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Introduction. This paper is concerned with the generation of (opera-
tor) semigroups of growth order a.

Extending the notion of a semigroup of class (Co), Da Prato [1] in-
troduces the notion of a semigroup of growth order n, n is a nonnegative
integer. Roughly speaking, a semigroup {T(t); t > 0} of bounded linear
operators on a Banach space is of growth order n if pΛ!Γ(ί)| | is bounded
as t tends to zero; in particular, {T(t)} is of growth order 0 if and only
if it belongs to class (Co). In [1], Da Prato gave a characterization for
the Laplace transform of tnT(t) through the notion of a closable linear
operator of ftype n and its resolvent of order n. Namely, if Ao is the
infinitesimal generator of a semigroup {T(t)} of growth order n, then Ao

is of type n and its resolvent S(X, Ao) of order n is equal to the Laplace
transform of tnT(t) and satisfies a certain stability condition. Viceversa
if B is of type n and its resolvent S(λ, B) of order n satisfies the stability
condition mentioned above, then there exists a unique semigroup of growth
order n such that S(λ, B) = S(λ, Ao), where Ao is the infinitesimal gen-
erator of the constructed semigroup. This result was generalized by
Zafievskii [10] to the case of fractional a (cf. also Sobolevskii [8]). So,
if it can be shown that B — AQ, then their result is proved to be a
characterization for the infinitesimal generator of a semigroup of growth
order a. But, this is not expected in general as noted in [2].

The purpose of this paper is to give a characterization for the closure
of the infinitesimal generator of a semigroup of growth order a. We
first clarify some properties of the closure of the infinitesimal generator
and then modify the construction of the semigroup stated in [1]. In this
way, we obtain a criterion for a closed linear operator in a Banach space
to be the closure of the infinitesimal generator of a semigroup of growth
order a.

The main result of this paper is stated in § 1 and the proof of it is
given in § 3 and §4. §2 is devoted to the preliminaries.

The author wishes to thank Professor R. lino for his kind advice
and Professor I. Miyadera for his helpful suggestions.
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1. Statement of the result. Let X be a complex Banach space. We
denote by &{X) the set of all bounded linear operators on X to X. A
one-parameter family {T(t); t > 0} in &(X) is called a semigroup on X
if T(t + s) = T(t)T(s) for ί, s > 0 and if T(ί) is strongly continuous for
£ > 0. We denote by Ao the infinitesimal generator of {T(ί)}, i e >

Aot6 = lim ^[ϊX/fc)^ — u]
Λ—0+

whenever the limit exists. If Ao is closable, then the closure of Ao is
called the complete infinitesimal generator of {T(t)}.

DEFINITION 1.1. Let a > 0. Then a semigroup {Γ(ί)} on X is said
to be of growth order a if it satisfies the following three conditions:

( i ) If T(t)u = 0 for all ί > 0 then u = 0.
(ii) | | ί β T(ί) | | is bounded as t tends to zero,
(iii) Xo = (jt>o T(t)[X] is dense in X.

A semigroup of growth order a has the complete infinitesimal gen-
erator (see [1], Theorem 1.1; cf. also Lemma 3.1 below). Examples of
semigroups of growth order a will be found in Krein [4].

Let A be a closed linear operator (with domain D(A) and range R{A)) in
X. Then a linear manifold D contained in D(A) is called a core of A if the
closure of the restriction of A to D is again A (see Kato [3], ΠI-§5.3).

Now our result is given by

THEOREM 1.2. Let n be the integral part of a > 0. Then a closed
linear operator A in X is the complete infinitesimal generator of a
semigroup of growth order a if and only if the following four conditions are
satisfied:

( I ) There is a real number ω such that for each ξ > ω, R(ξ — A)
contains D(An+1) and (ξ — A)"1 exists.

(II) There is a constant M > 0 such that for v e D(An+ί),

A)"mv]l f i " * " * > ω m = Hn + 1}

where k = 1, 2,
(III) D(An+2) is a core of A and D(A) is dense in X.
(IV) For some b > ω, (6 — A)n+1 is closable.

The following corollary is announced by Zabreiko-Zafievskii [9].

COROLLARY 1.3. Let 0 < a < 1. Then a closed linear operator A in
X is the complete infinitesimal generator of a semigroup of growth order
a if and only if
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( Γ ) there is a real number ω such that for each ξ > ω, (ξ — A)~ι

exists and belongs to &(X)>
( I F ) there is a constant M> 0 such that for ζ > ω and m ^ 1,

A)~m II < M r ( m ~ a)

(Ill') D(A) is dense in X.

2. Preliminaries. Let {T(t); t > 0} be a semigroup on X. We denote
by ω0 the type of {T(t)}: ω0 = l i m ^ f"1 log || T(t) || (it is well known that
α>o is finite or -co) , and by Σ the continuity set of {T(t)}:

Σ = {ueX;\\ T(t)u - u\\-*0 as ί-»0 + } .

Then Xo = (J t > 0 T(ί)[X| is dense in J and we have

LEMMA 2.1 (see [7], §2). Let Ao be the infinitesimal generator of
a semigroup on X. Then for each X with Re λ > ω0, R(X — A0)ZD Σ and
(λ — AQ)"1 exists.

Let Ω be the restriction of Ao to

D(Ω) = {u 6 D(A0); Aou e Σ) .

Then we have

LEMMA 2.2. For each X with Re X > ω0, R(x — Ω) = Σ and (X — Ω)"1

exists; furthermore,

(2.1) ( λ - Ω)~'v = [ ° ° e - x t T ( t ) v d t , v e Σ .
Jo

PROOF. Let Re λ > ωQ. To see t h a t R(X — Ω) — Σ, it suffices to show
t h a t R(X — Ω) =)Σ. Let veΣ and set

(2.2) J(X)v = [~e-χtT(t)vdt .
Jo

Then it follows that J(X)veD(A0) and A0J(X)v = XJ(X)v - v (see [7], §2).
But since J(X)v e Σ, we see that J(X)v e D(Ω) and

(2.3) v = ( λ - Ω)J(X)v , v e Σ .

This shows that Σ c R(X — Ω). Since λ — Ω is invertible (see Lemma 2.1),
(2.1) follows from (2.3) and (2.2). q.e.d.

Now let us introduce the notion of a semigroup of class (@fc).

DEFINITION 2.3 (see [6], §3). Let AQ be the infinitesimal generator
of a semigroup {T(t)} on X. Then {T(t)} is said to be of class (@fc), where
k is a nonnegative integer, if it satisfies the following three conditions:
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(a,) Ao has the closure A: A = Ao, and there is ω > ω0 such that
for each ξ > ω> (ζ — A)"1 exists.

(α2) D(Ak)czΣ.
(a3) Xo is dense in X.

Since Ω c Ao, Ω has the closure Ω if Ao is closable. In this connection,
we have

LEMMA 2.4 (see [6], §3). Suppose that {T(t)} satisfies condition (a^.
Then Ω = Ao.

As mentioned in § 1, A = Ao is called the complete infinitesimal
generator of {Γ(ί)}

LEMMA 2.5. Let A be the complete infinitesimal generator of a semi-
group of class (@fc). Then A has the following properties:

(dO There is a real number ω such that for each ξ > ω, R(ξ — A)
contains D(Ak) and (ξ — A)~ι exists.

(d2) D(Ak+1) is a core of A and D(A) is dense in X.

PROOF. Since ΣaR(ζ-A) for each ξ > ω0 (see Lemma 2.1),
follows from Definition 2.3. (d2) is proved in [6]. q.e.d.

3. Complete infinitesimal generators. In this section we shall prove
the "only if" part of Theorem 1.2. The following lemma shows that
condition (i) is stronger than condition (a^.

LEMMA 3.1 (see [7], §3). Let Ao be the infinitesimal generator of
a semigroup {T(t)} on X. Suppose that {T(t)} satisfies condition (i). Then
Ao has the closure A: A = Ao, and

(3.1) (d/dt)T(t)u = AQT(t)u = T(t)Au , u e D(A) , t > 0 .

Furthermore, for each λ with Re λ > ωQ, (λ — A)"1 exists and

(3.2) ( λ - A ) - { m + ι ) v = ( l l m l ) [ ~ t m e - λ t T ( t ) v d t , v e Σ , m ^ 0 .
Jo

LEMMA 3.2. Suppose that {T(t)} satisfies condition (i), and let A = AQ.
Let m be a positive integer and X be a complex number with Re λ > ω0.
Then for u e D(Am),

(3.3) (m - 1)! T(t)u = ( V - V Γ ί ί + s)(X - A)muds , t > 0 .
Jo

Furthermore, (λ — A)m is closable.

PROOF. TO see that (3.3) holds, let ueD(A) and R e λ > ω 0 . Then
we have by (3.1) that for t > 0,
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(d/ds)e'λ8T(t + s)u= -e~λ8T{t + s)(λ - A)u , s ^ 0 .

Integrating this equality, we obtain (3.3) with m = 1. Thus, it suffices
to show that

8me~2βT(t + s)(λ - A)uds =

But, to see this, it suffices to note that (d/ds)[sme~*sT(t + s)u] =

Next we prove that (λ — A)m is closable. Let {up} be a sequence in
such that up —>0 and (λ - A)mup—*v. Setting u = up in (3.3) and

going to the limit p —> oo, we obtain

+ s)vds = 0 , t > 0 .

This implies that T(t)v = 0 for ί > 0. Therefore, v = 0 by condition (i).
Thus, (λ — A)m is closable. q.e.d.

LEMMA 3.3. Suppose that {T(t)} satisfies conditions (i) and (ii). Let
A = Ao> αwrf Zβί ^ δe ίΛe integral part of a > 0. T%eπ

(3.4) Z)(AW+1) c Σ .

PROOF. Since 7(0 e &(X), it follows from (3.3) and condition (ii) that

T(tίnl u - [°°sne-λ8T(s)(X - A)n+ιuds\ = 0 , ί > 0 .

Therefore, by condition (i) we obtain

n\ u = \~sne-χ8T(s)(X - A)%+1^ds , u e D(An+ι) , Re λ > ω0 .
Jo

Let ω > ω0. Then there is a constant ML > 0 such that || Γ(ί) || ^ Mγe
ωt

for ί ^ 1. Therefore, by condition (ii) we can find a constant ikf > 0 such
that

(3.5) \\taT(t)\\ ^Me^ , t > 0 .

Let b > ω and 0 < t ^ 1. Then

nl T{t)u =

Since sne-h8\\ T(t + s) \\ ^ const, s " ^ " ^ " " ^ e L(0, oo), we see by the principle
of dominated convergence that T(t)u —> u for u e J9(AW+1) as ί —• 0 + . This
shows that (3.4) holds. q.e.d.

The next lemma completes the proof of the "only if" part of Theorem
1.2.
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LEMMA 3.4. Let {T(t)} be a semigroup of growth order a, and let
A = Ao. Then A satisfies conditions (I)-(IV) of Theorem 1.2.

PROOF. It follows from Lemmas 3.1 and 3.3 that A is the complete
infinitesimal generator of a semigroup of class (@Λ+1), where n is the
integral part of α. So, we see from Lemma 2.5 that A satisfies conditions
(I) and (III). Also, it follows from Lemma 3.2 that A satisfies condition
(IV). Therefore, it remains to show that A satisfies condition (II) for
some ω > ω0, where ωQ is the type of {T(t)}. We have by (3.2) and (3.4)
t h a t f o r v e D(An+1) a n d ξ > ω0,

(ξ - A)~mv = [ l / ( m - 1) ! ] \°tm~ιe-ζtT{t)vdt , m ^ l .
Jo

Hence, in virtue of (3.5), condition (II) can be easily verified. q.e.d.

The "only if" part of Corollary 1.3 follows from Lemma 3.4.

4. Construction of the semigroups. In this section we shall prove
the "if" part of Theorem 1.2. Obviously, it suffices to consider the case
of ω = 0.

LEMMA 4.1. Let A be a closed linear operator in X satisfying con-
ditions (I)-(III) with ω — 0. Then for each ξ > 0 there exists S(ξ, A) e
&{X) such that

(a) AS(ζ, A)u = S(ξ, A)Au for u e D(A),
(b) S(ί, A)(ξ - A)n+ίv = v for ve D(An+1),
(c) S(ζ, A) is invertible if and only if (ζ — A)n+1 is closable.

PROOF. Let (ί - A)~(Λ+1) | D(An+1) be the restriction of (ξ - A)^n+ι)

to D(An+1). Since D(An+1) is dense in X (see condition (III)), it follows
from condition (II) that (ξ - A)~{n+1) \ D(An+1) admits a closure S(ξ, A) in

, A) = (ξ - A)~{n+1) I D(An+ί) .

Next we shall show that S(ζ, A) has the properties (a)-(c).
(a) Let ueD(A). Then, since D(An+2) is a core of A, there exists

a sequence {up} in D(An+2) such that up—*u and Aup —> Au. We have by
the definition of S(ξ, A) that

AS(ξ, A)up = A(ξ - A)^n+1)up = (ζ - A)~{n+ί)Aup = S(ζ, A)Au.>p

Going to the limit p —> oo, the desired equality follows from the closedness
of A.

(b) Let v e D(An+1). Then we have v = (ζ - A)n+1(ζ - A)~{n+1)v =
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(f - A)n+1S(ζ, A)v. On the other hand, by (a), S(ζ, A)(ζ - A)n+ίv =
(ξ — A)n+ίS(ξ, A)v. Thus, we obtain the desired equality.

(c) First suppose that (ζ — A)n+ι has the closure (ζ — A)n+1. Since
D(An+1) is dense in X, for each we X there exists a sequence {wp} in
D(An+1) such that wp — w. Since (f - A)w+1S(f, A)wp = wp, it follows that
(f - A)*+1S(f, A)w = w. So, if S(f, A)w = 0 then w = 0. Thus, S(ξ, A)
is invertible.

Conversely, suppose that S(ζ, A) is invertible. Let {vp} be a sequence
in JD(A" + 1 ) such that vp — 0 and (? - A)*1*1^ — v. Then we have by (b)
that S(ξ, A)(ζ — A)n+ιvp = vp. Going to the limit p->oo, we obtain

f, A)v = 0 and therefore v = 0. Consequently, (ί - A)w+1 is closable.
q.e.d.

REMARK 4.2. If (f - A)n+1 has the closure (ί - A)n+1, then

, A) = [(£ - A)^ 1 ]" 1 , ί > 0 .

Also, for each integer k ^ 2, Sfc(ί, A) = [S(ί, A)]& is the closure of
(ί - A)~fc(w+1) I D(An+1). So, it follows from condition (II) that

(4.1) | |ffl(g,A)H^ M . . . Γ ( ^ α ) , f > 0 , m = *(Λ + l ) ,
(m — 1)! ίm a

where k = 1, 2, . Since

m - 1)! m-«
.Γ(m — a) ™-+°° Γ(m + 1 — a)

we see that there exists a constant M > 0 such that

(4.2) έ^^| | S*(ί, A) || ^ M ' [ — A — J , ζ > 0 , fc = 1, 2,

LEMMA 4.3. Lei A δe as in Lemma 4.1. T%ew for each integer m ^
2, £>(Am) is α core of A.

PROOF. Let fc be a positive integer. Since D(An+2) is a core of A,
it suffices to show that if D(Ak+n+ί) is a core of A then so is Z>(Afc+2(w+1)).
To see this, suppose that D(Ak+n+ι) is a core of A. For each u e D(Ak+n+1)
we shall construct a sequence {up} in JD(i4

A;+2^+1>) such that up—>u and
A^p —* Aw.

Let δ > 0. Then each u e D(Ak+n+ί) can be written as u = S(b, A)v
for some v e D(Ak). In fact, set v = (6 - A)u+1w e DίA^). Then it follows
from Lemma 4.1(b) that S(b, A)v = S(6, A)(& - A)w+1w - u. Since
is a core of A, for each v e D(Ak) there exists a sequence f^} in
such that vp-+v and Avp -* Av. Setting %p = (δ - A)-(w+1)vp e D(Ak+2{n+ί)),
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we see that up = S(b, A)vp -> S(b, A)v = ue D(Ak+n+1) and

Aup = S(b, A)Avp -*S(b, A)Av = Au ,

where we have used Lemma 4.1(a). q.e.d.

Since D(A) is dense in X, it follows from Lemma 4.3 that for each
integer m ^ 2, D(Am) is dense in X.

LEMMA 4.4. Let S(ζ9 A) be as in Lemma 4.1. Set

A, = (n + l y ^ S d A)-i]e <SP(X) , i = 1, 2, . . . ,

and Ti(t) = etAκ Then we have

(4.3) II 2^)11 ^1 + NΓ«, t > 0 ,

where N = 2M'(n + 2)!, and

(4.4) (f - A,)-(w+1) - (l/nljCe-^'ί Γ^Odί , f > 0 .
J o

Hence for each ζ > 0, | | ( ί — Ai)~(w+1) || is bounded as i tends to infinity.
Furthermore,

(4.5) ATi(t)u = Tt(t)Au for u e D(A) and t > 0 .

PROOF. It suffices to prove (4.3). Let t > 0. Then we have

- = r V ) Σ * ^ ^ Sfc(i, A).
.n + 1/ fc=o fc! (n + l)fc

So, it follows from (4.2) that

Let A:o be the integral part of it/(n + 1). Then we have

S = f 1 ( it \*Γ it I"
*έί fc! V Λ + 1 / L Jc(n + 1) J

^ ft i f ** yr ^ T+1 • f l / ft y
~ 6 ί fc! V n + 1 / L k(n + 1) J *^ί+i fc! \ n + 1 /

Since (fc + w + 1)! ^ (^ + 2)! fc! fc%+1 for fc ^ 1, we obtain S ^
(w + 2)! 2 exp [it/(n + 1)]. q.e.d.

In the rest of this section, we assume for simplicity that a is an
integer: a — n, since the proof for the case of a Φ n is essentially the
same.
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LEMMA 4.5. Let S(i, A) be as in Lemma 4.4. Then there exists a
constant K > 0 such that

(4.6) | | i * S ( t , A ) t t | | ^ Z Ϊ - ι | | « I U , k = 1, 2, ...,n,

where \\u\\m = \\u\\ + \\Au\\ + ••• + \\Amu\\ for u e D ( A m ) .

PROOF. We shall prove (4.6) by induction. It follows from Lemma
4.1(b) that for ueD(An+1),

(4.7) i«+1S(i, A)u-u = S(ί, A)[in+1 - (i - A)n+1]u

= Σ . + 1 C^-l) ' + 1 i +1-'S(i, A)A'u .

Dividing the both sides of (4.7) by in, we obtain

iS(i, A)u - i~nu

So, it follows from (4.1) that

|| iS(i, A)u || ^ i - || w || + (Jlf/n!)

Σ
Ϊ > = 1

n + l

Σ',
Hence we obtain (4.6) with k = 1.

Now let 2 ^ m ^ n — 1 and suppose that (4.6) holds for each k ^ m.
Dividing (4.7) by in~m, we have

im+1S(i, A)u = i-{n~m)u + Σ n+iCp(-l)p+Hm+ί-pS(i, A)Apu .

Consequently, we see t h a t for u e D(An+m+1),

|| i»+ 1S(i, A)u\\^ i-<—>|| t* || + const. Σ . + i C , i - 1 | | A ' M ||.+m+1_p

Thus, we obtain (4.6) with k = m + 1. q.e.d.

The next lemma shows that the sequence {A{} approximates A in a
certain sense.

LEMMA 4.6. Let A< δe as w Lemma 4.4. ΓΛe^ ίλere βίcΐsίs a
sίa^ί L > 0 8%cΛ ίΛaί /or % e Z)(A2(%+1)),

(4.8) || ( A 4 - A ^ H ^ L i - 1 ! ^ ! ! , ^ , , i = 1, 2,

hence we obtain

(4.9) || ( ^ - A > || ^ L(l/i + 1/i) || te |U + 1 ) , i, i = 1, 2, ,

(4.10) || A ^ || ^ (L + 1)|| w ||2(Λ+1) , i = 1, 2, . . .
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PROOF. We see from (4.7) that for u e D(An+1),

in+2S(i, A)u -iu = (n + l)in+1S(i, A)Au + Σ n+ίCk(-l)n-kik+1S(i, A)An+i~ku

= (Λ + l)ΪAu + Σ.+1C»(-l)-*i*S(
L k=o

Since A, = (n + l)-1[i*+2iS(i, A) - i], it follows from (4.6) that

|| {A, - A)u || ^ const. Σ .+1C*i-1||A + M w ||»+Jk
A;=0

+ const. Σ n+ίCk..ιi-
ι\\An+2-ku \\n+k

^ Li-1\\u\\^n+ί). q.e.d.

LEMMA 4.7. Lβί T^t) be as in Lemma 4.4 and let m = 2(n + If.
Then for each ε > 0 there exists a constant Mε > 0 such that for u e D(Am)
and ε ^ t ^ 1/e,

(4.11) || Ut)u - Tά{t)u || ^ AΓ.(l/< + l/i)|| u ||m , ί, j = 1, 2, . .

PROOF. Let m = 2(π + I)2. Then it follows from (4.9) that there
exists a constant L > 0 such that for u e D{Am),

(4.12) || (A, - Ajfu || ^ L(l/ί + l/i)|| u ||m , k = 1, 2, . . , n

Now we have the identity

± [i + (-

ts)

(see [1], Lemmas 4.3 and 4.4). Consequently, (4.11) follows from (4.3)
and (4.12). q.e.d.

LEMMA 4.8. For each t > 0 there exists T(t) e &(X) given by

(4.13) T(t) = strong lim Γ4(ί)

(4.14) | | Γ ( ί ) | | ^ l + ^ r , ί > 0 ,

(4.15) S(ζ, A) - (1/n!) ("e- f tiT(i)di, f > 0 ,
J
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(4.16) AT(t)u = T(t)Au , u e D(A) , t > 0 .

PROOF. Let m = 2(n + I)2. Then D(Am) is dense in X as noted after
Lemma 4.3. Therefore, it follows from Lemma 4.7 and (4.3) that the
limit (4.13) exists and (4.14) holds.

Now we prove (4.15). In view of (4.4), it suffices to show that

(4.17) S(ξ, A) = strong lim (ξ - A<)-(*+1) , f > 0 .

First we note that for v e D(An+1),

(ί - Atr<*+1)v - S(ζ, A)v

Let ueD(Am), m = 2(n + I)2. Then it follows from (4.10) and (4.8) that
|| (£ _ Ai)n+1u - (ξ - A)n+ίu || — 0 as i — oo. Since D(Am) is dense in X,
we obtain (4.17). Finally, (4.16) follows from (4.5) since A is closed.

q.e.d.

LEMMA 4.9. Let A be a closed linear operator in X satisfying con-
dition (I)-(IV) with a) = 0. Then the family {T(t); t > 0} of operators
given by (4.13) forms a semigroup of growth order n.

PROOF. First we note that for each e > 0 the convergence (4.13) is
uniform with respect to t on the interval [ε, 1/ε]. Since T^t) is continuous
in t, T{t) is strongly continuous for t > 0. Also, the semigroup property
of {T(t)} follows from that of {Γ^ί)}- Thus, {Γ(ί)} forms a semigroup on X.

Next we prove that {T(t)} is of growth order n. To this end, let Σ
be the continuity set of {T(t)}. Then we see from (4.15) and (4.14) that
S(ξ, A)u e Σ for u e X and ξ > 0 (cf. Lemma 3.3). Now let T(t)u = 0 for
t > 0 and let b be the real number in condition (IV). Then T(t)S(b, A)u =
S(b, A)T(t)u = 0 for t > 0. But since S(b, A)u e Σ, we have S(bf A)u = 0.
Noting that S(b, A) is invertible (see Lemma 4.1(c)), we obtain u = 0.
Namely, {T(t}} satisfies condition (i). (4.14) shows that condition (ii) is
satisfied. Thus, it remains to show that XQ is dense in X. Since Xo is
dense in Σ, it suffices to show that Σ is dense in X. Noting that S(b, A) =
[(6 - A)*"1-1]""1 (see Remark 4.2), we have that

(4.18) D(An+1)czΣ .

Consequently, Σ is dense in X since so is D(An+1). q.e.d.

LEMMA 4.10. Let A and {T(t)} be as in Lemma 4.9, and let Ω be
as in § 2. Then for ξ > 0,

(4.19) (ί - A)-ιv = (ξ - Ω)~'v , v e Σ .
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PROOF. Since (d/dt)Ti(t) — Ti(t)Ai9 we see from Lemmas 4.8 and 4.6
that for u e D(A2(n+1)),

(4.20) T(t)u - T(ε)u = Γ T(s)Auds , t ^ ε > 0 .

Noting that D{A2{n+ι)) is a core of A, we see that (4.20) holds for all
ueD(A). Consequently, we have (d/dt)T(t)u = T(t)Au for ueD(A) and
t > 0. Let w e D(An+1). Then it follows from (4.16) and condition (I)
that T(s)w e R(ζ - A) for ξ > 0. So we obtain

(d/dt)[e-ξtT(t)(ξ - A)~1T(s)w] = -e~ζtT{t + s)w .

Since (f - A)"1T(s)weΣ (see (4.18)), it follows that

(4.21) (ξ - A)~1T(s)w = [°e~ζtT(t + s)wdt .
Jo

Now we have by (4.14) that

\\(ξ - AYιT(s)w || ^ (1 + Ns-^ζ-'W w\\, weD(An+1) .

Since D(An+1) is dense in X and since (f — A)~ιT(s) is closed, we see that
(4.21) holds for all weX. Let veΣ. Then we have (ζ - A ) " 1 ! 7 ^ =

T(s)[~e-ξtT(t)vdt = Γ(s)(ί - Ω)~ιv (see (2.1); note that ω0 ^ 0). Therefore,

(£ - AyΎ&v -* (ί - β)"1^ as 8 — 0 +. Since T(s)v — v as s -^ 0 +, (4.19)
follows from the closedness of (f — A)"1. q.e.d.

The following lemma completes the proof of the "if" part of Theorem
1.2.

LEMMA 4.11. Let A and {T(t)} be as in Lemma 4.9. Then A is
equal to the complete infinitesimal generator of {T(t)}.

PROOF. We see from (4.20) and (4.18) that

T(t)u - u = Γ T(s)Auds , u e D(An+2) , t > 0 .
Jo

Hence it follows that A | D(An+2) c Ao.
Now let Ω be as in Lemma 4.10. Then, since R(ξ — Ω) = Σ for ξ >

0 (see Lemma 2.2), (4.19) implies that flcA, Therefore, Ω has the closure
Ώ such that ΩcA. But since Ω = AQ (see Lemma 2.4), it follows that
i f l C i . Thus we have proved that

A\D(An+2)ciAQc:A .

Since D(An+2) is a core of A, this shows that Ao = A. q.e.d.

LEMMA 4.12. Let A be a closed linear operator in X satisfying con-
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ditions (Γ)-(ΠΓ) of Corollary 1.3. Then A satisfies conditions (I)-(IV)
with n = 0.

PROOF. It suffices to show that D(A2) is a core of A. Namely, it
suffices to show that for each ueD(A) there exists a sequence {up} in
D(A2) such that up—+u and Aup-+Au. To see this, let ueD(A) and
b > ω. Set v = (6 — A)w. Since JD(A) is dense in X, there exists a
sequence {̂ } in D(A) such that Vp —• v. Setting up = (6 — -A)"1^, {%p}
has the required property. q.e.d.

The "if" part of Corollary 1.3 follows from Lemma 4.12 and Theorem
1.2. Also, examining the proof of the generation theorem for semigroups
of class (1, A), we can obtain another proof of Corollary 1.3 (see Miyadera
[5]).
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