Tôhoku Math. Journ. 28 (1976), 437-441.

ON THE EXISTENCE OF A CONFORMAL MARTINGALE

NORIHIKO KAZAMAKI

(Received October 13, 1975)

1. In a previous paper [2] we showed the existence of a conformal martingale by assuming that (F_t) has no time of discontinuity. The purpose of this note is to prove it without using this assumption, Lemma 1 and Lemma 2 in [2]. Roughly speaking we prove that for any L^2 -bounded martingale X there exists a "conjugate" Y such that X + iY is conformal.

2. The reader is assumed to be familiar with the basic notions of the theory of stochastic integrals relative to martingales as given in [3]. By a system (Ω, F, F_t, P) is meant a complete probability space (Ω, F, P) with an increasing right continuous family $(F_t)_{t\geq 0}$ of sub σ -fields of F. We assume as usual that F_0 contains all P-null sets. Denote by $M(F_t)$ the class of all right continuous L^2 -bounded martingales X over (F_t) such that $X_0 = 0$. For each $X \in M(F_t)$ we define:

$$||X||_{{}^{BMO}}^{2} = \sup_{t} \operatorname{ess} \sup_{\omega} E[\langle X, \, X
angle_{\omega} - \langle X, \, X
angle_{t} | \, F_{t}] \; .$$

DEFINITION 1. Let X and Y belong to $M(F_t)$. Then a complex-valued martingale X + iY is called conformal if $\langle X, Y \rangle = 0$ and $\langle X, X \rangle = \langle Y, Y \rangle$.

Originally the concept of a conformal martingale was introduced by R. K. Getoor and M. J. Sharpe in [1].

DEFINITION 2. A system $(\tilde{\Omega}, \tilde{F}, \tilde{F}_t, \tilde{P})$ is said to be a lifting of (Ω, F, F_t, P) under the surjection $\pi: \tilde{\Omega} \to \Omega$ if

(1) $\pi^{-1}(F_t) \subset \widetilde{F}_t$ for each t and $\pi^{-1}(F) \subset \widetilde{F}$

(2) $P = \widetilde{P} \circ \pi^{-1}$ on F

(3) If X is a uniformly integrable martingale over (F_t) , then $X \circ \pi$ is a martingale over (\tilde{F}_t) .

It follows from (1) that if T is an F_t -stopping time, then $T \circ \pi$ is an \tilde{F}_t -stopping time. Then it is easy to see that if $H = (H_t, F_t)$ is previsible, $H \circ \pi = (H_t \circ \pi)$ is also a previsible process over (\tilde{F}_t) . Therefore we get $\langle X \circ \pi, X \circ \pi \rangle = \langle X, X \rangle \circ \pi$ for every $X \in M(F_t)$.

3. In what follows we denote by $H \cdot X$ the stochastic integral $\left(\int_{0}^{t} H_{s} dX_{s} \right)$. We do not assume that (F_{t}) has no time of discontinuity.

N. KAZAMAKI

THEOREM. Suppose that (Ω, F, P) is separable. Then there exists a lifting $(\tilde{\Omega}, \tilde{F}, \tilde{F}_t, \tilde{P})$ of (Ω, F, F_t, P) under $\pi: \tilde{\Omega} \to \Omega$ which satisfies the following conditions:

1°. There exists a linear mapping $\alpha: M(F_t) \to M(\widetilde{F}_t)$ such that

(1) for every $X \in M(F_i)$, $X \circ \pi + i\alpha(X)$ is conformal

(2) for every $X \in M(F_t)$ and $C \in L^2(X)$, $\alpha(C \cdot X) = (C \circ \pi) \cdot \alpha(X)$

2° There exists a linear mapping $\overline{\alpha}: M(\widetilde{F}_t) \to M(F_t)$ such that

(1) $\overline{\alpha} \circ \alpha$ is the identity on $M(F_t)$

(2) if $X \in M(F_t)$ and $\widetilde{X} \in M(\widetilde{F}_t)$, then $\widetilde{E}[\alpha(X)_{\infty}\widetilde{X}_{\infty}] = E[X_{\infty}\overline{\alpha}(\widetilde{X})_{\infty}]$

(3) for every $\widetilde{X} \in M(\widetilde{F}_t)$, $\|\overline{\alpha}(\widetilde{X})\|_{BMO} \leq \|\widetilde{X}\|_{BMO}$.

PROOF. We shall use essentially the method given in [1]. Let $X^0 \in M(F_t)$ be fundamental for $M(F_t)$; the existence of such an element X^0 is guaranteed by the separability of (Ω, F, P) . Put $A_t = \langle X^0, X^0 \rangle_t$ and $\tau_t = \inf \{s > 0; A_s > t\}$. Denote by (G_t) the right continuous family (F_{τ_t}) . Then each A_t is a G_t -stopping time. Let (K_t) be the right continuous family (G_{A_t}) . We have in general $\tau_{A_t} \geq t$ a.s.

We shall assume firstly that A is strictly increasing. One should be aware of $\tau_{A_t} = t$ a.s in this case. This implies that $F_t = K_t$. Now let (Ω', F', F'_t, P') be a separable system which carries a sequence $(B^n)_{n\geq 1}$ of independent real Brownian motions with $B_0^n = 0$ and $\langle B^n, B^n \rangle_t = t$ for all n. Denote by $(\widetilde{\Omega}, \widetilde{F}, \widetilde{G}_t, \widetilde{P})$ the product of the systems (Ω, F, G_t, P) and (Ω', F', F'_t, P') with π, π' the projections of $\widetilde{\Omega} = \Omega \times \Omega'$ onto Ω and Ω' respectively. Then each $A_t \circ \pi$ is a \widetilde{G}_t -stopping time. Let $\widetilde{F}_t = \widetilde{G}_{A_t \circ \pi}$ and consider now the system $(\widetilde{\Omega}, \widetilde{F}, \widetilde{F}_t, \widetilde{P})$. Clearly $P = \widetilde{P} \circ \pi^{-1}$ on F and $\pi^{-1}(F) \subset \widetilde{F}$. If $\Lambda \in F_t$, then

$$\pi^{-1}(arLambda) \cap \{A_t \circ \pi < s\} = [arLambda \cap \{A_t < s\}] imes arDelta' = [arLambda \cap \{ au_{A_t} < au_s\}] imes arDelta'$$

which belongs to \tilde{G}_s . Therefore $\pi^{-1}(\Lambda) \in \tilde{F}_t$. Next, if X is a uniformly integrable martingale over (F_t) , then by Doob's optional sampling theorem X_{τ_t} is a G_t -martingale so $X_{\tau_t} \circ \pi$ is a \tilde{G}_t -martingale. Thus $X_t \circ \pi = X_{\tau_{A_t}} \circ \pi$ is an \tilde{F}_t -martingale. That is to say, $(\tilde{\Omega}, \tilde{F}, \tilde{F}_t, \tilde{P})$ is a lifting of (Ω, F, F_t, P) under π .

Now we are going to construct $\alpha(X)$. Since $B^n \circ \pi'$ is a \tilde{G}_t -martingale, $\tilde{N}^n_t(\omega, \omega') = B^n_{A_t(\omega)}(\omega')$ is an \tilde{F}_t -martingale. Obviously $\langle \tilde{N}^j, \tilde{N}^k \rangle_t = \delta_{jk}A_t \circ \pi$ and $\langle X \circ \pi, \tilde{N}^n \rangle = 0$ for all $X \in M(F_t)$. Let $(X^n)_{n \ge 1}$ be an integral basis for $M(F_t)$ whose existence is guaranteed by the separability of the space (Ω, F, P) . Denote by D^n a previsible version of $d\langle X^n, X^n \rangle/dA$ and put:

$$C^n = (D^n)^{1/2}$$
, $\widetilde{M}^n = (C^n \circ \pi) \cdot \widetilde{N}^n$.

The process \widetilde{M}^n belongs to $M(\widetilde{F}_t)$. If \widehat{D}^n is another previsible version

of $d\langle X^n, X^n \rangle/dA$, it follows from the uniqueness of the density that

$$E\!\!\left[\int_{_0}^{^\infty}\!\!I_{\scriptscriptstyle\{D^n
eq\hat{D}^n\}}(t,\,\cdot)dA_t
ight]=0\;.$$

Therefore \widetilde{M}^n does not depend on the choice of D^n . It is clear that $\langle \widetilde{M}^n, X \circ \pi \rangle = 0$ for all n and that $\langle \widetilde{M}^j, \widetilde{M}^k \rangle_t = \delta_{jk} \langle X^j, X^k \rangle_t \circ \pi$. On the other hand, for each $X \in \mathcal{M}(F_t)$

$$X = \sum_{n} H^{n} \cdot X^{n}$$

convergent in $M(F_t)$ with $H^n = d\langle X, X^n \rangle / d\langle X^n, X^n \rangle$. The sum

 $\sum_{n} (H^n \circ \pi) \cdot \widetilde{M}^n$

converges in $M(\widetilde{F}_t)$ because $\langle (H^n \circ \pi) \cdot \widetilde{M}^n, (H^n \circ \pi) \cdot \widetilde{M}^n \rangle = \langle H^n \cdot X^n, H^n \cdot X^n \rangle \circ \pi$ for each n; $(H^n \circ \pi) \cdot \widetilde{M}^n$ does not depend on the choice of H^n . Then the mapping $\alpha \colon M(F_t) \to M(\widetilde{F}_t)$ given by

$$lpha(X) = \sum_n (H^n \circ \pi) \cdot \widetilde{M}^n$$

is well defined and linear. From the above relation we get

$$\langle lpha(X),\,lpha(X)
angle = \langle X\circ\pi,\,X\circ\pi
angle\,,\qquad \langle X\circ\pi\,,\quadlpha(X)
angle = 0\;.$$

Consequently $X \circ \pi + i\alpha(X)$ is an \tilde{F}_t -conformal martingale. It is immediate that $\alpha(C \cdot X) = (C \circ \pi) \cdot \alpha(X)$ if $X \in M(F_t)$ and $C \in L^2(X)$.

Next, we shall explain briefly the definition of the adjoint mapping $\overline{\alpha}$. This part is an adaptation of the proof due to Getoor and Sharpe (see [1]). Denote by \widetilde{N} the stable subspace of $M(\widetilde{F}_t)$ generated by the $X^n \circ \pi$ and \widetilde{M}^n , by L_1 the projection of $M(\widetilde{F}_t)$ onto \widetilde{N} and let $L_2: \widetilde{N} \to \widetilde{N}$ be defined as follows: if $\widetilde{X} \in \widetilde{N}$ has an expansion of the form $\sum_n C^n \cdot (X^n \circ \pi) + \sum_n D^n \cdot \widetilde{M}^n$; then $L_2(\widetilde{X}) = \sum_n D^n \cdot (X^n \circ \pi) + \sum_n C^n \cdot \widetilde{M}^n$; $L_2(\widetilde{X})$ does not depend on the previsible versions of C^n and D^n . Then it is clear that for every $X \in M(F_t)$, $L_2(\alpha(X)) = X \circ \pi$. Define $L_3: \widetilde{N} \to M(F_t)$ by letting $L_3\widetilde{X}$ for $\widetilde{X} \in \widetilde{N}$ be the unique right continuous martingale over (F_t) such that $(L_3\widetilde{X})_t \circ \pi = \widetilde{E}[\widetilde{X}_{\infty} | \pi^{-1}(F_t)]$. Then the mapping $\overline{\alpha} = L_3L_2L_1: M(\widetilde{F}_t) \to M(F_t)$ satisfies all the properties necessarily for the theorem.

Finally, we are going to consider the general case. Construct a system $(\Omega^*, F^*, F_t^*, P^*)$ by taking the product of the system (Ω, F, F_t, P) with another separable system $(\hat{\Omega}, \hat{F}, \hat{F}_t, \hat{P})$ which carries a real Brownian motion (\hat{B}_t) with $\hat{B}_0 = 0$ and $\langle \hat{B}, \hat{B} \rangle_t = t$. As (Ω^*, F^*, P^*) is separable, $M(F_t^*)$ has a fundamental element Y^0 . Let $\gamma, \hat{\gamma}$ the projections of Ω^* onto Ω and $\hat{\Omega}$ respectively. Then $\hat{B} \circ \hat{\gamma}$ is a continuous F_t^* -martingale. Since $\langle \hat{B}, \hat{B} \rangle$ is $\langle Y^0, Y^0 \rangle$ -absolutely continuous, $\langle Y^0, Y^0 \rangle$ is strictly increasing.

N. KAZAMAKI

Therefore, on some lifting $(\tilde{\Omega}, \tilde{F}, \tilde{F}_t, \tilde{P})$ of $(\Omega^*, F^*, F_t^*, P^*)$ under π^* , there exist linear mappings $\alpha^* \colon M(F_t^*) \to M(\tilde{F}_t)$ and $\bar{\alpha}^* \colon M(\tilde{F}_t) \to M(F_t^*)$ which satisfy all the properties of the theorem; namely, for each $X^* \in M(F_t^*)$, $X^* \circ \pi^* + i\alpha^*(X^*)$ is a conformal martingale over (\tilde{F}_t) . Then $(\tilde{\Omega}, \tilde{F}, \tilde{F}_t, \tilde{P})$ is also a lifting of (Ω, F, F_t, P) under $\pi = \gamma \circ \pi^*$. As $X \circ \gamma \in M(F_t^*)$ for every $X \in M(F_t)$,

$$X \circ \pi + i lpha^* (X \circ \gamma) = (X \circ \gamma) \circ \pi^* + i lpha^* (X \circ \gamma)$$

is a conformal martingale over (\tilde{F}_t) . The mapping $\alpha: M(F_t) \to M(\tilde{F}_t)$ defined by $\alpha(X) = \alpha^*(X \circ \gamma)$ is linear. If $C \in L^2(X)$, then $C \circ \gamma \in L^2(X \circ \gamma)$ and so we get

$$egin{aligned} lpha(C\circ X)&=lpha^*((C\circ\gamma)ullet(X\circ\gamma))\ &=(C\circ\gamma\circ\pi^*)ulletlpha^*(X\circ\gamma)\ &=(C\circ\pi)ulletlpha(X)\;. \end{aligned}$$

We are now going to define the adjoint mapping $\overline{\alpha}$. Define L^* : $M(F_t^*) \to M(F_t)$ by letting L^*X^* for $X^* \in M(F_t^*)$ be the unique right continuous martingale over (F_t) such that

$$(L^*X^*)_t \circ \gamma = E^*[X^*_{\scriptscriptstyle{\infty}} \,|\, \gamma^{_{-1}}\!(F_t)]$$
 .

It is easy to see that $\{\gamma^{-1}(F_t)\}$ is a right continuous family.

Now we put

$$ar{lpha}(\widetilde{X}) = L^*(ar{lpha}^*(\widetilde{X}))$$
 , $\widetilde{X} \in M(ar{F}_t)$.

Obviously $\overline{\alpha}$ is a linear mapping of $M(\widetilde{F}_t)$ into $M(F_t)$. If $X \in M(F_t)$, then $X \circ \gamma \in M(F_t^*)$ and

$$egin{aligned} E^*[X_\infty \circ \gamma \,|\, \gamma^{-1}(F_t)] &= E[X_\infty \,|\, F_t] \circ \gamma \ &= X_t \circ \gamma \end{aligned}$$

from which $L^*(X \circ \gamma) = X$. Thus we get

$$ar{lpha}(lpha(X)) = L^*ar{lpha}^*(lpha^*(X\circ\gamma)) \ = L^*(X\circ\gamma) \ = X \ .$$

If $X \in M(F_t)$ and $\widetilde{X} \in M(\widetilde{F}_t)$, then

$$egin{aligned} & ilde{E}[lpha(X)_{\infty}\widetilde{X}_{\infty}] = egin{aligned} & ilde{E}[lpha^*(X\circ\gamma)_{\infty}\widetilde{X}_{\infty}] \ &= E^*[(X_{\infty}\circ\gamma)(ar{lpha}^*(\widetilde{X})_{\infty})] \ &= E^*[X_{\infty}\circ\gamma(L^*ar{lpha}^*(\widetilde{X}))_{\infty}\circ\gamma] \ &= E[X_{\infty}(ar{lpha}(\widetilde{X})_{\infty})] \;. \end{aligned}$$

And if $X^* \in M(F_t^*)$,

$$egin{aligned} E[(L^*X^*_\infty-L^*X^*_t)^2|\,F_t]&=E^*[\{E^*[X^*_\infty-X^*_t\,|\,\gamma^{-1}(F)]\}^2|\,\gamma^{-1}(F_t)]\ &\leq E^*[\{E^*(X^*_\infty-X^*_t)^2|F^*_t\,]\}\,|\,\gamma^{-1}(F_t)]\ &\leq ||\,X^*\,||^2_{_{BMO}} \end{aligned}$$

meaning $||L^*X^*||_{BMO} \leq ||X^*||_{BMO}$. Therefore for every $\widetilde{X} \in M(\widetilde{F}_t)$ we get $||\overline{\alpha}(\widetilde{X})||_{BMO} = ||L^*(\overline{\alpha}^*(\widetilde{X}))||_{BMO}$ $\leq ||\overline{\alpha}^*(\widetilde{X})||_{BMO}$ $\leq ||\widetilde{X}||_{BMO}$.

This completes the proof.

REMARK. If X is a locally square integrable martingale over (F_t) and (T_n) reduces X to $M(F_t)$, then for every $n \ \alpha(X^{T_{n+1}}) = \alpha(X^{T_n})$ on $[0, T_n \circ \pi]$. Thus $\alpha(X)$ can be defined for locally square integrable martingales.

References

- R. K. GETOOR AND M. J. SHARPE, Conformal martingales, Inventiones Math. 16 (1972), 271-308.
- [2] N. KAZAMAKI, A note on conformal martingales, Tôhoku Math. J., vol. 26 no. 2, (1974), 229-235.
- [3] P. A. MEYER, Intégrales stochastiques I, II, Séminaire de Probabilités 1, Lecture Notes in Mathematics (1967), 72-117.

College of General Education Tôhoku University Sendai, Japan