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1. Introduction. In [3], the author has studied minimal immersions
of a surface into a space form and found some fundamental formulas
for the Laplacian of scalar invariants of such immersions.

In [2], T. Itoh has constructed a l-parameter family of minimal im-
mersions of a Euclidean plane into S°.

The purpose of this paper is to give a complete description for minimal
immersions of the Euclidean plane and a flat torus in S®. Let R? be the
oriented Euclidean plane with the standard metric and S°® the unit sphere
in R°. By [?] we denote an equivalence class of a minimal immersion
¥:. R*— S° by isometries of S®. We will prove the following theorems.

THEOREM 1. There exists a 1-1 correspondence between the set of
[T)s and a 2-dimensional sphere.

The correspondence is given by (9) of §3. Let O be the origin of

R® and 6_9)0 the ray from O passing through a point x e R°®. Then it is
known that the cone

OV(R?) = the union of Or with «e ¥(R?)

is also minimal in the Euclidean space R°. By Hsiang [1], we shall call
T real algebraic if O¥(R?) is a real algebraic cone.

THEOREM 2. ¥ induces the minimal immersion of the flat torus
mto S° if and only if ¥ is real algebraic. Moreover, there are infinite
numbers of such immersions.

2. Preliminaries. Terminologies and notations used in this paper
are the same as in [3]. Let x: M — S°® be an isometric minimal immersion
of some Riemann surface with a Riemannian metric into S°. Let e,,
1< A B, --- <5, be orthonormal frame fields in a neighborhood of M
such that ¢, 1<k, 1, --- <2, are tangent to M. Let w,, w,z; be the
basic forms and the connection forms of S°. Let h,,, 3,8, -+ <5,
be the 2nd fundamental tensors for e¢,. By K, N, and f, we denote
the following non-negative scalar invariants on M:-
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Ko = 3 (bt + b,
w o= ()2 - (3 huta).
fo = K — 4N, .
We can define the 3rd fundamental tensor A,;,. We set
(2) K = hiyy + hiys -

Then K, is also a scalar invariant. In [3], we have proved the following
formulas (3), (4) and (5):

(3) Af o) = 2{fu K + | A},
(4) 4Ky = —2Ng+ KKo + Ko + 3 (s + Bass)

where K is the Gaussian curvature and Ag = 2>, (Fay + tPas)Pann,s +
thai:). In a neighborhood of a point with N, %= 0, we get

(5) _;‘AK(S) = 3I{I{(a) + z(hgm,l + hgm.z) .

Now we shall construct another scalar invariant of the isometric
minimal immersion x. Since M has the fixed orientation, the vector
e, + 1e, is defined up to the transformation e, + e, — e* + ief = e*(e, + ie,),
where 6 is real. Under such a change, we have hy;, + thy,— h¥, + th¥, =
62w(han + ihmz) and hmu =+ ihmz"_’ hrﬁu + ih;xz = eaio(hmu + 'I:hbuz)' Thus for
the fixed vector field e;, we can define the following scalar invariant:

(6) L = (hmu + ":huuz)z(hau - 'l:hmz)a .

We remark that the normal vector e, is defined up to the sign, the 3rd
osculating space being the 1-dimensional space. Therefore the function

L is independent upon ¢; and depends on the e, and the orientation
of M.

3. Construction of minimal immersions. Let XY be a portion of an
ellipsoid such that

(7) 2:{(t,u,v)eR3:0gtg%,ogumgv,uwvzzzt(l—t)}.

In this section we shall give various minimal immersions of R? into
S’ Let P and @ be the skew-symmetric matrices such that, for
¢, u, v)e 2,
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0 1 0 0 0 0
-1 0 0 vt 0 0
0o O 0 0 1—¢ 0
P=| 0 -Vt 0 0 0 21,
V't
0 0 —vVi—-t 0 0 RCA
v Vv1—t
0 0 0 % _—*¥ 9
V't V1—t
0 0 1 0 0
0 0 0 0 i—t o0
-1 0 0 -Vt 0 0
=| 0 0 V't 0 0 v
Q V't
0 —vi=t o0 0 0o ——%
V11—t
0 0 0o -2 _¥ 0

Vi V1=t ’

where we must read 4/t =0 and v/v't =0 if t =0. Then we have
PQ = QP by virtue of u® + v* = 2t(1 — t). We denote the eigenvalues of
Pand Q by =V — 1A, and =V —1p, i =1, 2, 3, respectively. We re-
mark that \; or g, may be zero. We can take an orthogonal matrix
T = (v, vy, =++, vs) such that

PO 0 Q0 0
(8) T-1PT=(0 on), T‘QT:(O on),

O 0 P3 0 0 Q3

0 0 o,
P, = ’ i =
' (“‘>"i 0 ) < (—,Uz 0)

and we can assume A, = 0. Then & = {T'(xP + yQ)T: (x, y) € R} is an
abelian Lie subalgebra of 30(6, B). We consider G = exp®. G is the
Lie subgroup of SO(6) and isomorphic to T¢ x R*?¢, 0 < d < 2, where T¢
is the d-dimensional torus. By an orbit of an action of G, we define
a smooth map ¥, ., of R®in R® as follows:

where
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5
(9) Vi@ 9) = (3 Tutus®, 1))
where v, = (T, +--, Ty) and (t,;(x, ¥)) € G. It is clear that
%09 (v + 1) sin (g + 1)
c i B i B
(toe, ) = [0 X, 0 ,L:(* @ p4y) sin (i ”y
—sin (Mo + #y) cos (M + 1Y)

0 0 X,

ProprosiTION 1. @, ..., is an isometric minimal tmmersion of R*in
S® such that N = t(L —t), Ks = u* + v* and L = t**(u + 1) for some
normal vector es. Moreover if t > 0, the tmage is not contained in any
lower dimensional linear subspace of R°.

Proor. We set ¥, =¥, .., and ¥, = O, Tu.tsi(x, ¥)), where v, =
(Taoy +++, Tys), 0= A5 T (R*) S is clear. It is easily verified that

(10) (d¥,, - -+, d¥y) = (Pdx + Qdy)' (¥, -+, Ts) -

Therefore we can get o¥,/ox = ¥, and o¥,/oy = ¥,. Hence ¥, is an iso-
metric immersion of R? into S°. Since we can see {¥,, 3 < a < 5} are
unit normal vectors on ¥ (R?, (10) is the Frenet-Boruvka formula for 7.
It follows that we have

V't 0 0 V1i—¢
11 hyis) = — | heij) =
aw e =("g ) =
The formula (11) shows that ¥, is a minimal immersion. If ¢ > 0, since

we have N, =t(1l —t) >0 on R’ ¥(R? is not contained in any lower
dimensional linear subspace of R°®. From (10), we get

) ’ (hbii) =0.

V't wy = uw, + vw, ,
12) VIi—tws = vw, — uw, ,
Wi, = W3 = 0.

By (12) we get K = u® + v* and L = t**(u + 4v)® for e¢;, This completes
a proof of Proposition 1.

ProposIiTION 2. (i) If 0<t<1/2 and wv=0, then we have
[T un] = [l of and only if (¢, u, v) = (, &, ¥);

(ii) If 0<t<1/2, then we have [¥ 4] = [V upnl, Where u, =
V2td—1).

(iii) If t =0, then we have the Clifford torus and if t = 1/2 then
we have [V ypunl = [¥wp vimol-

Proor. Case (i): We suppose [¥un]l = [Teiw]. Since we have
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fo = fu, where fi, denotes the quantity of ¥ ;;3, corresponding to the
fo of Ty uw, we have t(1 —t) =T(L — %) and 0 < ¢, T < 1/2, hence we
get t =1%. If 0 <t<1/2 e, and e, in the 2nd osculating space satisfying
(11) are determined up to the sign. In fact let ¢, and &, be the frame
fields such that (11) and (12) are satisfied. Let &, + 1€, = e *(e, + 1e,).
Then we have & + 18, = e (e, + ie,) and h%, — k%, = cos 40(k%, — k%),
where %,; and h,; are the components of the 2nd fundamental tensors
for &,. Since we have k%, — h%, = h%, — k%, = 2t — 1 < 0 in this case,
we get 0 = (k/2)r and k is an integer. It follows that we have L = + L
and so (u + w)* = (@ + 7). Making use of u* + v* = @* + ¥* = 2¢{(1 — ¢),
uv # 0 and u, %, v, = 0, we have w = % and v = 7.

Case (ii): Let e, be the frame field of ¥, ., satisfying (11) and (12).
We set fi=¢, fo= —e, fs = —e,;, fi = —e, and f; = ¢, With respect to
these new frame fields, we have ¥ , .

Case (iii): If ¢t = 0, then ¥, is the Clifford torus. When ¢ = 1/2,
we have shown [T 40l = [T we viol by the Theorem 3 of [3]. Thus we
have proved the Propositoin 2.

4. Parametrization of minimal immersions. We shall prove the
following proposition.

PROPOSITION 3. Let x: R*— S° be an isometric minimal immersion.
Then there exists a (t, w, v) € X such that x € [T ., .]-

ProOF. Since K = 0, by the Gauss equation, we have K, =1. It
follows that, by (1) and (3), we get 4(—N) = 0, hence —N,, is sub-
harmonic on R? and non-positive. We claim — N, = constant on R®. This
is proved as follows: There exists a point p,€ R* such that —Ny(p,) =
— Ny (p) for all pe R* by virtue of the maximum principle of the sub-
harmonic functions and the boundedness of —N. Since 4 is an elliptic
operator, by the well-known theorem, — N, must be a constant function
on R:. If N, =0, x(R? is contained in a 3-dimensional space of constant
curvature 1 in S° and therefore x¢€[¥,,]. In the case of N, >0,
vectors 3, h.iu6, and >, h..e, are linearly independent on R?. Let

(13) e;(- — Za hallea R 62(- — Ea h’alzea - (Za h’alzem e;)e;
V'Sl | X Parsa — (i Mrarstay €3)e5° ||

and e} is the unit normal vector field which span the 3rd osculating space.
Then we have

(14) (hi;) = (

0 hf
h¥. 0

where we may assume A%, = 0. We take e} such that

)’ h;:i:o’
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311 0

(15 (20 = (o)

where if necessary taking —eY, we may assume hy;, = 0. As (14) is valid
for any orthonormal system {e}, it follows that we have obtained frame
fields {e%} such that (14) and (15) are valid at the same time. By the
Gauss equation and the constancy of N, A%, and h}, are also positive
constant and A%’ + hi2 = 1, hence we can set k%, =1/t and hX, = V1—t.
If t>1/2, we set e, = —ef, e,=¢e¥, e, =1V 2)(e* —ef) and e, =
1/ 2)(e* + ef). For the new frame fields, we have hy =1V1—t. By
virtue of (14) and (15), we have

'l/_{wa'; = hg,wi + hg,w; ,
(16) Vl_th = hg,w — hiaws ,
wh=wg =0.
From the last formula of (16), we have Dhk; = 0. It follows from (4)
that we have

(17) h:ﬁh + hauz = 2t(1 - t) .

By (5), we get h¥;.. = 0. From the definition of Dh¥;, and w} = 0, k%,
are all constant. If necessary, taking —e¥, we may assume k%, = 0. By
the same way as the proof of the case (ii) in the Proposition 2, we may
also assume b, = 0. Let w = A, and v = h,. Thus we havex =7 ...,
on some open set of R®. Since 2 and ¥, ., are real analytic, we have
2=",.,.., on the whole plane R’ q.e.d.

The proof of Theorem 1 now follows immediately from Propositions
1,2 and 3. Thus (9) with (7) gives a parametrization of minimal immer-
sions of R* into S°. At the same time we have also

THEOREM 3. Any isometric minimal immersion of R® into S°®is an
orbit of the action of an abelian Lie subgroup in SO(6).

5. Proof of Theorem 2. Let ¥ =7,,,. By definition ¥ can be
represented by the following equations, for (Y, Y, Y;) € C?,
|Y;P=1, =123,

Y1(13F2‘13/‘2) Y;lwa-h#a) Ya(lzm—lzm) =1 y

(18)

where ¥;, 0 < j <5, are the j-th component of ¥, in R® and

_ T+ 'me Y, = ¥y + Zwoa Y, = Uy + ¥ .
Ty + "Tm T + @Tos To + 2T

1
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In fact, since we have Y; = expV' —1(M2x + 2%), (18) is directly verified.
It follows from (18) that ¥ is real algebraic if and only if there exist
integers m, such that
MM ,]M o | Ne fe
N o] [N Ma]| | Ns M
If ¥ induces a minimal immersion of the flat torus into S° there is
a set of points (a, ¢), (b, d) such that

(19)

l = M,: My My .

A S T
nb + pnd=aq,, 1=1,23,

where ad — bc = 0 and {p,, q;} are integers. By the direct calculation,
we get (19) with m, = (p.q. — ¢:0,), M, = (9.¢: — @:ps) and m; = (P,qs —
4:Ds)-

We shall study the converse problem. We may assume Az, — N2t %= 0
for some ¢ < j. For the simplicity, weseti=1,7=2and Mo + py =0
and Nz + gy = 7. Then if we have (19), we get A + Ly = —(ms/m)o +
(my/m)t and hence ¥ induces a minimal immersion of the flat torus into
S%. The proof of the former part of the Theorem 2 completes and the
latter half follows from the following section. q.e.d.

(20)

THE ANOTHER PROOF OF THEOREM 2. G is the closed Lie subgroup
of SO(6) if and only if the condition (19) is satisfied. Therefore by the
Hsiang’s Theorem [1] and the Theorem 3, Theorem 2 follows.

6. The case of u = v or v = 0. At the last section, we shall give
explicitly constructed l-parameter families of minimal immersions.

(i) In the case of w = v, we can get the following 1-parameter
family ¥, = ¥, vin=or, «m)'

@) T,y = (expV—1VI + e + VI — ky),

1/2(2 t)
expV —1(V1 —Ex + V1 F Fy), Vad — 1)

x expV —1(x — y)), where k=112 —1).
(ii) If » =0, we set ¥, (x, y) = ¥, vsii=rr- Then we get

22) Tz, y) = 1/2(1 5 (exp V' =1(V1 =tz + V1 + ty),

expV —1(V1 —tex — V1 + ty), V2texpV —11V 21) .

We remark that 7%, and ¥, were constructed by T. Itoh [2]. If we set
VI+EBz+V1I—-—FEFy=0 and V1 —Fkax+ V1+ ky=r1, then (21) is
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simply represented by

1 i0 it ——_—io—_z—:-
__2(—1/_2T——t)(e , e, V21 — t)e'VEr) .

Thus ¥}, is the algebraic minimal immersion of S' x S' into S° if and

only if V2t is a rational number, and so there exist infinitely many alge-
braic minimal tori.
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