientable Riemannian manifolds of the same dimension m and $\mu: N \to M$ be a differentiable mapping of rank m everywhere. Then a necessary and sufficient condition for μ to be a critical mapping is that μ satisfies the equations

$$H_{\mu\lambda}{}^{h}B_{h}^{\lambda}=0.$$

Let us assume that there exists the inverse $\mu^{-1}: M \to N$ of μ . Then B_{h}^{r} plays the same role in μ^{-1} as B_{k}^{h} does in μ and the connecting tensor

$$H_{ji^{\kappa}}=\partial_{j}B_{i}^{\kappa}+iggl\{{\kappa}\ \mu\lambdaiggr\}B_{ji}^{\mu\lambda}-iggl\{{h}\ jiiggr\}B_{h}^{\mu\lambda}$$

satisfies

$$B^{jih}_{\mu\lambda\kappa}H_{ji}^{\kappa}=-H_{\mu\lambda}^{h}$$
.

This proves that $H_{ji}{}^{\kappa}B_{\kappa}^{i}$ vanishes if and only if $H_{\mu\lambda}{}^{h}B_{\lambda}^{\lambda}$ vanishes. Thus we have the

CRITICAL MAPPINGS

COROLLARY 2.2. If a differentiable mapping $\mu: N \to M$ admits the inverse mapping $\mu^{-1}: M \to N$, one is a critical mapping if and only if the other is a critical mapping.

Let us consider connected compact orientable Riemannian manifolds $(M_1, f), (M_2, g), (M_3, h)$ of the same dimension m and assume that there exist critical mappings $\mu_{12}: M_2 \to M_1$ and $\mu_{23}: M_3 \to M_2$. Let us use u^{α}, x^{h} and y^{κ} for the local coordinates in M_1, M_2 , and M_3 respectively. For the mapping μ_{12} we have

$$B^{lpha}_{\hbar} = rac{\partial u^{lpha}}{\partial x^{\hbar}} \,, \qquad H_{ji}{}^{lpha} = \partial_{j}B^{lpha}_{i} + iggl\{ lpha \ \gamma eta iggl\} B^{\gamma eta}_{ji} - iggl\{ eta \ ji iggr\} B^{lpha}_{\hbar} \,,$$

and for the mapping μ_{23} we have

$$B^{h}_{\kappa}=rac{\partial x^{h}}{\partial y^{\kappa}}$$
 , $H_{\mu\lambda}{}^{h}=\partial_{\mu}B^{h}_{\lambda}+iggl\{ h\ ji iggr\} B^{ji}_{\mu\lambda}-iggl\{ \kappa\ \mu\lambda iggr\} B^{h}_{\kappa}$,

where $\begin{cases} \alpha \\ \gamma \beta \end{cases}$, $\begin{cases} h \\ ji \end{cases}$, and $\begin{cases} \kappa \\ \mu \lambda \end{cases}$ are the Christoffels derived from $f_{\gamma \beta}$, g_{ji} , and $h_{\mu\lambda}$ respectively. If we define B^h_{α} and B^s_h by

 $B^h_eta B^lpha_h = \delta^lpha_eta$, $B^h_\lambda B^\kappa_h = \delta^\kappa_\lambda$,

we have

(2.2)
$$H_{ji}{}^{\alpha}B_{\alpha}^{i}=0, \qquad H_{\mu\lambda}{}^{h}B_{h}^{\lambda}=0.$$

Let us consider the mapping $\mu_{13} = \mu_{12}\mu_{23}$ of M_3 onto M_1 . The connecting tensor of this mapping is

$$B^{\alpha}_{\kappa}=\frac{\partial u^{\alpha}}{\partial y^{\kappa}}=B^{\alpha}_{i}B^{i}_{\kappa}$$

and we get

hence

(2.3)
$$H_{\mu\lambda}^{\ \alpha} = H_{ji}^{\ \alpha} B_{\mu\lambda}^{ji} + H_{\mu\lambda}^{\ h} B_{h}^{\alpha} .$$

Then we immediately obtain

$$egin{aligned} H_{\mu\lambda}{}^lpha B_lpha^\lambda &= H_{ji}{}^lpha B_{\mu\lambda}{}^{ji}B_k^\lambda B_lpha^k &+ H_{\mu\lambda}{}^h B_h^lpha B_k^\lambda B_lpha^k \ &= B_\mu^j H_{ji}{}^lpha B_lpha^i &+ H_{\mu\lambda}{}^h B_h^\lambda \ &= 0 \end{aligned}$$

by virtue of (2.2). This proves that, if μ_{12} and μ_{23} are critical mappings, then $\mu_{12}\mu_{23}$ is also a critical mapping.

Now let us consider a set of Riemannian manifolds $\{(M_{\lambda}, g_{\lambda}), \lambda \in \Lambda\}$ of the same dimension where each manifold is connected, compact and orientable. For any $\kappa, \lambda \in \Lambda$ we denote the set of homeomorphic critical mappings $M_{\kappa} \to M_{\lambda}$ by $G_{\lambda,\kappa}$. $G_{\lambda,\lambda}$ contains the identity mapping $e_{\lambda}: M_{\lambda} \to M_{\lambda}$, but e_{κ} and e_{λ} are distinguished if $\kappa \neq \lambda$. Then from the above results we see that the union of $G_{\lambda,\kappa}$ for all $\kappa, \lambda \in \Lambda$ forms a groupoid. Thus we obtain the following theorem.

THEOREM 2.3. When a set of Riemannian manifolds $\{(M_{\lambda}, g_{\lambda}), \lambda \in \Lambda\}$ of the same dimension is given where each manifold is connected, compact and orientable, the set of homeomorphic critical mappings forms a groupoid.

In this theorem we have assumed that all Riemannian manifolds are of the same dimension. This assumption is essential. We consider now a case where $\mu_{12}: M_2 \to M_1$ and $\mu_{23}: M_3 \to M_2$ are critical mappings and $m_1 =$ dim $M_1, m_2 =$ dim $M_2, m_3 =$ dim M_3 satisfy $m_1 = m_2 < m_3$. Then we have (1.7) and $H_{ji} \,^{\alpha} B^i_{\alpha} = 0$. If we consider the mapping $\mu_{13} = \mu_{12} \mu_{23}$ we get (2.3) for this mapping too. Then we can prove that μ_{13} is also a critical mapping.

For this purpose we define $h^{\gamma\beta}$ and $h_{\gamma\beta}$ by

 ${}^{\prime\prime}h^{{}_{\tau}{}_{eta}}=B^{{}_{\tau}{}_{eta}}_{\mu\lambda}h^{\mu\lambda}$, ${}^{\prime\prime}h_{{}_{\tau}{}_{eta}}{}^{\prime\prime}h^{{}_{\tau}lpha}=\delta^{lpha}_{eta}$.

Then we get

$$egin{array}{ll} H_{\mu\lambda}{}^lpha h^{\mu\lambda} &= H_{ji}{}^lpha B_{\mu\lambda}{}^{ji} h^{\mu\lambda} + H_{\mu\lambda}{}^h h^{\mu\lambda} B_h^lpha \ &= H_{ji}{}^lpha' h^{ji} + H_{\mu\lambda}{}^h h^{\mu\lambda} B_h^lpha \ , \end{array}$$

$$\begin{split} -H_{\omega\nu}{}^{\alpha}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}^{\gamma\beta}{}^{\gamma\beta}{}^{\prime\prime}h_{\gamma\beta} \\ &= -(H_{ji}{}^{\alpha}B_{\omega\nu}{}^{ji}h^{\omega\mu}h^{\nu\lambda} + H_{\omega\nu}{}^{h}B_{h}^{\alpha}h^{\omega\mu}h^{\nu\lambda})B_{lk}^{\gamma\beta}B_{\mu\lambda}{}^{lk\prime\prime}h_{\gamma\beta} \\ &= -H_{ji}{}^{\alpha\prime}h^{jl\prime}h^{ik\prime}h_{lk} - H_{\omega\nu}{}^{h}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{lk\prime}h_{lk}B_{h}^{\alpha} \\ &= -H_{ji}{}^{\alpha\prime}h^{ji} - H_{\omega\nu}{}^{h}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{ji}h_{ji}B_{h}^{\alpha} , \\ H_{\omega\nu}{}^{\gamma}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{\alpha\epsilon\prime\prime}h_{\epsilon\gamma} \\ &= H_{lk}{}^{\gamma}B_{\mu\nu}{}^{lk}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{kj}B_{hj}{}^{\alpha\epsilon\prime\prime}h_{\epsilon\gamma} + H_{\omega\nu}{}^{j}B_{j}{}^{\gamma}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{hk}B_{hk}{}^{\alpha\epsilon\prime\prime}h_{\epsilon\gamma} \\ &= H_{lk}{}^{\gamma\prime}h^{lh\prime}h^{kj}B_{j}{}^{\epsilon\prime\prime}h_{\epsilon\gamma}B_{h}^{\alpha} + H_{\omega\nu}{}^{j}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{hk\prime}h_{kj}B_{h}^{\alpha} \\ &= H_{lk}{}^{\gamma}B_{r}{}^{\prime\prime}h^{lk\prime}B_{h}^{k} + H_{\omega\nu}{}^{j}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{hk\prime}h_{kj}B_{h}^{\alpha} . \end{split}$$

As the first term in the last member vanishes, we get

$$H_{\mu\lambda}{}^{\alpha}h^{\mu\lambda} - H_{\omega\nu}{}^{\alpha}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{\gamma\beta}{}^{\prime\prime}h_{\gamma\beta} + H_{\omega\nu}{}^{\gamma}h^{\omega\mu}h^{\nu\lambda}B_{\mu\lambda}{}^{\alpha\varepsilon}{}^{\prime\prime}h_{\varepsilon\gamma} = 0$$

by virtue of (1.7).

Thus we have the following theorem.

THEOREM 2.4. Let there be three connected compact orientable Riemannian manifolds (M_1, f) , (M_2, g) , and (M_3, h) admitting critical mappings $\mu_{12}: M_2 \rightarrow M_1$ and $\mu_{23}: M_3 \rightarrow M_2$. If dim $M_1 = \dim M_2$ and dim $M_2 < \dim M_3$, the mapping $\mu_{13} = \mu_{12}\mu_{23}$ is a critical mapping.

If we want to prove only the Theorem 2.3, we can use the following property of a critical mapping.

If dim $N = \dim M = m$, the connecting tensor B_{ϵ}^{h} of a critical mapping $\mu: (N, h) \rightarrow (M, g)$ satisfies

(2.4)
$$B_{[\iota_1\cdots\iota_m]}^{[\iota_1\cdots\iota_m]}\frac{\sqrt{g}}{\sqrt{h}} = \text{const}.$$

Conversely, if (2.4) is satisfied, μ is a critical mapping.

(2.4) is proved by taking the partial derivatives and using (2.1).

3. Infinitesimal transformations of a Riemannian manifold. Let us take a one-parameter group of transformations $\mu(t)$ of a connected compact orientable Riemannian manifold (M, g). Then we have a case of N = M, h = g. If $\mu(t)$ takes a point P into $Q = \mu(t)P$ and the local coordinates of P and Q are respectively denoted by $x^{h}(P)$ and $x^{h}(Q)$, $\partial x^{h}(Q)/\partial x^{i}(P)$ plays the role of B_{κ}^{h} and

$$rac{\partial^2 x^h(Q)}{\partial x^j(P)\partial x^i(P)}+iggl\{ h \ lk iggr\}_{Q} rac{\partial x^l(Q)}{\partial x^j(P)} rac{\partial x^k(Q)}{\partial x^i(P)}-iggr\{ k \ ji iggr\}_{P} rac{\partial x^h(Q)}{\partial x^k(P)}$$

plays the role of $H_{\mu\lambda}^{h}$. Hence the transformations $\mu(t)$ are critical mappings of (M, g) onto (M, g) if and only if

$$(3.1) \quad \frac{\partial x^{i}(P)}{\partial x^{k}(Q)} \left[\frac{\partial^{2} x^{k}(Q)}{\partial x^{j}(P) \partial x^{i}(P)} + \left\{ \frac{h}{lk} \right\}_{Q} \frac{\partial x^{l}(Q)}{\partial x^{j}(P)} \frac{\partial x^{k}(Q)}{\partial x^{i}(P)} - \left\{ \frac{k}{ji} \right\}_{P} \frac{\partial x^{h}(Q)}{\partial x^{k}(P)} \right] = 0$$

is satisfied.

Let v^{i} be a vector field on M generating the group $\mu(t)$. Then we get

$$\delta^i_h \! \left[rac{\partial^2 v^h}{\partial x^j \partial x^i} + \partial_k \! \left\{ \! egin{array}{c} h \\ ji \end{array} \!
ight\} \! v^k + \left\{ \! egin{array}{c} h \\ ki \end{array} \!
ight\} \! \partial_j v^k + \left\{ \! egin{array}{c} h \\ jk \end{array} \!
ight\} \! \partial_i v^k - \left\{ \! egin{array}{c} k \\ ji \end{array} \!
ight\} \! \partial_k v^h \!
ight] = 0$$

from (3.1). But this is equivalent to

$$abla_{\,_{j}}\!arphi_{\,_{i}}\!v^{i}=0$$
 ,

hence $V_i v^i = C$. On the other hand, we have always

$$\int_{M} \nabla_{i} v^{i} dV_{M} = 0 .$$

Hence we get

 $\nabla_i v^i = 0$.

Thus we obtain the following theorem.

THEOREM 3.1. A one-parameter group of transformations of a connected compact orientable Riemannian manifold (M, g) generated by a vector field v^{h} is a group of critical mappings if and only if v^{h} satisfies $V_{i}v^{i} = 0$. The set of all such vector fields forms a Lie algebra.

4. Examples.

1°. Coclosed mappings. Let $\mu: (N, h) \to (M, g)$ be a coclosed mapping [1]. Then

(4.1)
$$-H_{\omega\nu}{}^{h}h^{\omega\mu}B^{i}_{\mu} + H_{\omega\nu}{}^{i}h^{\omega\mu}B^{h}_{\mu} = B^{k}_{\nu}P_{k}{}^{ih}, H_{\mu\lambda}{}^{h}h^{\mu\lambda} = -P_{k}{}^{kh}$$

are compatible. From (4.1) we obtain

 $-H_{\omega\nu}{}^{k}h^{\omega\mu}h^{\nu\lambda}B^{ij}_{\mu\lambda}{}^{i}h_{ij} + H_{\omega\nu}{}^{i}h^{\omega\mu}h^{\nu\lambda}B^{kj\prime}_{\mu\lambda}{}^{i}h_{ji} = P_{k}{}^{ik}B^{kj}_{\nu\lambda}h^{\nu\lambda'}h_{ij} = P_{k}{}^{kk} = -H_{\mu\lambda}{}^{k}h^{\mu\lambda},$ which proves that μ is then a critical mapping.

A geodesic mapping is a mapping where $H_{\mu\lambda}^{h}$ vanishes. Hence this is a coclosed mapping [1] and also a critical mapping.

2°. A critical mapping $\mu: (N, h) \to (M, g)$ where dim $N - \dim M = 1$. In this case a vector field ξ^{ϵ} of (N, h) is determined by

$$B^h_\kappa \xi^\kappa = 1 \;, \qquad h_{\mu\lambda} \xi^\mu \xi^\lambda = 1 \;.$$

Let ξ_{λ} be defined by $\xi_{\lambda} = h_{\lambda \kappa} \xi^{\kappa}$ and let $(B_{i}^{\kappa}, \xi^{\kappa})$ be the inverse matrix of $(B_{\lambda}^{\kappa}, \xi_{\lambda})$, namely such that

$$B_i^{\kappa}\xi_{\kappa}=0$$
, $B_i^{\kappa}B_{\kappa}^{h}=\delta_i^{h}$.

Then we have

$${}^{\prime}h_{ji}=B_{ji}^{\mu\lambda}h_{\mu\lambda}$$
 , $B_{i}^{\kappa}B_{\lambda}^{i}=\delta_{\lambda}^{\kappa}-\hat{\xi}^{\kappa}\hat{\xi}_{\lambda}$,

The condition that μ is a critical mapping is written in the form

$$H_{\mu\lambda}{}^{h}h^{\mu\lambda}-H_{\omega
u}{}^{h}h^{\omega\mu}h^{
u\lambda}B^{ji}_{\mu\lambda}B^{
ho\sigma}_{ji}h_{
ho\sigma}+H_{\omega
u}{}^{j}h^{\omega\mu}h^{
u\lambda}B^{hk}_{\mu\lambda}B^{
ho\sigma}_{kj}h_{
ho\sigma}=0~.$$

As we have

$$H_{\omega\nu}{}^{h}h^{\omega\mu}h^{
u\lambda}(\delta^{
ho}_{\mu}-\xi_{\mu}\xi^{
ho})(\delta^{\sigma}_{\lambda}-\xi_{\lambda}\xi^{\sigma})h_{
ho\sigma}=H_{\omega\nu}{}^{h}h^{\omega
u}-H_{\omega
u}{}^{h}\xi^{\omega}\xi^{
u}$$

and

$$H_{\omega
u}{}^j h^{\omega\mu} h^{
u\lambda} B^h_\mu B^\sigma_j (\delta^
ho_\lambda^
ho - \xi_\lambda \xi^
ho) h_{
ho\sigma} = H_{\omega
u}{}^j h^{\omega\mu} B^h_\mu B^
u_j \,,$$

we get

(4.2)
$$H_{\mu\lambda}{}^{h}\xi^{\mu}\xi^{\lambda} + H_{\mu\lambda}{}^{j}h^{\mu\kappa}B_{\kappa}{}^{h}B_{j}^{\lambda} = 0$$

as a necessary and sufficient condition of a critical mapping.

3°. Projection of a fibred Riemannian manifold \tilde{M} with an invariant Riemannian metric h onto the base manifold (M^*, g) . Let \tilde{M} be a fibred Riemannian manifold with S^1 as the type fibre and with an invariant Riemannian metric h [2]. The base manifold (M^*, g) is assumed to be a compact orientable Riemannian manifold. We denote the projection by π . For this mapping the vector field ξ^* determined by

$$B^h_{\kappa} {arepsilon}^\kappa = 0$$
 , $h_{\mu \lambda} {arepsilon}^\mu {arepsilon}^\lambda = 1$

is a Killing vector field of \widetilde{M} . If $\widetilde{\mathcal{P}}$ denotes the covariant differentiation with respect to the metric h, we get $\widetilde{\mathcal{P}}_{\mu}\xi_{\lambda} + \widetilde{\mathcal{P}}_{\lambda}\xi_{\mu} = 0$ and $\xi^{\mu}\widetilde{\mathcal{P}}_{\mu}\xi^{\lambda} = 0$.

As $h_{\mu\lambda}$ is an invariant metric, we have

$$(4.3) B^{ji}_{\mu\lambda}h^{\mu\lambda} = g^{ji}.$$

We have also

$$H_{\mu\lambda}{}^h\xi^\mu\xi^\lambda=0$$

by virtue of $B^h_{\kappa}\xi^{\kappa} = 0$ and $(\xi^{\mu}\widetilde{\mathcal{V}}_{\mu}\xi^{\lambda})B^h_{\lambda} = 0.$

On the other hand, applying van der Waerden-Bortolotti differentiation to (4.3) we get

$$H_{_{
u}\mu^{\,\,j}}B^{\,\,i}_{\lambda}h^{\mu\lambda}+\,H_{_{
u}\lambda^{\,\,i}}B^{j}_{\mu}h^{\mu\lambda}=arV_{_{\,\,
u}}g^{ji}=0$$

and consequently

$$0 = H_{\nu\mu}{}^{j}B_{\lambda}^{i}h^{\mu\lambda}B_{j}^{\rho}B_{i}^{\sigma}h_{\rho\sigma} = H_{\nu\mu}{}^{j}h^{\mu\lambda}B_{j}^{\rho}h_{\rho\sigma}(\delta_{\lambda}^{\sigma} - \xi_{\lambda}\xi^{\sigma}) = H_{\nu\mu}{}^{j}B_{j}^{\mu}.$$

Hence π satisfies (4.2) and is a critical mapping among all mappings $\mu : \tilde{M} \to M^*$.

4°. A critical mapping $\mu: (N, h) \to (M, g)$ where dim $N = \dim M$. Let the local coordinates of N and M be chosen such that the point P of N and the point μP of M have the same coordinates x^{h} . Then we have

$$B^h_{\kappa}=\delta^h_{\kappa}$$
 , $H_{ji}{}^h=\left\{egin{smallmatrix}h\ji
ight\}_g-\left\{egin{smallmatrix}h\ji
ight\}_h
ight\}$

where ${\binom{h}{ji}}_{g}$ and ${\binom{h}{ji}}_{h}$ are the Christoffels derived respectively from g and h. From (2.1) we get

$$\left\{egin{array}{c} i \ ji
ight\}_{g} = \left\{egin{array}{c} i \ ji
ight\}_{h}$$

as a necessary and sufficient condition for a critical mapping. This result also proves Theorem 2.3.

References

- [1] Y. MUTŌ, On coclosed mappings, Hokkaido Math. J. 1 (1972), 218-227.
- K. Yano AND S. ISHIHARA, Fibred spaces with invariant Riemannian metric, Ködai Math. Sem. Rep. 19 (1967), 317-360.

DEPARTMENT OF APPLIED MATHEMATICS Yokohama National University Yokohama, Japan