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1. Introduction. In [3], the author has studied minimal immersions
of a surface into a space form and found some fundamental formulas
for the Laplacian of scalar invariants of such immersions.

In [2], T. Itoh has constructed a 1-parameter family of minimal im-
mersions of a Euclidean plane into S\

The purpose of this paper is to give a complete description for minimal
immersions of the Euclidean plane and a flat torus in Sδ. Let R2 be the
oriented Euclidean plane with the standard metric and S5 the unit sphere
in R\ By [Ψ] we denote an equivalence class of a minimal immersion
Ψ: R2 —• S5 by isometries of S\ We will prove the following theorems.

THEOREM 1. There exists a 1-1 correspondence between the set of
[Ψ]'s and a 2-dimensional sphere.

The correspondence is given by (9) of § 3. Let O be the origin of
R6 and Ox the ray from 0 passing through a point x e R*. Then it is
known that the cone

OΨ{R2) = the union of Ox with x e Ψ(R2)

is also minimal in the Euclidean space R6. By Hsiang [1], we shall call
Ψ real algebraic if OΨ{R2) is a real algebraic cone.

THEOREM 2. Ψ induces the minimal immersion of the fiat torus
into S6 if and only if Ψ is real algebraic. Moreover, there are infinite
numbers of such immersions.

2. Preliminaries. Terminologies and notations used in this paper
are the same as in [3], Let x: M—> Sδ be an isometric minimal immersion
of some Riemann surface with a Riemannian metric into S5. Let eA,
1 <̂  A, B, 5̂  5, be orthonormal frame fields in a neighborhood of M
such that ekfl^k,l, ^ 2 , are tangent to M. Let wA, wAB be the
basic forms and the connection forms of S5. Let hakU 3 ^ a, β, <; 5,
be the 2nd fundamental tensors for ea. By Kί2), N{2) and /(2), we denote
the following non-negative scalar invariants on ikf:
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«) - ( Σ

We can define the 3rd fundamental tensor hHίk. We set

( 2 ) K{3) = Λ.51U + Λjm .

Then ϋΓ(3) is also a scalar invariant. In [3], we have proved the following
formulas (3), (4) and (5):

( 3 ) Jfm

(4) ±-ΔKw = -2Nm + KKW + Km + Σ (Λin i + Aiu.0 »
4 α=3

where K is the Gaussian curvature and Aw = 2 χ α (Aαll + ihal2)(hallji +
ihan>2). In a neighborhood of a point with iSΓ(2) =̂ 0, we get

( 5 ) i-zfiΓ(8) = 3KK{d) + 2^1 .1 + h!nu2) .

Now we shall construct another scalar invariant of the isometric
minimal immersion x. Since M has the fixed orientation, the vector
0! + ie2 is defined up to the transformation ex + ie2 —> β? + ie? = eί(?(βi + ie2)>
where θ is real. Under such a change, we have haιι + ihai2--*h*n + iAJ12 =
e2ί<?(^αii + ^«i2) and hmι + ihδn2->hϊm + iΛfua = e*iθ(hmι + ίhδn2). Thus for
the fixed vector field β3, we can define the following scalar invariant:

( 6 ) L = (hmι + ihδmγ(hm - ihm)z .

We remark that the normal vector eδ is defined up to the sign, the 3rd
osculating space being the 1-dimensional space. Therefore the function
L is independent upon eδ and depends on the ez and the orientation
of M.

3. Construction of minimal immersions. Let I1 be a portion of an
ellipsoid such that

(7) Σ = j(ί, u, v)eR3:0^t^—,0^u,0^ v, u2 + v2 = 2ί(l -
2

In this section we shall give various minimal immersions of R2 into
S5. Let P and Q be the skew-symmetric matrices such that, for
(ίf u9 v) 6 Σ9
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where we must read u/V t = 0 and v/V t = 0 if t = 0. Then we have
P(J .= QP by virtue of u2 + v2 = 2t(l — t). We denote the eigenvalues of
P and Q by ± τ / — lλ< and ± χ / — 1/<o ί = 1, 2, 3, respectively. We re-
mark that λ4 or μt may be zero. We can take an orthogonal matrix
T = *(v0, v,, '•', Vi) such that

( 8 )

where

0 λ(

λ, 0

0 ft'

and we can assume λ( ^ 0. Then © = {T'ixP + 2/Q)T: (*, y) 6 R2} is an
abelian Lie subalgebra of §o(6, i2). We consider G = exp ®. G is the
Lie subgroup of SO(6) and isomorphic to Td x i?2"*, 0 ^ d ^ 2, where T*
is the d-dimensional torus. By an orbit of an action of G, we define
a smooth map Ψu,u,v) of R2 in J?6 as follows:
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( 9 ) *•«....>(*, v) = ( Σ τ..ί.y(*, y)) ,
\8=0 /

where v0 = (Γoo, •••, Γ05) and (£«,(#, y))eG. I t is clear t h a t

U U
cos

PROPOSITION 1. Ψu,u,υ) is an isometric minimal immersion of R2 in
Sδ such that N{2) = t(l — t), K{z) = u2 + v2 and L = fl2(u + iv)2 for some
normal vector e3. Moreover if t > 0, the image is not contained in any
lower dimensional linear subspace of R6.

PROOF. We set Ψo = r ( t ι β | f ) and ΨA - (Σ5

s=o TAst8j(x, y)), where vA =
(TA0, , TM\ 0 ^ A ^ 5.?ro(i22) c S 5 is clear. It is easily verified that

(10) Wo, , d¥δ) = (Pdx + QdyY(W0, . . . J J .

Therefore we can get dΨJdx = Ψι and dΨQ/dy = Ψ2. Hence Ψo is an iso-
metric immersion of R2 into S5. Since we can see {Ψa, 3 ^ α ^ 5} are
unit normal vectors on ΨQ(R2), (10) is the Frenet-Borύvka formula for Ψo.
It follows that we have

IVT 0\ / 0 Vΐ^tX

(ID (W = ( 0 _ v τ ) , (hM) = [vτ-t 0 ) , (W = o.
The formula (11) shows that Wo is a minimal immersion. If t > 0, since
we have i\Γ(2) = t(l — t) > 0 on i22, ?PΌ(̂ 2) is not contained in any lower
dimensional linear subspace of Rβ. From (10), we get

V t W35 = W i + VW2 ,

(12) Vl — tw^ = vwγ — uw2 ,

w12 = wu = 0 .

By (12) we get Kw = u2 + v2 and L = f/2(^ + ^ ) 2 for e8. This completes
a proof of Proposition 1.

PROPOSITION 2. ( i ) / / 0 < t < 1/2 αwώ wv Φ 0,

Ψ^uΛ = W<t,z:Λ if and only if (ί, u, v) = (?, β, if);
(ii) // 0 < ί < 1/2, ίfee?2, ^ e have [Wittotuo)\ = [̂ "w,

/
(iii) If t = 0, ί&ew tί β Λαve ίAe Clifford torus and ift = 1/2 then

we have [Ψιιi2fU,v)] = [Wul2tπβt0)].

PROOF. Case (i): We suppose [Ψ{tfU,v)] = [Ψ^Z^V Since we have
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/(2) = f(2)> where / ( 2 ) denotes the quantity of Ψ{r,uΓv) corresponding to the
/(1, of ¥{ttUtV), we have ί(l - t) = t( l - t) and 0 ^ ί, ? ^ 1/2, hence we
get t = t. If 0 < t < 1/2, e3 and e4 in the 2nd osculating space satisfying
(11) are determined up to the sign. In fact let eA and eA be the frame
fields such that (11) and (12) are satisfied. Let et + ie2 = e~iθ(e1 + ie2).
Then we have ez + ie4 = e~2iθ{ez + ie4) and £fu — ΛJ12 = cos 40(λiu — fc4

2

12),
where Λ3ii and fc4ii are the components of the 2nd fundamental tensors
for eA. Since we have ΛJU — &412 = h\n — fe412 = 2ί — 1 < 0 in this case,
we get θ = (k/2)π and & is an integer. It follows that we have L = ± L
and so (u + ivy = (S + i#) 4. Making use of u2 + v2 = u2 + v2 = 2t(l — t),
uv Φ 0 and w, u, v, v ^ 0, we have u = S and v = υ.

Case (ii): Let e^ be the frame field of Ψ(t,o,uo) satisfying (11) and (12).
We set /L = e2f f2 = —elf / 3 = — e8, /4 = — e4 and / 5 = e5. With respect to
these new frame fields, we have Ψu,uQ,o)-

Case (iii): If t = 0, then y ( M f 0, is the Clifford torus. When t = 1/2,
we have shown PF(1/2|llil,,] = [̂ (1/2,̂ 172,0)] by the Theorem 3 of [3]. Thus we
have proved the Propositoin 2.

4. Parametrization of minimal immersions. We shall prove the
following proposition.

PROPOSITION 3. Let x:R2—>Sδ be an isometric minimal immersion.
Then there exists a (t, u,v)eΣ such that xe [Wu,u,v)\

PROOF. Since K = 0, by the Gauss equation, we have K(2) = 1. It
follows that, by (1) and (3), we get J(—N{2)) ^ 0, hence —Nw is sub-
harmonic on R2 and non-positive. We claim —Nm = constant on R2. This
is proved as follows: There exists a point p0eR2 such that ~N{2)(p0) Ξ>
— N{2)(p) for all peR2 by virtue of the maximum principle of the sub-
harmonic functions and the boundedness of —N{2). Since Δ is an elliptic
operator, by the well-known theorem, — JV(2) must be a constant function
on R2. If N{2) = 0, x{R2) is contained in a 3-dimensional space of constant
curvature 1 in Sδ and therefore xe[Ψ{0>0>0)]. In the case of N{2) > 0,
vectors Σ « ^ i A and ^ahal2ea are linearly independent on R2. Let

p* — y ^ hallea * _ 2^ιa hal2ea \2ja hal2eaf β3 )β3

3 " α / Σ ^ ^ ' 4 IIΣ. *.rf. - (Σ« ΛiA, βfKII

and e? is the unit normal vector field which span the 3rd osculating space.
Then we have

where we may assume h*12 ̂  0. We take e* such that
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n 0\

where if necessary taking — e*, we may assume h*n ^ 0. As (14) is valid
for any orthonormal system {ej, it follows that we have obtained frame
fields {el} such that (14) and (15) are valid at the same time. By the
Gauss equation and the constancy of N{2), htn and ΛJ^ are also positive
constant and ΛJϊί + VJ = 1, hence we can set h*n = V t and hf12 = i/l — t.
If t > 1/2, we set eB = - e * , e, = e3*, βx = (l/"l/~2~) (e? - et) and e2 =
(l/λ/~2)(e? + e*). For the new frame fields, we have hm = Vl—t. By
virtue of (14) and (15), we have

(16)

From the last formula of (16), we have Dh*^ = 0. It follows from (4)
that we have

(17) Hal + Wά = 2ί(l - ί) .

By (5), we get h*ijktι — 0. From the definition of Dh*ijk and w*2 = 0, h*ijk

are all constant. If necessary, taking — e*9 we may assume h*in ^ 0. By
the same way as the proof of the case (ii) in the Proposition 2, we may
also assume h*112 ̂  0. Let u = htm and v = AJlE. Thus we have x = Ψ{t,u,v)
on some open set of R2. Since x and Ψu,u,v) are real analytic, we have
x = ΨUtUtV) on the whole plane R2. q.e.d.

The proof of Theorem 1 now follows immediately from Propositions
1, 2 and 3. Thus (9) with (7) gives a parametrization of minimal immer-
sions of R2 into Sδ. At the same time we have also

THEOREM 3. Any isometric minimal immersion of R2 into Sδ is an
orbit of the action of an abelian Lie subgroup in SO(6).

5. Proof of Theorem 2. Let Ψ = Ψ{t,u>υ). By definition Ψ can be
represented by the following equations, for (Ylf Y2, Y3)eC*,

ίl8) ίiyil 1 = l i = l 2 3

where Ψoί, 0 ^ j ^ 5, are the i-th component of ?P"0 in R° and

F _ ff oo + JΨ»ι γ _ yM + *yM y _ 0̂4 + t f
1 Γ + ΐ Γ ' 2 T ΐ Γ ' 3 T Γ
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In fact, since we have Yt = exp V^Λ^x + ft#), (18) is directly verified.
It follows from (18) that Ψ is real algebraic if and only if there exist
integers mt such that

(19)
λi ft

λ2 ft

λl ft

λ3 ft
•

λ2 ft

λ3 ft
= m^ m2: m 3 .

(20)

If Ψ induces a minimal immersion of the flat torus into S\ there is
a set of points (α, c), (6, d) such that

Xta + ftc = Pi ,

where ad — be Φ 0 and {pif #J are integers. By the direct calculation,
we get (19) with m1 — (pγq2 — qιP2), m2 = {pxq% — q^) and m 3 = (p2q3 —

We shall study the converse problem. We may assume λyft — λ,ft ^ 0
for some i < ^. For the simplicity, we set i = 1, j = 2 and λ^ + fti/ = ^
and λ2# + fti/ = τ. Then if we have (19), we get λ3# + μzy = —(mzlm^θ +
(mjm^τ and hence Ψ induces a minimal immersion of the flat torus into
Sδ. The proof of the former part of the Theorem 2 completes and the
latter half follows from the following section. q.e.d.

THE ANOTHER PROOF OF THEOREM 2. G is the closed Lie subgroup
of SO(β) if and only if the condition (19) is satisfied. Therefore by the
Hsiang's Theorem [1] and the Theorem 3, Theorem 2 follows.

6. The case of u = v or v = 0. At the last section, we shall give
explicitly constructed 1-parameter families of minimal immersions.

( i ) In the case of u = vf we can get the following 1-parameter
family Ψtt) = Ψ{t,stϊi=tT,vtϊi=tT)'-

1
(21) x, y) =

V2(2 - ί)
(exp i/-1(1/1 + k2x + Vl - k2y)f

Έx + Vl + k2y), τ/2(l - t)

x exp V^lix - y)) , where k2 = Vt(2 - t) .
(ii) If v = 0, we set Then we get

(22) W°[t)(x, y) =
v &\L -r o)

- tx - VI + ty), V~U exp V:=ΪVYx) .

We remark that Wft) and Ψ\t) were constructed by T. Itoh [2]. If we set
Vl + k2x + Vl - k2y = θ and Vl - k2x + Vl + k2y = τ, then (21) is
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simply represented by

eiτ,(
1/2(2 - ty

Thus Ψft) is the algebraic minimal immersion of Sι x S1 into Sδ if and
only if τ/2ί is a rational number, and so there exist infinitely many alge-
braic minimal tori.
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