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Introduction. In the area of "visualized geometry", the theory of
convex figures has many geometrical questions and theorems which make
a strong appeal to the intuition and visual senses. Among them, those
concerning curves of constant width are full of interest [9].

The theory of Riemannian transnormality has evolved from attempts
to find a fruitful analogue in a general Riemannian setting of this familiar
idea of constant width for curves. In [7] and [8], Robertson has achieved
this in the case where the ambient space is Euclidean. Recently the
study was extended by Bolton in [2] and [3] to the case in which the ambient
space is a complete Riemannian manifold. Following them, we shall
investigate some global properties of transnormal hypersurfaces of a com-
plete Riemannian manifold, and it is the main purpose of this paper.

Let I be a complete hypersurface of a complete C°° Riemannian
manifold W. M is called a transnormal hypersurface of W if each
geodesic of W which cuts M orthogonally at some point cuts M orthogo-
nally at all points of intersection. Of course, each curve of constant
width in a Euclidean plane has this property, so it can be a model of a
transnormal hypersurface. The generating frame Φ(x) at a point x of M
is defined to be the set of those vectors at x which are orthogonal to M
and which are mapped into M by the exponential map of W.

Robertson and Bolton prove that the generating frames at any two
points of M are isometric and that the isometry group of each generating
frame is transitive. From these facts, Robertson shows that a transnormal
hypersurface in the ordinary Euclidean space is homeomorphic to one of
the following: a Euclidean plane, a Euclidean cylinder and a sphere. In
contrast to this, Bolton proves that if M is not a regular transnormal
hypersurface of W, i.e. the underlying topology of M is not the one
induced from W, then M is dense in W and is a leaf of a foliation of W.

* This paper was written while the author was at Tokyo Metropolitan University.
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A typical example of this case is provided by a leaf of an irrational flow-
on a flat torus.

In this paper, we are mainly concerned with regular transnormal
hypersurfaces of a complete Riemannian manifold and obtain several
theorems (e.g., Theorems 4.1, 4.2 and 4.3) on their topological structures.
The fundamental notion of our study is the order of a transnormal hyper-
surface (see § 3, for definition), which is originally introduced by Robertson
when the ambient space is Euclidean. In fact, transnormal hypersurfaces
of order either one or two are classified up to homeomorphism in a fairly
general Riemannian setting. More precisely, we prove that under some
condition on cut loci, a transnormal hypersurface of order one is homeo-
morphic to a Euclidean space, and a compact transnormal hypersurface
of order two is homeomorphic to a Euclidean sphere. In addition, as for
compact transnormal hypersurfaces of order greater than two, we deter-
mine their Euler characteristics under the same condition on cut loci as
in the above cases of low order. On the other hand, the order of a
transnormal hypersurface is shown to be either one or two if the ambient
space is a simply connected complete Riemannian manifold of non-positive
sectional curvature.

In § 1, we give the definition (in another version) and some examples
of transnormal hypersurfaces.

§ 2 contains basic propositions on the generating frame of a transnormal
hypersurface. Proofs are omitted mostly, because they are found in the
indicated references.

§§3 and 4 are devoted to prove the above-mentioned theorems and
their corollaries. These results emerge from a study of the distance
function, which is defined in § 3, of a transnormal hypersurface.

Throughout this paper, unless otherwise stated, manifolds are always
assumed to be connected and C°°. Furthermore it should be remarked that
transnormal hypersurfaces as well as their ambient Riemannian manifolds
are assumed, in their definition, to be complete. Finally the author wishes
to express his hearty thanks to Professors M. Obata and H. Omori for
their encouragement and suggestions during the preparation of this paper.

1. Definition and examples of transnormal hypersurfaces. Let M
be a complete Riemannian ^-manifold isometrically imbedded into a com-
plete Riemannian (n + l)-manifold W. We donote the normal bundle of
M by p: NM-+ M, and by Nx the fibre of NM over xeM, i.e. Nx = p~\x).
Nx is identified with the subspace of the tangent space Tx W of W at x
in the obvious manner. The restriction of the exponential map exp:
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TW-> W of W to NM is written as e: NM-* W, i.e. e = exp | iSΓM", and
called the normal exponential map of M.

DEFINITION 1.1. For each x e l there exists, up to parameterization,
a unique geodesic τx of TΓ which cuts M orthogonally at x. M is called
a transnormal hypersurface (T. N. H.) if it satisfies the condition
(T-I) For each pair x,yeM, the relation τxsy implies that τx = τy.

REMARK. AS is easily seen, (T-I) is equivalent to
(T-II) For all y e M and ξ e Nx such that e(ζ) = y, it holds

where d(e \ Nx)ζ denotes the differential of e \ Nx at ζ.

We will give now some

EXAMPLES, (cf. [2], [3] and [7])

( i ) Every hypersurface of constant width in a Euclidean (n + 1)-
space En+i is the source of T. N. H.'s.

(ii) Let Sn c Sn+1 be the standard imbedding of a Euclidean w-sphere
Sn as a great or small sphere of Sn+1. Then Sn is a T. N. H. of Sn+i.

(iii) The standard imbedding Pn(R) c Pn+ι(R) of a real protective
?i-space Pn(R) induced from the imbedding Sn c Sn+1 in (ii) yields a T. N. H.
of P.+ι(Λ).

(iv) Suppose Mι and ikf2 are T. N. H.'s of Wλ and W2 respectively.
Then the product manifold Mx x M2 is a T. N. H. of TΓi x T72. A par-
ticular example of this type is the standard imbedding of Γ2 = S1 x S1

into E* = E2 x E2. It should be remarked that any imbedding of T2 into
E3 is not transnormal with respect to the induced Riemannian metric on
Γ2, i.e. T2 can never be a T. N. H. of E\

Here we make an elementary observation in connection with regular
transnormal hyper surf aces.

PROPOSITION 1.1. Let M be a regular complete hypersurface of a
complete Riemannian manifold W. Then,

( i ) M is closed in W, and
(ii) the normal exponential map e: NM—+ W is surjective.

PROOF. ( i ) Since M is regula, the topology of M is the relative
one. Therefore any sequence of points which is a Cauchy sequence in W
is also a Cauchy one in M. Thus (i) follows from the completeness of M.
(ii) is a direct consequence of (i) because W is complete. q.e.d.
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2. Generating frames. Transnormality together with the well-known
"Transversalίty Theorem" [1] leads us to the following

PROPOSITION 2.1 (Bolton [2]). Let Mn be a T. N. H. of Wn+1. Then
the following hold.

( i ) The normal exponential map e is transversal to M.
(ii) E = e~\M) is an n-submanifold of NM such that e:E—>M is

C°°, and its tangent bundle TE coincides with {de)~ιTM.
(iii) p: E-+ M is a local dijfeomorphism.
(iv) e\E-+M is a local diffeomorphism.

In fact, (i), (iii) and (iv) are obtained from the property (T-I) or
(T-II), while (ii) is an implication of the transversality theorem.

Let NtM be the normal sphere bundle of M with radius t e Ry i.e.

NtM={ξeNM;\\ξ\\ = t],

where || || denotes the norm induced from the scalar product on each
fibre. As usual M is identified with the zero cross section of NM, i.e.
M = NoM.

Now we can state the following theorem which tells the relation
between Riemannian transnormality and the concept of generalized constant
width for Riemannian manifolds.

THEOREM 2.2 (Bolton [2]). Let M be a T. N. H. of W. Then the
following hold.

( i ) Let Eo be a connected component of E. Then Eo coincides with
a component of NtM for some teR, and hence p:EQ—*M is a covering
map which is at most two fold.

(ii) Ex( = E Π Nx) is isometric to Ey for all x,yeM, where Ex is
considered as a metric space with the distance induced from Nx.

PROOF. ( i ) The Gauss lemma shows that Eo is an open submanifold
of NtM for some t e R. Then, from the completeness of M, we get our
first assertion immediately. For the latter half, remind that the codimen-
sion of M is one. (ii) is easily proved by (i).

From this theorem, we can see that Ex regareded as a subset of E1

is independent of the choice of a reference point xeM. So the following
definition is well-defined.

DEFINITION 2.1. An isometric copy of Ex in E1 is called the generat-
ing frame Φ(M) of M.

The most important property of the generating frame Φ(M) is con-
tained in the following
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THEOREM 2.3 (Robertson [7], Bolton [2], [3]). There is an isometry
group of E1 which acts transitively on Φ(M) and leaves Φ(M) invariant.

PROOF. Choose and fix a point xeM arbitrarily. It suffices to show
that for each ξ e Ex there exists an isometry of Nx which sends x to ξ
and maps Ex onto Ex.

Let y = e(£), and join x with y by a C°°-geodesic λ: [0, l]-*ikf. For
each ζeNx, we know the existence of the unique lift λζ of λ to NιιζuM,
\' [0,1] -^N^ζuM, so that λζ(0) = ζ and po\ = χm Then the mapping
λ*: Nx —> Ny defined by λ*(ζ) = λζ(l) is a linear isometry, as is the mapping
rj\ Nx —> Ny obtained by the parallel translation from x to y along the
geodesic τx. Here λ* = ±η, since the dimension of each fibre of NM is
one.

If \* = η is the case, the mapping Nx — Nx defined by ζ —> ζ + ξ is
a required isometry. If λ* = —rj is the case, so is the mapping Nx—•
Nx: ζ —* f — ζ. In fact, one can easily check that both the above mappings
send Ex onto Ex. For example, in case λ* = η, we observe for each ζeEx

exp, (ζ + ξ) = expe(e) ^(ζ) = exp,,λ*(ζ) e Λf,

thus ζ + ξ e Ex. q.e.d.

3. Order of transnormality and distance functions. Let M be a
T. N. H. of W. We now define an equivalence relation ~ on M by writing
x ~ y to mean y e τx. Indeed, ~ is an equivalence relation since (T-I)
holds for M.

Take the quotient space M = Λf/~ of Λί with respect to the relation ~
and endow M with the quotient topology.

DEFINITION 3.1. We call M a transnormal hypersurface of order r,
or briefly an r-transnormal hypersurface, if the natural projection ψ: M —>
Λf is an r-fold (topological) covering map.

REMARK. In general, the projection ψ is not always a covering map.
To take an illustration, suppose W is the Klein bottle constructed from
the produdt [0, 1] x [0,1] of unit intervals by identifying (ί, 0) with (£, 1)
and (0, s) with (1,1 — s) respectively. Let Λί be a hypersurface resulting
from {0} x [0,1]. Then M i s a T. N. H. of W, but the projection f is
not a covering map.

However the following proposition shows that the covering condition
in Definition 3.1 is automatically satisfied in a fairly general family of
Riemannian manifolds.

PROPOSITION 3.1. Let M be a T. N. H. of a simply connected complete
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Eiemannian manifold W of constant sectional curvature. Then the pro-
jection ψ: M-+ M is a covering map.

PROOF. For each a e M, we shall find a neighborhood V{a) of a in
M which is evenly covered by M via ψ. Choose a point x e ^{a), and
let U(x) be an arcwise connected open neighborhood of x in M such that
p-\U{x)) is trivial. Put V{a) = ψ(U(x)). Then ψ~\V(a)) = e{p~l{U{x)){\E).

Here remark that for each pair x, y eM, there exists an isometry φ
of W which satisfies the following conditions: φ{x) = y, φ(τx) = τy and
φ{e{Ex)) = eCEy), since the ambient space W is a simply connected com-
plete Riemannian manifold of constant curvature and Theorem 2.2 (ii)
holds. From this it is observed without difficulty that on each component
of ψ"1(V(a))9 ψ is a bisection onto V(a). Thus, by the definition of the
topology on M, ψ maps each component of ψ~\ V(oc)) homeomorphically onto
V(ct). This completes the proof. q.e.d.

This proposition also asserts that in a simply connected complete
Riemannian manifold of constant sectional curvature, each geodesic which
cuts a transnormal hypersurface orthogonally at some point (and then
orthogonally at all points of intersection) intersects the hypersurface the
same number of times.

We use elementary parts of the Morse theory to study the topological
structure of an r-transnormal hypersurface M of W. Choose and fix a
point peM. Let C(p) be the cut locus of p in W, and put M — M — C{p).
(For the definition of C(p), see [4]).

DEFINITION 3.2. By the distance function Λp of M, we mean the
real valued function Λp: M'—> R defined by

Λp(x) = d(p, x)2, x e M ,

where d{,) denotes the distance in W.

To simplify our discussion, we impose the following assumption on M:

[Condition A] There is a point peM such that C(p) Π M = 0 , i.e.
M= M.

This assumption places no restriction if W is a simply connected
complete Riemannian manifold of non-positive sectional curvature, in
particular if W is either a Euclidean space En+ί or a hyperbolic space
Hn+1, since C(p) = 0 for all peW.

PROPOSITION 3.2 (Fundamental properties of Λp). Let M be a T. N. H+
of W. Then, under the assumption of Condition A,
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( i ) Λp is a C°°-function on M,
(ii) e(Ep)( — τp Π M) coincides with the set of critical points of Λp,

and
(iii) Λp is non-degenerate, i.e. ΛP:M-+R is a Morse funtion.

PROOF. ( i ) This is well-known [4].
(i i) By Condition A, the minimizing geodesic τ(p9 x) of W joining

p with x is unique for each x e M. Note that Λp(x) is nothing but the
square of the length of τ(p, x). Let x e M be a critical point of Λp, i.e.
dΛp(x) = 0. Then from the formula for the first variation of Λpf we observe
that τ(p, x) is perpendicular to M at x [4]. Since M is a T N. EL, τ(p, x)
is perpendicular to M at p as well. Thus x e e{Ep){ — τp ΓΊ M).

Conversely, if x e e(Ep) then dΛp(x) = 0 as is easily seen.
(iii) By the formula for the second variation of ΛP9 Λp is degenerate

at its critical point xeM if and only if p is a focal point of x [4].
However, Proposition 2.1 (iv) implies that there is no focal point of x on
M. Hence Λp is non-degenerate. q.e.d.

4. Transnormal hypersurfaces of order r. First, we prove the
following

THEOREM 4.1. Let Mn be a T. N. H. of Wn+1, and suppose Mn satisfies
Condition A. Then the following hold.

( i ) If Mn is 1-transnormal, then Mn is homeomorphic to a Euclidean
n-space En.

(ii) If Mn is compact and 2-transnormaly then Mn is homeomorphic
to a Euclidean n-sphere Sn.

PROOF. ( i ) By Proposition 3.2 (ii), Λp has only one critical point
p which is a non-degenerate minimum of Λp. Thus Mn is homeomorphic
to an open %-cell by one of the fundamental theorem of Morse [5]. So
Mn is homeomorphic to En.

(ii) Mn is compact and has exactly two non-degenerate critical point
of Λp due to Proposition 3.2 (ii). From this, a well-known theorem of
Reeb [5] implies that Mn is homeomorphic to Sn. q.e.d.

REMARK. 1°. Without the assumption of Condition A, Theorem 4.1
does not hold. In fact, let W2 be a Euclidean cylinder W2 = S1 x E1

and M1 a T. N. H. M1 = S1 x {0}. Then M1 is 1-transnormal and homeo-
morphic to S1.

2°. If En is imbedded into Wn+1 as a T.N.H. of order r ( < + oo),
then r = 1. For En must be a covering manifold of finite order r.

3°. In a forthcoming paper [6], we shall study more differential
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geometric structures of a compact 2-transnormal hypersurface in a space
of constant curvature.

1- and 2-transnormal hypersurfaces cover a rather wide class of
transnormal hypersurfaces by the following

THEOREM 4.2. Let Mn be an r (< + oo)-transnormal hypersurface of
Wn+1. Suppose Wn+1 is a simply connected complete Riemannian manifold
of non-positive sectional curvature. Then r is either one or two.

PROOF. Choose a point p e M arbitrarily. Owing to the assumpiton on
the curvature of Wn+1, the normal exponential map e is a diffeomorphism
from Np onto τp [4]. This together with r-transnormality of M implies
that r is the number of elements in the generating frame Φ(M). However,
by Theorem 2.3, an isometry group of E1 acts transitively on Φ(M) and
leaves Φ(M) invariant. Thus r must be either one or two. This com-
pletes the proof. q.e.d.

Now, following an idea of Robertson [8] in the case of a Euclidean
space, we determine the Euler characteristic of a compact r-transnormal
hypersurface.

THEOREM 4.3. Let M be a compact r (< + oo)-transnormal hyper-
surface of W, and suppose M satisfies Condition A. Then the Euler
characteristic χ(M) of M is either zero or r.

PROOF. Let r̂  be the number of critical points of Λp with index i.
Then from the Morse inequality [5],

χ(M) = Σ ( - l)'n .
i=0

On the other hand, r-transnormality of M yields

Since the projection ψ:M—»M is an r-fold covering map,

χ(M) = r χ(M) .

Also r0 > 0 and rn > 0, so that

- r < χ(M) ^ r ,

and hence

- 1 < χ(M) ^ 1 .

Thus either χ(M) = 0 or χ(M) = 1. Consequently,
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χ(M) = 0 or χ(M) = r . q.e.d.

REMARK. Of course, if such M is odd dimensional, χ(M) is zero.

Theorem 4.3 has a number of interesting corollaries. For instance,

PROPOSITION 4.4. If S2n is imbedded into Wn+ί as a T. N. H. of
order r(< + oo) which satisfies Condition A, then r = 2.

For other corollaries in the case Wn+ί = E%+1, see Robertson [8].
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