ON THE EXISTENCE OF A CONFORMAL MARTINGALE

Norihiko Kazamaki

(Received October 13, 1975)

1. In a previous paper [2] we showed the existence of a conformal martingale by assuming that $\left(F_{t}\right)$ has no time of discontinuity. The purpose of this note is to prove it without using this assumption, Lemma 1 and Lemma 2 in [2]. Roughly speaking we prove that for any L^{2}-bounded martingale X there exists a "conjugate" Y such that $X+i Y$ is conformal.
2. The reader is assumed to be familiar with the basic notions of the theory of stochastic integrals relative to martingales as given in [3]. By a system (Ω, F, F_{t}, P) is meant a complete probability space (Ω, F, P) with an increasing right continuous family $\left(F_{t}\right)_{t \geq 0}$ of sub σ-fields of F. We assume as usual that F_{0} contains all P-null sets. Denote by $M\left(F_{t}\right)$ the class of all right continuous L^{2}-bounded martingales X over $\left(F_{t}\right)$ such that $X_{0}=0$. For each $X \in M\left(F_{t}\right)$ we define:

$$
\|X\|_{B M O}^{2}=\underset{t}{\sup } \underset{\omega}{\operatorname{ess} \cdot \sup } E\left[\langle X, X\rangle_{\infty}-\langle X, X\rangle_{t} \mid F_{t}\right] .
$$

Definition 1. Let X and Y belong to $M\left(F_{t}\right)$. Then a complex-valued martingale $X+i Y$ is called conformal if $\langle X, Y\rangle=0$ and $\langle X, X\rangle=\langle Y, Y\rangle$.

Originally the concept of a conformal martingale was introduced by R. K. Getoor and M. J. Sharpe in [1].

Definition 2. A system $\left(\widetilde{\Omega}, \widetilde{F}, \widetilde{F}_{t}, \widetilde{P}\right)$ is said to be a lifting of (Ω, F, F_{t}, P) under the surjection $\pi: \widetilde{\Omega} \rightarrow \Omega$ if
(1) $\pi^{-1}\left(F_{t}\right) \subset \widetilde{F}_{t}$ for each t and $\pi^{-1}(F) \subset \widetilde{F}$
(2) $P=\widetilde{P} \circ \pi^{-1}$ on F
(3) If X is a uniformly integrable martingale over $\left(F_{t}\right)$, then $X \circ \pi$ is a martingale over $\left(\widetilde{F}_{t}\right)$.

It follows from (1) that if T is an F_{t}-stopping time, then $T \circ \pi$ is an \widetilde{F}_{t}-stopping time. Then it is easy to see that if $H=\left(H_{t}, F_{t}\right)$ is previsible, $H \circ \pi=\left(H_{t} \circ \pi\right)$ is also a previsible process over ($\left.\widetilde{F}_{t}\right)$. Therefore we get $\langle X \circ \pi, X \circ \pi\rangle=\langle X, X\rangle \circ \pi$ for every $X \in M\left(F_{t}\right)$.
3. In what follows we denote by $H \cdot X$ the stochastic integral $\left(\int_{0}^{t} H_{s} d X_{s}\right)$. We do not assume that $\left(F_{t}\right)$ has no time of discontinuity.

Theorem. Suppose that (Ω, F, P) is separable. Then there exists a lifting ($\left.\widetilde{\Omega}, \widetilde{F}, \widetilde{F}_{t}, \widetilde{P}\right)$ of $\left(\Omega, F, F_{t}, P\right)$ under $\pi: \widetilde{\Omega} \rightarrow \Omega$ which satisfies the following conditions:
1°. There exists a linear mapping $\alpha: M\left(F_{t}\right) \rightarrow M\left(\tilde{F}_{t}\right)$ such that
(1) for every $X \in M\left(F_{t}\right), X \circ \pi+i \alpha(X)$ is conformal
(2) for every $X \in M\left(F_{t}\right)$ and $C \in L^{2}(X), \alpha(C \cdot X)=(C \circ \pi) \cdot \alpha(X)$
2° There exists a linear mapping $\bar{\alpha}: M\left(\widetilde{F}_{t}\right) \rightarrow M\left(F_{t}\right)$ such that
(1) $\bar{\alpha} \circ \alpha$ is the identity on $M\left(F_{t}\right)$
(2) if $X \in M\left(F_{t}\right)$ and $\widetilde{X} \in M\left(\widetilde{F}_{t}\right)$, then $\widetilde{E}\left[\alpha(X)_{\infty} \widetilde{X}_{\infty}\right]=E\left[X_{\infty} \bar{\alpha}(\widetilde{X})_{\infty}\right]$
(3) for every $\widetilde{X} \in M\left(\tilde{F}_{t}\right),\|\bar{\alpha}(\widetilde{X})\|_{B M O} \leqq\|\widetilde{X}\|_{B M о}$.

Proof. We shall use essentially the method given in [1]. Let $X^{0} \in$ $M\left(F_{t}\right)$ be fundamental for $M\left(F_{t}\right)$; the existence of such an element X^{0} is guaranteed by the separability of (Ω, F, P). Put $A_{t}=\left\langle X^{0}, X^{0}\right\rangle_{t}$ and $\tau_{t}=\inf \left\{s>0 ; A_{s}>t\right\}$. Denote by $\left(G_{t}\right)$ the right continuous family $\left(F_{\tau_{t}}\right)$. Then each A_{t} is a G_{t}-stopping time. Let $\left(K_{t}\right)$ be the right continuous family $\left(G_{A_{t}}\right)$. We have in general $\tau_{A_{t}} \geqq t$ a.s.

We shall assume firstly that A is strictly increasing. One should be aware of $\tau_{A_{t}}=t$ a.s in this case. This implies that $F_{t}=K_{t}$. Now let $\left(\Omega^{\prime}, F^{\prime \prime}, F_{t}^{\prime}, P^{\prime}\right)$ be a separable system which carries a sequence $\left(B^{n}\right)_{n \geqq 1}$ of independent real Brownian motions with $B_{0}^{n}=0$ and $\left\langle B^{n}, B^{n}\right\rangle_{t}=t$ for all n. Denote by ($\widetilde{\Omega}, \widetilde{F}, \widetilde{G}_{t}, \widetilde{P}$) the product of the systems $\left(\Omega, F, G_{t}, P\right)$ and ($\Omega^{\prime}, F^{\prime}, F_{t}^{\prime}, P^{\prime}$) with π, π^{\prime} the projections of $\widetilde{\Omega}=\Omega \times \Omega^{\prime}$ onto Ω and Ω^{\prime} respectively. Then each $A_{t} \circ \pi$ is a \widetilde{G}_{t}-stopping time. Let $\widetilde{F}_{t}=\widetilde{G}_{A_{t} \circ \pi}$ and consider now the system ($\left.\widetilde{\Omega}, \widetilde{F}, \widetilde{F}_{t}, \widetilde{P}\right)$. Clearly $P=\widetilde{P}_{\circ} \pi^{-1}$ on F and $\pi^{-1}(F) \subset \widetilde{F}$. If $\Lambda \in F_{t}$, then

$$
\pi^{-1}(\Lambda) \cap\left\{A_{t} \circ \pi<s\right\}=\left[\Lambda \cap\left\{A_{t}<s\right\}\right] \times \Omega^{\prime}=\left[\Lambda \cap\left\{\tau_{A_{t}}<\tau_{s}\right\}\right] \times \Omega^{\prime}
$$

which belongs to \widetilde{G}_{s}. Therefore $\pi^{-1}(\Lambda) \in \widetilde{F}_{t}$. Next, if X is a uniformly integrable martingale over (F_{t}), then by Doob's optional sampling theorem $X_{\tau_{t}}$ is a G_{t}-martingale so $X_{\tau_{t}} \circ \pi$ is a \widetilde{G}_{t}-martingale. Thus $X_{t} \circ \pi=X_{\tau_{A_{t}}} \circ \pi$ is an \widetilde{F}_{t}-martingale. That is to say, $\left(\widetilde{\Omega}, \widetilde{F}, \widetilde{F}_{t}, \widetilde{P}\right)$ is a lifting of $(\Omega, F$, F_{t}, P) under π.

Now we are going to construct $\alpha(X)$. Since $B^{n} \circ \pi^{\prime}$ is a \widetilde{G}_{t}-martingale, $\widetilde{N}_{t}^{n}\left(\omega, \omega^{\prime}\right)=B_{A_{t}(\omega)}^{n}\left(\omega^{\prime}\right)$ is an \widetilde{F}_{t}-martingale. Obviously $\left\langle\widetilde{N}^{j}, \widetilde{N}^{k}\right\rangle_{t}=\delta_{j k} A_{t} \circ \pi$ and $\left\langle X \circ \pi, \tilde{N}^{n}\right\rangle=0$ for all $X \in M\left(F_{t}\right)$. Let $\left(X^{n}\right)_{n \geq 1}$ be an integral basis for $M\left(F_{t}\right)$ whose existence is guaranteed by the separability of the space (Ω, F, P). Denote by D^{n} a previsible version of $d\left\langle X^{n}, X^{n}\right\rangle / d A$ and put:

$$
C^{n}=\left(D^{n}\right)^{1 / 2}, \quad \widetilde{M}^{n}=\left(C^{n} \circ \pi\right) \cdot \widetilde{N}^{n}
$$

The process \widetilde{M}^{n} belongs to $M\left(\widetilde{F}_{t}\right)$. If \hat{D}^{n} is another previsible version
of $d\left\langle X^{n}, X^{n}\right\rangle / d A$, it follows from the uniqueness of the density that

$$
E\left[\int_{0}^{\infty} I_{\left[D^{n} \neq \hat{D}^{n}\right]}(t, \cdot) d A_{t}\right]=0
$$

Therefore \widetilde{M}^{n} does not depend on the choice of D^{n}. It is clear that $\left\langle\widetilde{M}^{n}, X \circ \pi\right\rangle=0$ for all n and that $\left\langle\widetilde{M}^{j}, \widetilde{M}^{k}\right\rangle_{t}=\delta_{j k}\left\langle X^{j}, X^{k}\right\rangle_{t} \circ \pi$. On the other hand, for each $X \in M\left(F_{t}\right)$

$$
X=\sum_{n} H^{n} \cdot X^{n}
$$

convergent in $M\left(F_{t}\right)$ with $H^{n}=d\left\langle X, X^{n}\right\rangle / d\left\langle X^{n}, X^{n}\right\rangle$. The sum

$$
\sum_{n}\left(H^{n} \circ \pi\right) \cdot \widetilde{M}^{n}
$$

converges in $M\left(\widetilde{F_{t}}\right)$ because $\left\langle\left(H^{n} \circ \pi\right) \cdot \widetilde{M}^{n},\left(H^{n} \circ \pi\right) \cdot \widetilde{M}^{n}\right\rangle=\left\langle H^{n} \cdot X^{n}, H^{n} \cdot X^{n}\right\rangle \circ \pi$ for each $n ;\left(H^{n} \circ \pi\right) \cdot \widetilde{M}^{n}$ does not depend on the choice of H^{n}. Then the mapping $\alpha: M\left(F_{t}\right) \rightarrow M\left(\widetilde{F}_{t}\right)$ given by

$$
\alpha(X)=\sum_{n}\left(H^{n} \circ \pi\right) \cdot \widetilde{M}^{n}
$$

is well defined and linear. From the above relation we get

$$
\langle\alpha(X), \alpha(X)\rangle=\langle X \circ \pi, X \circ \pi\rangle, \quad\langle X \circ \pi, \quad \alpha(X)\rangle=0
$$

Consequently $X \circ \pi+i \alpha(X)$ is an \widetilde{F}_{t}-conformal martingale. It is immediate that $\alpha(C \cdot X)=(C \circ \pi) \cdot \alpha(X)$ if $X \in M\left(F_{t}\right)$ and $C \in L^{2}(X)$.

Next, we shall explain briefly the definition of the adjoint mapping $\bar{\alpha}$. This part is an adaptation of the proof due to Getoor and Sharpe (see [1]). Denote by \widetilde{N} the stable subspace of $M\left(\widetilde{F}_{t}\right)$ generated by the $X^{n} \circ \pi$ and \widetilde{M}^{n}, by L_{1} the projection of $M\left(\widetilde{F}_{t}\right)$ onto \tilde{N} and let $L_{2}: \widetilde{N} \rightarrow \widetilde{N}$ be defined as follows: if $\widetilde{X} \in \tilde{N}$ has an expansion of the form $\sum_{n} C^{n} \cdot\left(X^{n} \circ \pi\right)+$ $\sum_{n} D^{n} \cdot \widetilde{M}^{n}$, then $L_{2}(\widetilde{X})=\sum_{n} D^{n} \cdot\left(X^{n} \circ \pi\right)+\sum_{n} C^{n} \cdot \tilde{M}^{n} ; L_{2}(\widetilde{X})$ does not depend on the previsible versions of C^{n} and D^{n}. Then it is clear that for every $X \in M\left(F_{t}\right), L_{2}(\alpha(X))=X \circ \pi$. Define $L_{3}: \tilde{N} \rightarrow M\left(F_{t}\right)$ by letting $L_{3} \widetilde{X}$ for $\tilde{X} \in$ \tilde{N} be the unique right continuous martingale over $\left(F_{t}\right)$ such that $\left(L_{3} \widetilde{X}\right)_{t} \circ \pi=$ $\widetilde{E}\left[\widetilde{X}_{\infty} \mid \pi^{-1}\left(F_{t}\right)\right]$. Then the mapping $\bar{\alpha}=L_{3} L_{2} L_{1}: M\left(\widetilde{F}_{t}\right) \rightarrow M\left(F_{t}\right)$ satisfies all the properties necessarily for the theorem.

Finally, we are going to consider the general case. Construct a system $\left(\Omega^{*}, F^{*}, F_{t}^{*}, P^{*}\right)$ by taking the product of the system $\left(\Omega, F, F_{t}, P\right)$ with another separable system $\left(\hat{\Omega}, \hat{F}, \hat{F}_{t}, \hat{P}\right)$ which carries a real Brownian motion (\hat{B}_{t}) with $\hat{B}_{0}=0$ and $\langle\hat{B}, \hat{B}\rangle_{t}=t$. As $\left(\Omega^{*}, F^{*}, P^{*}\right)$ is separable, $M\left(F_{t}^{*}\right)$ has a fundamental element Y^{0}. Let $\gamma, \hat{\gamma}$ the projections of Ω^{*} onto Ω and $\hat{\Omega}$ respectively. Then $\hat{B} \circ \hat{\gamma}$ is a continuous F_{t}^{*}-martingale. Since $\langle\hat{B}, \hat{B}\rangle$ is $\left\langle Y^{0}, Y^{0}\right\rangle$-absolutely continuous, $\left\langle Y^{0}, Y^{0}\right\rangle$ is strictly increasing.

Therefore, on some lifting ($\left.\widetilde{\Omega}, \widetilde{F}, \widetilde{F_{t}}, \widetilde{P}\right)$ of $\left(\Omega^{*}, F^{*}, F_{t}^{*}, P^{*}\right)$ under π^{*}, there exist linear mappings $\alpha^{*}: M\left(F_{t}^{*}\right) \rightarrow M\left(\widetilde{F}_{t}\right)$ and $\bar{\alpha}^{*}: M\left(\widetilde{F}_{t}\right) \rightarrow M\left(F_{t}^{*}\right)$ which satisfy all the properties of the theorem; namely, for each $X^{*} \in M\left(F_{t}^{*}\right)$, $X^{*} \circ \pi^{*}+i \alpha^{*}\left(X^{*}\right)$ is a conformal martingale over $\left(\widetilde{F}_{t}\right)$. Then $\left(\widetilde{\Omega}, \widetilde{F}, \widetilde{F}_{t}, \widetilde{P}\right)$ is also a lifting of $\left(\Omega, F, F_{t}, P\right)$ under $\pi=\gamma \circ \pi^{*}$. As $X \circ \gamma \in M\left(F_{t}^{*}\right)$ for every $X \in M\left(F_{t}\right)$,

$$
X \circ \pi+i \alpha^{*}(X \circ \gamma)=(X \circ \gamma) \circ \pi^{*}+i \alpha^{*}(X \circ \gamma)
$$

is a conformal martingale over $\left(\widetilde{F}_{t}\right)$. The mapping $\alpha: M\left(F_{t}\right) \rightarrow M\left(\widetilde{F}_{t}\right)$ defined by $\alpha(X)=\alpha^{*}(X \circ \gamma)$ is linear. If $C \in L^{2}(X)$, then $C \circ \gamma \in L^{2}(X \circ \gamma)$ and so we get

$$
\begin{aligned}
\alpha(C \circ X) & =\alpha^{*}((C \circ \gamma) \cdot(X \circ \gamma)) \\
& =\left(C \circ \gamma \circ \pi^{*}\right) \cdot \alpha^{*}(X \circ \gamma) \\
& =(C \circ \pi) \cdot \alpha(X) .
\end{aligned}
$$

We are now going to define the adjoint mapping $\bar{\alpha}$. Define L^{*} : $M\left(F_{t}^{*}\right) \rightarrow M\left(F_{t}\right)$ by letting $L^{*} X^{*}$ for $X^{*} \in M\left(F_{t}^{*}\right)$ be the unique right continuous martingale over (F_{t}) such that

$$
\left(L^{*} X^{*}\right)_{t} \circ \gamma=E^{*}\left[X_{\infty}^{*} \mid \gamma^{-1}\left(F_{t}\right)\right]
$$

It is easy to see that $\left\{\gamma^{-1}\left(F_{t}\right)\right\}$ is a right continuous family.
Now we put

$$
\bar{\alpha}(\widetilde{X})=L^{*}\left(\bar{\alpha}^{*}(\widetilde{X})\right), \quad \tilde{X} \in M\left(\widetilde{F}_{t}\right)
$$

Obviously $\bar{\alpha}$ is a linear mapping of $M\left(\widetilde{F}_{t}\right)$ into $M\left(F_{t}\right)$. If $X \in M\left(F_{t}\right)$, then $X \circ \gamma \in M\left(F_{t}^{*}\right)$ and

$$
\begin{aligned}
E^{*}\left[X_{\infty} \circ \gamma \mid \gamma^{-1}\left(F_{t}\right)\right] & =E\left[X_{\infty} \mid F_{t}\right] \circ \gamma \\
& =X_{t} \circ \gamma
\end{aligned}
$$

from which $L^{*}(X \circ \gamma)=X$. Thus we get

$$
\begin{aligned}
\bar{\alpha}(\alpha(X)) & =L^{*} \bar{\alpha}^{*}\left(\alpha^{*}(X \circ \gamma)\right) \\
& =L^{*}(X \circ \gamma) \\
& =X
\end{aligned}
$$

If $X \in M\left(F_{t}\right)$ and $\tilde{X} \in M\left(\widetilde{F}_{t}\right)$, then

$$
\begin{aligned}
\widetilde{E}\left[\alpha(X)_{\infty} \widetilde{X}_{\infty}\right] & =\widetilde{E}\left[\alpha^{*}(X \circ \gamma)_{\infty} \widetilde{X}_{\infty}\right] \\
& =E^{*}\left[\left(X_{\infty} \circ \gamma\right)\left(\bar{\alpha}^{*}(\widetilde{X})_{\infty}\right)\right] \\
& =E^{*}\left[X_{\infty} \circ \gamma\left(L^{*} \bar{\alpha}^{*}(\widetilde{X})\right)_{\infty} \circ \gamma\right] \\
& =E\left[X_{\infty}\left(\bar{\alpha}(\widetilde{X})_{\infty}\right)\right]
\end{aligned}
$$

And if $X^{*} \in M\left(F_{t}^{*}\right)$,

$$
\begin{aligned}
E\left[\left(L^{*} X_{\infty}^{*}-L^{*} X_{t}^{*}\right)^{2} \mid F_{t}\right] & =E^{*}\left[\left\{E^{*}\left[X_{\infty}^{*}-X_{t}^{*} \mid \gamma^{-1}(F)\right]\right\}^{2} \mid \gamma^{-1}\left(F_{t}\right)\right] \\
& \left.\leqq E^{*}\left[\left\{E^{*}\left(X_{\infty}^{*}-X_{t}^{*}\right)^{2} \mid F_{t}^{*}\right]\right\} \mid \gamma^{-1}\left(F_{t}\right)\right] \\
& \leqq\left\|X^{*}\right\|_{B M O}^{2}
\end{aligned}
$$

meaning $\left\|L^{*} X^{*}\right\|_{\text {вмо }} \leqq\left\|X^{*}\right\|_{\text {вмо }}$. Therefore for every $\tilde{X} \in M\left(\widetilde{F}_{t}\right)$ we get

$$
\begin{aligned}
\|\bar{\alpha}(\tilde{X})\|_{B M O} & =\left\|L^{*}\left(\bar{\alpha}^{*}(\tilde{X})\right)\right\|_{B, K O} \\
& \leqq\left\|\bar{\alpha}^{*}(\tilde{X})\right\|_{B M O} \\
& \leqq\|\tilde{X}\|_{B M O} .
\end{aligned}
$$

This completes the proof.
Remark. If X is a locally square integrable martingale over $\left(F_{t}\right)$ and $\left(T_{n}\right)$ reduces X to $M\left(F_{t}\right)$, then for every $n \alpha\left(X^{T_{n+1}}\right)=\alpha\left(X^{T_{n}}\right)$ on [$0, T_{n} \circ \pi$]. Thus $\alpha(X)$ can be defined for locally square integrable martingales.

References

[1] R. K. Getoor and M. J. Sharpe, Conformal martingales, Inventiones Math. 16 (1972), 271-308.
[2] N. Kazamaki, A note on conformal martingales, Tôhoku Math. J., vol. 26 no. 2, (1974), 229-235.
[3] P. A. Meyer, Intégrales stochastiques I, II, Séminaire de Probabilités 1, Lecture Notes in Mathematics (1967), 72-117.

College of General Education
Tôhoku University
Sendai, Japan

