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The purpose of generator theory of one-parameter semi-groups and
groups of operators is to establish a correspondence between these families
of operators and a single mathematical object, in general an unbounded
operator. We propose in the case of groups such a correspondence, based
on analytical extension.

It is proved that the “analytic generator” is closed (Theorem 2.4).
We study the spectral properties of the “analytic generator” (Theorem
3.2 with its corollaries and Theorem 3.6) and give a representation formula
for the group in terms of its “analytic generator” (Theorem 4.2). Spectral
subspaces for the “analytic generator” are defined and it is shown (Corollary
5.7) that they coincide with the spectral subspaces associated by W.
Arveson to an one-parameter group (see [1]). Finally, we examine two
particular cases, obtaining also a new proof of Stone’s representation
theorem (Theorem 6.1).

We remark that our results can be used in Tomita’s theory of
standard von Neumann algebras (see the remarks about [5] and [15] in
the last section).

1. Vector valued functions. In this section, with an introductory
character, we are precising some facts about analyticity and integrability
of vector valued functions.

We call dual pair of Banach spaces any pair (X, # ) of Banach
spaces together with a bilinear functional

XX F o PP,

such that
llz|l = sup [<xz, )| for any xeX,
I‘f;llél
el = syyl<x, py| for any @e.#.
==t

In all this paper we consider only complex Banach spaces.
We recall the following classical result ([8], Theorem 2.8.6):

PropoSITION 1.1. Let (X, %) be a dual pair of Banach spaces and
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S c X such that for every pe #
sup [(z, Py < + .

Then
sug)[lx(f < +oo.

Proposition 1.1 implies the following result ([8], Theorem 3.10.1.)

ProposiTION 1.2. Let (X, ¥ ) be a dual pair of Banach spaces,
Dc C" an open set and F: D— X such that for every @ € %

D3 a— (F(a), ?)
1s analytic. Then F is analytic in the norm-topology of X.

By Proposition 1.2 the analyticity of an X-valued function depends
not on the topology considered on X.

Let (X, &) be a dual pair of Banach spaces, 2 a topological space
and F: 2— X. Then F is called F-continuous if for every @ € & the
function ’

Qsa— (F(a), )

is continuous. If QCC" then F'is called .#-regular if it is . -continuous
and its restriction to the interior of 2 is analytic.

We are interested especially in regular functions on vertical strip
and half-planes. If @ < b, f is regular on {¢ €C; o < Rea < b} and f(a@) =
0 for Rea = a then f vanishes identically. We recall also the following
theorem of F. Carlson ([3] or [10], Part Three, Problem 328):

ProOPOSITION 1.3. Let f:{acC; Rea = 0} — C be a regular function
such that

(i) [fl@)] = ce? for Rea = 0, with ¢, c, = 0;

(i) | f@t)| £ c.et'? for te R, with ¢, =0, 7 > ¢, = 0;

(i) 0=00)=/Q)="---=f(n)="---.

Then f vanishes tdentically.

Let (X, #) be a dual pair of Banach spaces.

An everywhere defined linear operator T on X is called .#-continuous
if, considering on X the .#-topology, T is continuous. By Proposition
1.1 every .Z#-continuous linear operator is bounded. We denote the
linear space of all .#-continuous linear operators on X by B.(X). Itis
easy to see that any T e B.(X) defines a T* € By(&F) by

(T(x), p) =z, T*(®)), z€X, PeF .
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A linear operator T in X is called #-closed if the graph of T is
closed in the product of the .&#-topologies. Every T € B _-(X) is obviously
F-closed.

We consider for (X, &) the following axioms:

(A)) the convex hull of every relatively F-compact subset of X ts
relatively F-compact:

(A,)) any everywhere defined F-closed linear operator in X belongs
to Bf’(X).

The following result is a slight extension of [13], Ch. IV., Exercise
39(a) and [1], Proposition 1.2:

ProrosiTiON 1.4. Let (X, &) be a dual pair of Banach spaces,
satisfying (A,), 2 a locally compact Hausdorff space, 1t a complex regular
Borel measure on 2 with variation ||, let F: Q2 — X be such that for
any compact KC Q and € > 0 there exists a compact L C K such that
F|L is F-continuous and |pt|(K|L) < ¢ and such that

Qsa— || F(a)l|

has a |p|-integrable majorant. Then there exists a unique &, € X such
that for any e F

|, (F@, 9ydu(a) = <o, 2 -
In the conditions of Proposition 1.4 we denote
o = T — SQF(a)dy(a) .

It is easy to verify that for every T € B_(X) the mapping «a— T(F(x))
and the measure /¢ satisfy also the conditions of Proposition 1.4 and

T SQT(F(a))dy(a) - T<ﬁ‘— SgF(a)dp(a)) .

Let T be an .#-closed linear operator in X. The resolvent set o(T)
of T is the set of all Ae€C such that » — T: &2, — X is injective and
surjective, that is (A — T)™' is well and everywhere defined. o(T) is
open in C. If (X, &) satisfies (A;) and n€ o(T) then (A — T') '€ B (X).
The spectrum of T is o(T) = C\o(T).

Let X be a Banach space and X* its dual space. Then (X, X*)
endowed with the natural pairing is a dual pair of Banach spaces, satis-
fying (A, ([7], Theorem V.6.4) and (A,) (the usual closed graph theorem).
The pair (X*, X) is also a dual pair of Banach spaces, satisfying (A,)
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(by the Alaoglu theorem) and (A,) (by the usual closed graph theorem,
[8], Theorem 2.10.4 and the Alaoglu theorem).

2. Groups of operators and analytical extensions. Let (X, %) be
a dual pair of Banach spaces.

An one-parameter group in B.-(X) is a family {U},.r in B-(X)
such that

U,=id .,
Use =UU,, tseR.

The group {U,};cr is called

(i) F-continuous if for every x e X the mapping t—Ux is F-
continuous;

(ii) stromgly comtinuous if for every x € X the mapping t+—Ux is
norm-continuous. Obviously, (ii) = (i).

If {U,} is . -continuous, then using Proposition 1.1, we have for any
t,eR, ={teR;t =0}

sup [[U,]l < +oo .
—tgststp

{U,} is called

(iii) bounded if sup,.r || U,|| < + oo.

The following known majorisation of ||U,|| is implied by [8], Theorem
7.6.1 and by the above remark:

LemMMA 2.1. Let (X, %) be a dual pair of Banach spaces, {U}icr
an F-continuous one-parameter group in B-(X) and

ing 180Tl e I

t>0 t t<0 —t

a,>max<j

Then there exists a constant ¢ > 0 such that
U]l < ce®™, teR.

Let {U,},cr be an one-parameter group in B.(X). For every ¢, ¢, € R,
e, <0,¢ =0, we consider the following linear subspace of X:
it —Ux has an F-regular

9. =4Jxe X

’ .
T extension on ¢, L Rea < ¢,

If x €., then the F#-regular extension of it —Ux on ¢, < Rea < ¢, is
unique. We denote it by F,.
Denote
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it — U,x has an analytical
_w.@+m = n 51@;2 = X € X; .
¢1,ep¢R extension on C

g0
£g20

The following density lemma is inspired from [9]:

LEMMA 2.2. Let (X, %) be a dual pair of Banach spaces, satisfying
(A) and {U},cr an F-continuous group in B -(X). Then the sequential
F-closure of _oF.. 18 X.

ProOF. Following Lemma 2.1, there exist positive constants a, ¢,
such that

Ul < ce, teR.

Let x € X be arbitrary. For every integer n =1 the mapping ¢+
e "’ U and the Lebesgue measure on R satisfy the conditions of Pro-
position 1.4, so we can consider

>y +o0
X, = \/ﬁf— S e " Uxdt .
T —00
By the #-continuity of {U,} in 0 and by the Lebesgue dominated con-
vergence theorem the sequence {x,} converges to x in the .#-topology.
On the other hand, for every n =1

+ o0

e "t [Tyt

—o0

o F, () = \/—%f— S

is an analytical extension on C of it —Ux,. Hence %, € _.o. ;. g.e.d.

Using Lemma 2.2 and the remark before Lemma 2.1, it is easy to
prove that if % = X*, then every .#-continuous one-parameter group
in B(X) is strongly continuous ([8], Corollary of Theorem 10.2.3).

Now we show how the group property of {U,} can be extended by
analyticity:

LEMMA 2.3. Let (X, ) be a dual pair of Banach spaces, {U,};cr
an F-continuous one-parameter group in B (X), ¢, R, 6, 0,6, =0,
and BeC,e, <= ReB = ¢, Then for every xe ., we have:

F(B) €. \-resTiy—res »
Fpp@)=F,(x+pB), ¢, ReS=Rea=¢ —Rep.
Proor. Let te€ R. The mappings
Y UF(7),
Y- F (it +7)
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are .~ -regular extensions of is+—U, . x on ¢ < Re7 < ¢, hence they
coincide.
Consequently, for each te R

UF,(B) = F,(it + B),
and this implies that a— F (@ + ) is an F#-regular extension of it —
UF.(B) on ¢, — ReB<Rea =<¢ — ReB. From this the statement of
the lemma follows. g.e.d.
Let {U.};cr be an & -continuous one-parameter group in B.-(X). For

every @ cC we define a linear operator B, in X, called the analytical
extension of {U,} in «, by the formulas:

ogRea lf ReaZO,
D, = .
“ Reao@:) lf Re [44 é 0 9
Bx = F,(a), xE Ty, .
We call B, the analytic generator of {U,} and denote it simply by B.
The following theorem is our basic result in this section:

THEOREM 2.4. Let (X, &) be a dual pair of Bamnach spaces such
that (X, ) and (&, X) satisfy (A) and {U,}),cr an F-continuous one-
parameter group in B -(X). Then the sequential & -closure of

n 9301 = _oog+eo

aeC

18 X, for any a€C the linear operator B, is F-closed and injective and:

Bu = []t ’ teR,
B_, = B;', aecC,
Baﬁ—az = BalBaz ’ al, az € C! (Re al)(Re aZ) g 0 .

Proor. Following Lemma 2.2, the sequential .&-closure of N,cc Zp, =

T e 18 X.
Let acC.
Suppose that (x, y) is in the closure of the graph of B, in the product

of the .#-topologies. Then there exists a net {x.} C =, such that
X —x,
B, —y

in the Mackey topology associated to the .#-topology.
By Lemma 2.1 there exist a, ¢ > 0 such that

||| < ce”', teR .
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Hence for any v eC

lim e~#+||U,|| = 0 .

|t]—oo

Let pe . #.
For every ¢ and for every veC with Re ¥ between 0 and Re &, using
Lemma 2.3, we have

le™ "X F, (7), P>
= e 7" Upn, F, (Re V), @) |
< et U || Fu(Re M) ] ] 2|
< gReniggm Imptillmy] sup |[F. () [Pl

€
0 and Rea

Hence 7 +— ¢~ 7/"*(F,(7), #) is a bounded regular function on {7€C; Re~
between 0 and Re a}.
Since {U;*} is an X-continuous one-parameter group in By(.# ) and

lim e/ U7 || = lim e | T}]| = 0,
t|—oo |t]—o0
the set

(e Urp; te Ry 5

is relatively X-compact. Since (&, X) satisfies (A,), the convex hull of
this set is also relatively X-compact, hence

e~ (x,, Urp) — e (x, Urp)

uniformly for ¢e R.
Analogously,

— ; 2 _ . .
6«0 By, Upp) — o™y, Urp)

uniformly for tec R.

In conclusion, the net {Y e 7/9*(F,(7), #)} of bounded regular func-
tions on {veC; Re7 between 0 and Re a} converges uniformly on the
boundary. By the Phragmen-Lindelof theorem it converges uniformly
to a bounded regular function G. We have for any te R

G,(it) = lim e (U, @) = e *(Uga, @) ,
Gy(a + it) = lim e~ /P (U,Bx,, Py = e~/ Uy, @) .

Now the .#-continuity of {U,} and the relations
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lime™||T,|| =0,

[t]—s00

lim 6—((a+it)/i)2” Ull=0

it]—oo
imply that the set
(e Uz, et/ Uy te R} X
is relatively .#-compact. Since (X, .&# ) satisfies (A,), the convex hull K

of this set is also relatively .#-compact.
For every e & and for every tc R

Gu(it)| = < U, )| < sup [<z, ),
|Gola + 1t)| = [(e™ D Uy, )| < sup | ¢z, @) -

By the Phragmen-Lindelof theorem, for any YeC with Rev between 0
and Rea

|Go(7)] = sup [{z, ).

Let v with Re” between 0 and Rea. Then
@+ Gy(7)

is a linear functional on . &, continuous in the Mackey topology associated
to the X-topology. There results that it is continuous in the X-topology,
hence there exists G(7)€ X such that

<G(7)’ Cp> = GP(’Y) y P e F .
Obviously G is an .#-regular mapping on {YeC; Rev between 0 and
Rea} and
G(it) = e " Uz , teR,
G(a) = e /%y ,
Putting F(7) = e"/?’G(7), F is ZF-regular on {YecC; ReY between 0
and Re a} and
F(it) =Ux , teR,
Fla)y=y.
Consequently € .=, and B.x = y.
Hence we have proved that B, is .#-closed.
Let e =, Bix = 0. Using Lemma 2.3, F,(7) = 0 for Re” = Req,
hence F, is identically 0. In particular, x = F,(0) = 0. Consequently
B, is injective.
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Finally, the statement
B, =U,, teR,
is trivial and, using Lemma 2.3, it is easy to see that
B_,= B;", aeC,
B,.., = B,B,,, a,a,eC, (Rea)Rea,) = 0.
g.e.d.

In particular, in the conditions of Theorem 2.4, the analytic generator
of {U,} is F#-closed.

Let (X, %) be a dual pair of Banach spaces, satisfying (4A,), and
{U} an Z-continuous one-parameter group in B.(X). If fiR—C is
Lebesgue measurable and

Rat— @)Ul

is Lebesgue integrable then for any € X
T S+wf(t) Uedt

is well defined (Proposition 1.4). The next result shows that the operators
B, commute with the operator

¢ T — §+wf(t) Uwdt .

COROLLARY 2.5. Let (X, %) be a dual pair of Banach spaces such
that (X, &%) and (&, X) satisfy (A), {Uker an F-continuous one-
parameter group in B.(X) and f: R — C a Lebesgue measurable function
such that

Rat— (@)Ul

18 Lebesgue integrable. Then for any @ cC and for any € Fy,
&=\ "re)Uaite 2,
and
+o0 +oo
Ba,<.7— S f(t)U,xdt) - T S f(t)U,B.wdt .

Proor. If f is bounded and has compact support then it is easy to
see that

Y T — Si:f(t)Fx(z't + )it
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is an “#-regular extension of
+oo
z'SHUs(ﬁ‘— S £(t) Utxdt)

on {ve€C; Re7 between 0 and Rea}. In the general case we approximate
f with the functions f, defined by

f(t)—{f(t)’ lt/=n and |[f@)I=n,
" 0, lt|>mn or |f()]>mn,
and use the fact that B, is . -closed. q.e.d.

COROLLARY 2.6. Let (X, %) be a dual pair of Banach spaces such
that (X, &) and (&, X) satisfy (A) and {U),cr an F-continuous one-
parameter group in B.(X). Then for any acC, B, is the sequeniial
F-closure of the restriction of B, t0 _o .

PROOF. Let x€ 25,
In the proof of Lemma 2.2 we have seen that for any integer n =1

" +oo
2, = Jﬁf“S et Ugdt € D .
T

—o0

Using Corollary 2.5,
Baxn = \/ﬁj‘_ Sme—mZUtBaxdt .
T

Since x, — « and B,x,— Bx in the .#-topology, (x, B,x) belongs to the
sequential .#-closure of the graph of B,|_.. 2 .. q.e.d.

We remark that by Theorem 2.4, in reasonable conditions, every con-
tinuous one-parameter group {U,} on X defines an analytic two-parameter
group {B,ii|-wFiet On _oF\,. We shall see in the fourth section that
if {U,} is bounded then {B,,;;| _..2,.} is uniquely determined by B,|_oZ <.

3. Spectral properties of the analytic generator. In this section we
study the spectral behaviour of the analytic generator B of a bounded
one-parameter group. More precisely, we study the injectivity and the
surjectivity of » + B, » € C, we give an integral formula for (A + B)'Bx,
X € Dy, in term of the group and we characterize the situation o(B)CR,.
In the particular cases considered in the last section we have always
o(B)CR,.

Denote R_ = {te R;t < 0}. For any ne C\R_ we define argn e R by

A= | \]eterst larg \| < 7.
Then the function
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Ca A \E = 6a(lnl1|+i-arg/‘.)
is analytical.

LEmMMA 3.1. Let (X, &) be a dual pair of Banach spaces, {U.},cr @
bounded .F-continuous one-parameter group in B.(X), B. its analytical
extension in e€ R and € C\R_. Then N\ + B, is injective.

ProorF. Let x€ =, such that (\ + B,)x = 0. Then it +—Ux has an
analytical extension F, on the whole complex plane and

F(a +¢e)= —\F (a), aeC.

If ¢ =0 then 2 = F,(0) = —\F,(0) = —\x, 80 2 = 0.
If ¢ # 0 then @+~ |\ '*F, () is a bounded analytic mapping on C.
By the Liouville theorem it is constant, hence

INTF(e) = F(0) = o,
F(e) = [\x .

Since F,(¢) = —\F,(0) = —xx and A ¢ R_, that is M # —|\|, we deduce
x = 0. q.e.d.

The following theorem and its corollaries are our strongest results
about the surjectivity of » + B in the general case:

THEOREM 3.2. Let (X, %) be a dual pair of Banach spaces, satisfying
(A), {Ulier @ bounded F-continuous one-parameter group in B.(X), B.
its analytical extemsion in €€ R,e >0, and A€ C\R_. Then for any
X e ng

B.axe Fi+pot

and
¢+ico e

A F(a)de ,

v+ BY B = @iyt — |
c—i8IN TE "G

where ce R, 0 < ¢ < &, 18 arbitrary.

Proor. Using Lemma 2.3, Proposition 1.4 and the Cauchy integral
theorem, it is easy to see that

c+ico )\l—s“la

g — S F()da

c—io8in TE 'Y

is well defined and depends not on ¢. Denote
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= (Qei)".F — S TN pa)da

c—io8in T '

= (2ei)'F — S AT (Fa) - n)da
c—io8IN TE A&
c+ioo )"-e“lzx

+ (2¢1)” S daw .

e—io8in e

For each te R

U, = (26i) "7 — S lwm_u” (o + it) — F(it)da
+ (260) S TN GaF(it)
c—iogin weT'a
= (26i) T — g”’”——“_ T () — F(it)de
B c—i8in we (@ — it) Lit)
+ (260) S TN aF ) .
c— l°°Sln7Z'€ o

Consider on {(a@, B)eC* 0 < Rea < ¢, 0 < ReB < ¢} the .F-regular map-
ping G defined by

\ DN ) ~ .
G(a, B) = W(Fz(a) F.(B)) if axp,
——F(a) ¢ oass

e

Then
Uz, = 2e1)'F — SH G(a, it)da

c—1i%0

+ (2¢2)7! Sc MleafF (z¢) .
c—iwgin Te'@

Hence x; € &5, and

B, = (26i) "5 — S” G, ¢)da

¢+7ioo -
+ (260) S M aBa
e—io8ln T~

c+ico )\,—-e_la-}-l

= (@eiy s — | (F.(¢) — Ba)da

-t 8in (we™'a — )

c+ico x—e’_la
+ (25?;)-1 S ' —.————-—'daB;x
c—ioSIn TE QX
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c+ic0 )\4—5—1‘1

— —M2ei) L — S —F (@)da

e—ioSIn wE™!

et c+ico 7\4_5—1‘!
+ (1 + N)(2¢e7) —————daB.x .
c—ioSIN TE &

By [5], Kap. 6, §8, we have

c+ico —ela e~ letico -
@i | e =@ |
c—io8in TE™ ' ¢~le—ico SIN TY
e~ letioo
— (27i)™ S TNIrer@ - v
=@+,
)
B.x;, = —\x; + B.x,
(A + B.)x; = Bax .
Consequently, B.x € Z;.5,-1 and (A + B,)'B.x = x;. q.e.d.

COROLLARY 3.3. Let (X, &) be a dual pair of Banach spaces, satis-
fying (A), {Uber @ bounded F-continuous one-parameter group in
B.(X), B, its analytical extension in ee€ R, e >0, and xeC\R_. Then

935 - %1+BE)—1

and for any xe€ Fj,
c+ioo —e—la
O + B) 'z = vlw — (2ned) " — S A" p(a)da,
c—iw8in el
where ce R, 0 < ¢ < &, is arbitrary.

Proor. Let x€ <;,. Then by Theorem 3.2 B.x€ &5, and

otdco 3 —e la

(» + B)'B.x = (26i)".5F — S _F.(a)dex

e—ieo8in e~
Since obviously (M + B.)x € Z;,5,-1, there results that
= N"'(\+ B)x — N'B2X € Diyyp,-1
and
(n + B) ' = A" — V(A + B)'Ba
e @ |

c+ioco )\I—e—la
——F (a)da .
e—io8in T X

q.e.d.
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We remark that Lemma 3.1, Corollary 3.3 and Corollary 2.5 imply
that if (X, &) satisfies (A,) and {U,} is bounded then for every ec R

and A e C\R_
O+ Bs) | co Dot c0 Do = 0 Dyoo
is injective and surjective. So the spectrum of B,|_.. .. is included in R..

COROLLARY 3.4. Let (X, &) be a dual pair of Banach spaces such
that (X, F) and (F, X) satisfy (A), {Uber @ bounded .F-continuous
one-parameter group in B.-(X), B, B, its analytical extensions in eéc R,
€ > 0, respectively in 6 R,6 >0, and e C\R_. Then

Dy C Dipa—t
and for any x € Zj,

c+ico —e—la
(v + B) 'z = \'w — (2hei) LT — S A pada,
c—ioSIN TE A

where ce R, 0 < ¢ <¢e, 0<e¢ <0, 15 arbitrary.

Proor. If § = ¢ then 25, D Z;,, hence the statement of the corollary
is a trivial consequence of Corollary 3.3.

Now suppose that 6 <e. Let xe =j,,. Using Corollary 2.6, there
exists a sequence {x,} © =, such that

T, X,
Bax” - B,;x

in the “#-topology. We remark that by Proposition 1.1 every .#-con-
vergent sequence is norm-bounded.
For every te R

F. (5 + it) = UBw,—UByw = F.(3 + it)

in the .#~topology, so, using the Lebesgue dominated convergence theorem,

c+ico —e 1y
U, = A, — (2NEi) T — g M P, (@)da
c—io8lN TE A
. d+io0 N—e“la
— A, — (2ned) T — S F, (a)dat

s—io8in e '

converges in the .#-topology to
—e~la

c+ioo
Y=\ — (2nei) T — S M p(a)da
c—io8in T

T (0+ico —e—lg
— A — (2nei) T — S AT g @yde
s—io8in T
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On the other hand, following Corollary 3.3, for every =, ¥, € 2.,
and (A + B.)y, = z,. So

O\ + B)y,—«x

in the .#-topology.
By Theorem 2.4 )\ + B, is #-closed and we deduce that y e .4,
and (A + B.)y = x. q.e.d.

In particular, in the conditions of Corollary 3.4,

-@r()+35)—1 > H gB,; .

We remark also the following consequence of Theorem 3.2 which
extends [5], Lemmas 4.2 and 4.3.

COROLLARY 3.5. Let (X, #) be a dual pair of Banach spaces, satis-
fying (A), {U,}ier @ bounded S -continuous omne-parameter group in
B.(X), B., B.,,, B_.,, its analytical extemsions respectively in ¢, /2, —¢/2,
where e€ R, ¢ > 0, and e C\R_. Then for any x€ Dp,,, N Ds_,,

B, x ¢ D+ po—1

and

+oo 7\'—1/2—15—1t

v+ B) B = &7 — | Ut .

oo erre“‘]t + g7
Proor. Following Lemma 2.3, y = B_,,a € &5, Using Theorem 3.2,
B.,x = B.Yy € D345, and

(» + B.)"'B.;x = (» + B.)"'By

. e/2+i00 )\J—eHla
:(2&)-1?—8 A pa)da
¢/2—ioSIN TE "X

X—-(I/Z)—-ie_lt

F(¢/2 + it)dt

+oo
— (2).F — S
- sin<~7£ + im‘%)
2
+o0 )\J—I/Z—ie—l

t
— COS 1E '

+oo )\J—I/Z—ie_lt

= (28)'F — S

—o en’e—lt + 6—ze‘1t Utwdt *

=& F — S
q.e.d.

Now we can characterize the situation ¢(B)C R,:

THEOREM 3.6. Let (X, &) be @ dual pair of Banach spaces such
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that (X, &) satisfies (A), (A,) and (F, X) satisfies (A). Then for any
bounded .F-continuous one-parameter group {U}icr in B(X) the follow-
wng statements are equivalent:

(i) there exist ,€ R, ¢, > 0, and N, € C\R_ such that the image of
o + B., is sequentially #-closed;

(ii) there ewists €,€ R, ¢, > 0, such that o(B.) #* @;

(iii) for every e R we have o(B,)C R,.

PrROOF. Obviously, (iii) = (ii) and, since o(B,)) is open, (ii) = (i). It
remains to show that (i) = (iii).

By Lemma 3.1 )\, + B, is injective and by Corollary 3.3 and Lemma
2.2 the sequential .#-closure of the image of )\, + B,, is X. So N+ B, is
injective and surjective. Since (X, &) satisfies (A,), (\, + B.,)™" € BA(X).

Let ec R, ¢ >0, and ne C\R_ arbitrary. By Lemma 3.1 )\ + B, is
injective. We finish the proof by showing that (A + B.)<2,.; = X.

Let € _.“2,.. Following Corollary 3.3,

MA + B)'e — M + Be)) '

c+ico —1y —ela —1y —¢ "l
o € €
=~y - | (S SN ayda
c—io\Sin we~'®  sinmwe; '

where ce R, 0 < ¢ < 0 = min{e, ¢g}. It is easy to see that the analytic
function

e—lx—s—la _ 60—1)\,6-@6“101

sinwe'a  sinzwe'a

{aeC; 0 <Rea <d}loamr—

has a continuous extension f on {¢e€C; 0 < Rea < d}. Using the Cauchy
integral theorem, there results:

MM+ BY 2 — Mg + B
- —(/2)F — Si:f(it)Utxdt .

Define for every ze X
Ty2) = (25 - | ft)Usdt .
Since (&, X) satisfies (A,), for every @ € #
9, = WX~ | st Urpdt

is well defined and belongs to .#. For every « e X and for every p e . &#
<Tf<x)7 g)> = <x1 ¢f> ’
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hence T'; e B(X).
Consequently,

T =N+ B,)" + Ty
belongs to B.(X) and for z¢€ _.Z,.
Tx =N\ + B.) 'z,
that is
Tz e Disp, »
N+ B)Tx =2 .

Using the .#-density of _.<,. and the fact that » + B, is F-closed, we
deduce that the above relations hold for every xe€ X. Hence

(\ + B)Dis, O + B)TX = X .
Now the proof is finished, because ¢(B.) c R, implies that o(B_,) =
o(B:'YC R,. g.e.d.

In particular, if B is bounded then ¢(B)C R,.
We remark that the results of this section can be extended for
groups {U,} for which

Ul £ ce™, teR, where ¢, < 7,
replacing in the statements C\R_ by (e C\R_; |arg\| < 7 — ¢,} and R,
by (\e C\R_; |arg \| < ¢y}.

4. An inversion formula and the unicity theorem. In this section
we represent the bounded one-parameter groups in terms of their analytic
generators. In particular, the analytic generators uniquely determine
the groups.

LEMMA 4.1. Let (X, ) be a dual pair of Banach spaces, satisfying
(A), {U.};er @ bounded F-continuous one-parameter group in B-(X), B
its analytic generator and x € 2. Then for every ne R,\ > 0,

Br e D;p—1
and

2 1
T sin*we \°

1

v+ B)"Ba|| < sup||U, | max {||1], | Bl

where ce R, 0 < ¢ < 1, is arbitrary.

ProOF. By Theorem 3.2 for every e R, » > 0,
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Bx € ;151

and

(» + B)"'Bx = (2i)".% — Scitsi);_;aﬂ(a)da :

where ce R, 0 < ¢ < 1, is arbitrary. Hence

I0-+ BBrl s sup [IF.@)l2 | | - 2(0+i )]

+oo
= sup ”F_,,(a)” S—oo |61;”~1rt at !

0<Reasl — giTott| —7\’7 .
Using Lemma 2.3 and the Phragmen-Lindelof theorem, we have

sup || F.(@)| < sup ||U, | max (||, || B} .

0<Reas

On the other hand,

S*‘” dt
oo |ei:c—xt . e—i:rc-HrtI
_ S*“’ dt
—w (€¥" + ¢7* — 2 cos 2me)V?
_ 2 S+oo dt
o (&' + e — 2 cos 2mc)'/?
<9 S*‘” dt
= Jo e — ¢ " cos 2me
=2 S+°°_e_“_d£__
o ¢ — cos 27e
_2 S*“’.__ﬁ_ﬁ
T ) st — cos2me
If cos2me £ 0, then
(" o[l
1 8 — cos 27e 1 st

and if cos2mc¢ = 0, then

S*” ds < S*‘” ds _ 1 _ 1
1 s —cos2me ~ Ji (1 — cos 2mc)s? 1 — cos2me 2sin® e
Hence for every 0 <e¢ <1
S“’“’ . dit < .2 .
oo ]emc—zt — 6—i7tc+7rt| T Slnz e
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q.e.d.

Lemma 4.1 implies that for every xze€ <; and for every 0<c¢ <1
there exists a constant d(x, ¢) such that

(v + B)'Bu|| gflf;”—;@ >0,

Consequently, for any aeC, 0 < Rea < 1, the integral

T §+°°v-1(x + B)'Bad

0

converges. Indeed, applying the above remark with 0 < ¢ < Rea, we
deduce the convergence of the integral in 0 and, applying it with Re @ <

¢ <1, we deduce the convergence in + oo,
Hence for 0 < Rea <1 the “Balakrishnan fractional powers” B* (see

[2]) can be defined. Now we show that B* is the analytical extension B,
of {U} in a: ‘

THEOREM 4.2. Let (X, ¥ ) be a dual pair of Banach spaces, satis-
fying (A), {U}icr @ bounded F-continuous one-parameter group in B.(X),
B its analytic generator and xe ;. Then for every € e€C, 0 < Rea <1,

Fa) = L‘;’fﬁﬁ‘— S”xm(x + B)"Brd .

0

In particular, for every te R

Ug = 7 — lim SIBTE o r“’v-l(x + B)"'Budn .
0

a—it T
0<Rea<l

ProOF. Let @€ . arbitrary.
By Theorem 3.2, for every )\ > 0

c+ioco
O+ By'Ba, 9) = @iy | v E_(F.(@), p)da, 0 < e < 1,
e—iw sln T

that is
{NeR; x> 0} N — {(\ + B)'Bx, @)

is the inverse Mellin transform of

{@aeC;0<Rea<1l}sar——"__((F.a),e).
sin T

Since the conditions of [6], Kap. 6, §8, Satz 3, are satisfied, it follows
that
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{@eC; 0 <Rea < l}sai> —(Fya), P
Sin T

is the Mellin transform of
(NeR; N> 0N~ (N + B)'Bx, @) .
Consequently, for every a¢ecC, 0 < Rea < 1,
Fa) = S‘—“ﬂ”ﬁ%‘ - [+ BrBean

0

g.e.d.

Theorem 4.2 implies the following converse of Corollary 3.5:
COROLLARY 4.3. Let (X, &) be a dual pair of Banach spaces, satis-
Sfying (A), {Ulicr @ bounded F-continuous one-parameter group in

B.(X), B, B,;, B_,,, its analytical extensions respectively in 1,1/2, —1/2
and x € Ty, 12N Ds_ Then for every te R

1/2°

Vg €T §+m>»"’“‘/2(7» + B)"'By,wd)
A o

Proor. We apply Theorem 4.2 withy = B_,,x € &2, and a = 1/2 + it.
q.e.d.

An other consequence of Theorem 4.2 is the following unicity theorem:

THEOREM 4.4. Let (X, &) be o dual pair of Banach spaces, satis-
fying (A), {Ulicr, {Vi}ier bounded F-continuous one-parameter groups
wn B(X), B, D their analytic generators and Y, Z F-closed linear sub-
spaces of X. If

lyeYN:0Dp;(M+ By 'y —(Mn+ D)'yeZ for all x> 0}
is F-dense in Y, then
(U, —-VvyYczZz, teR.
In particular, 1f B = D then U, =V, for all t€R.

Proor. Following Theorem 4.2, for any ye€ 2, N 9,
(U, —V.)y

=& — lim I o {5+ By — (v + DY wldn
a—it 0
0<Rea<l1

hence, for y in an . -dense subset of Y, (U, —V,)y e Z. q.e.d.

This result implies our statement at the end of Section 2.
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We remark that the above results can be extended to the case
|U,|| £ ce™t', teR, where ¢, <.

Now we prove another unicity theorem:

THEOREM 4.5. Let (X, %) be a dual pair of Banach spaces, {U.},cr,

{Vi}ier F-continuous one-parameter groups in B -(X) such that for some
constants ¢, >0, w > ¢, > 0

N = ce™™, ||[Vill = ce™®, teR,

B, D their analytic generators and Y, Z F-closed linear subspaces of
X If

o Iim || B"y|[V* < + o, lim || Dy |['/" < + oo,
ngpn; n—+oo n—+oco
n=t By — D'yeZ forall n=1

18 F-dense in Y then

yeYn ﬁ_%m

(U, —-Vv)yycz, teR.
Proor. Let B,, D,, be the analytical extensions of {U,} respectively
of {V,} in «eC and
yeYn ﬁ_%n N fjlgw

such that
EcHB”yll”” < teo, nEHiIID”yII”” < oo,
By — D"yeZ forall n =>1.
Then for every @€ Z* in .# the formula
fla)=<By — Dy, ), Reaz0,

defines a regular function on {a € C; Re @ = 0} which verifies the conditions
(i), (ii), (iii) of Proposition 1.3. Consequently f vanishes identically, hence

(Uy —Vy,9)=0, teR.
Since @ € Z* is arbitrary, it follows
Uy —-VyeZz, teR.
Now, using the .#-density hypothesis of the theorem, we deduce
v,-v,)ycz, teR.
q.e.d.

Theorem 2.4 and Lemma 3.1 imply that the eigenvalues of the ana-
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lytic generator of a bounded one-parameter group are included in R.\{0}.
Now we characterize these eigenvalues in terms of the group:

COROLLARY 4.6. Let (X, %) be a dual pair of Banach spaces, {U,};er
a bounded .F-continuous one-parameter group in B.-(X) and B its
analytic generator. Then for x€ X and \e R\{0} the following state-
ments are equivalent:

(i) rxey, Bxr=\x;

(ii) Ux =\2, teR.

Proor. Obviously, (ii) implies (i). For the converse implication we
apply Theorem 4.5 with Vv = "0, tc R, ve X, Y = Cx and Z = {0}.

g.e.d.

5. Spectral subspaces. In this section we analyse sets of elements
xz e X for which » — B"x, where B is the analytic generator of a bounded
Z-continuous one-parameter group {U,}, has exponential increasing. The
importance of these elements is justified by Theorem 4.5 and we shall
show that they are .#-dense in X. We associate to every closed subin-
terval [\, Ao] of (0, + o) a closed linear subspace of X which is invariated
by {U,} and on which the spectrum of B is included in [x,, A,]. We show
that this subspace coincide with the spectral subspace MY([In )\, In\,])
defined in [1], Section 2.

LEMMA 5.1. Let (X, %) be a dual pair of Banach spaces, {U.}icr
a bounded F-continuous one-parameter group in B(X) and B its analytic
generator. If x€NIo, D and \ = lim,_., || B*x||/* then for every integer
m=1

| B2|| < sup | UB"s|| = 1" sup || U, ||| -

Proor. Let F, be the .#-regular extension of ¢t —Ux on {aecC;
Rea =0}. If v =m =1 are arbitrary integers then, using the “three line
theorem” ([7], Theorem VI. 10. 3),

sup |UB"s < (sup | U1l B} (sup Ul 1ll)

Taking n — + oo, there results
sup [|U,B™z|| < A" sup || Ul [|2]] .
teR teR
g.e.d.
In particular, if Iim,_. [|B"x|[Y” = 0, then Bx = 0, so = = 0.
Now we are able to give the structure of {U,} if ¢(B) is a compact
subset of (0, + <o):
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THEOREM 5.2. Let (X, # ) be a dual pair of Banach spaces, {U.};cr
o bounded F-continuous one-parameter group in B.-(X) and B its
analytic generator. If

m = inf |\| >0, M= sup [N <+,

A€a(B) iea(B)

then there exists H € B.(X), o(H) C [In (m), In (M)], such that
U, =exp(itH), teR.
PROOF. Lemma 5.1 implies that B and B~ are bounded:
|Bll = sup ||U,[| M,

1B = sup U] -~ .

So, using Proposition 1.2, there results that {U,} is strongly continuous.
Following Theorem 3.6, d(B) C [m, M].

Let I":[0,1] —{» € C\R_; | arg \| =< 1} be a positively oriented rectifiable
closed Jordan curve around [m, M]. Consider the one-parameter group
{V.} defined by analytical functional calculus (see [7], Chap. VII):

V,= B = _1_§ MO, — B)id, .
2wy Jr

Then for any te R
IVl < - length () sup_[I(x = B)[|e"
and the analytic generator of {V,} is B. Using Theorem 4.6 with Y = X
and Z = {0}, we deduce
U, = B*, teR.
Now let f be the analytic function defined on C\R_ by the formula
SO)=Inx=1In|n] + rargr.
Define
H = f(B).

By the spectral mapping theorem ([7], Theorem VII. 3.11) ¢(H) = In a(B) C
[In (m), In (M)] and by [7], Theorem VII. 3.12

U, = exp (1tH) , teR.
q.e.d.

In particular, {U,} is uniformly continuous if and only if o(B) is a
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compact subset of (0, + ).

LEMMA 5.3. Let (X, &) be a dual pair of Banach spaces, {U.)cr
a bounded F-continuous one-parameter group in B-(X) and B its ana-
lytic gemerator. If 0+ x € \ie—w Dy then

fim || B || im || Bz |]"» = 1 .
7400 N—0

The equality holds if and only if x is an eigenvector of B (with eigen-
value Tim,_.. || B*x|['").

PrOOF. The case lim,_. |/ B x||* = 4+ is trivial, so we suppose
that A = lim,_., || B*x||/* < + co.

Let m =1 be an arbitrary integer. Since lim,... || B"(B "x)||“* = \,
using Lemma 5.1 we have

lzl] = | BX(B-"2)|| < \* sup | U, | [|B-"]| ,
Izl < (sup | T11) Tl B =

Taking m — oo, there results

1 <\Tim || B z|" .

Now we suppose that
}ng || B x|V = 7" .
Then a+—2\*F,(a) is a bounded entire mapping, so, by the Liouville
theorem, it is constant. Hence
AM'Br =1z,
Bx = \x .
g.e.d.

Let {U,} be a bounded .#-continuous one-parameter group in B.(X)
and B its analytic generator. For 0 < )\, £ N\, < + we define the

spectral subspace

X¥([y NaD) = {w€ A D T || Bral|* < 0, T | B0l < ]

Using Lemmas 5.1 and 5.3, it is easy to see:
(i) if IM, Ml SN A then
XB(IM, D) < XE(I, D 5
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(ii) of {IMf, M}er has nom-empty intersection then

X M) = ) XA MD 5

cel
(iii) every X®([\, N\.]) is norm-closed and invariant under the action

of {U};
iv) X%(n, M) = {x e 25; Br = e}, 0 <A < + o0;
(v) for every xe X%([n, \o]) and for every imteger m =1

M(sup [ U1) lioll S 1Bl = 2 sup U, o]

wn particular,
a(B| XP([My Na])) S [Ny Ne] -
For every f e L'(R) we define its inverse Fourier transform 7 by
fo)=\"rwpeat,  ser.
If fe L'(R) then the following inversion formula holds:

f() = i-Serf(s)e‘“’ols , teR.
27 )~

Now we prove our main technical lemmas:

LEMMA 5.4. Let (X, &) be a dual pair of Banach spaces, satisfying
(A), {U}icr @ bounded F-continuous one-parameter group in B.(X), B
its analytic generator and XP([\, N\.]) the spectral subspace associated to
vy Ml © 0, +0).  Then for every f € L'(R), f € CA(R), supp f C [In A, In 7],
and for every xe X

e Si:f(t)U,xdt € X*([ny M)

On the other hand, for every f € L'(R), Ffe C*(R), suppf compact, supp f N
[Inn, In),] = @, and for every x € XP([\, M\])

T Si“’ FA)Uwdt =0 .

ProoF. Let feLYR), feC¥R), suppfC[lnr, Inr,]. Then f has an
entire extension defined by

f@) = = fgeeds .

Since
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Inls A
iy f(a) = L S *Fr(s)einds
271 Jinxy
there exists a constant ¢ > 0 such that
)l < ____c___elmalnlg’ Ima=0,
@)= 1w z
) =—FC _emanh Ima<0.
F@] S =
Let x € X be arbitrary. It is easy to see that
“+ oo
aHff—S F + i) Uwdt

is an entire extension of

18 r—»U,(ﬂ‘-— Si:f(t)Utxdt> ,

hence
+o° (-]
y=5— | fO)Usdte N 2}
and
+oo
Bry = f—g Ft + i) Ugdt, —co <m < +oco”.
For n =0
1Byl | qodtert sup | U1

= el SuL t ’
SO

im || By|/" < €2 =1, .
Analogously,

Iim || By |[/» < e7oh = L

1

In conclusion, ¥ € X®([\,, As)).

To prove the second statement, we can suppose either

supp f C (In y, +o0) ,
or

supp f < (— o, Inn,) .

"
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In the first situation, denoting by @ > In )\, the greatest lower bound
of suppf, f has an entire extension such that for some ¢ > 0

| fl@)] =

—f __em . Ima=<0.
1+ |ap

Using the Cauchy integral theorem and Lemma 5.1, for every x € X*([\,, \,])
and for every integer n =1

+ oo
—o0

ng_ S ) U,xdt”

_ Hy_ Si: ft — in)UtB”xdtH

+oo 1
< —any n
o | ot supl|U ol
Since lim, ... e "\ = 0, we deduce
=T rovad - o.

In the second situation we follow a similar reasoning. q.e.d.

To exploit Lemma 5.4, we need the following “approximate unit
lemma”, which is undoubtly known but for which we found not reference:

LEMMA 5.5. There exists a sequence {f,} in L'(R) such that for any
n=1
8
ﬂ ’
1
t2

| ifuide =

Ifﬂ(t)lén—zn . t+0,

facC(R),
0<fu=1,fu=1o0n[-n,n]f.=0o0n (—c, —3n]U[3n, +c).

Let (X, 7)) be a dual pair of Banach spaces, satisfying (A), and {U}icr
a bounded F-continuous one-parameter group in B(X). Then for
every xc X

T — Siwf,,(t) Uaxdt —

in the F-topology.

PrROOF. For every n =1 we define the continuous function +, on
R by the relations:
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0 se(—o, —3n],

2 5n
n? PT T
2\8) =
¥a(®) 2 _ 3n
—_— S__ ——,—’
n? 2
0 se[—mn,0],

4, is linear on the intervals

[-on -5, [ -], [,
Vau(8) = ¥u(—35), seR.
Let @, € CR) be defined by:
P.(s) = S,_wqimq;rn(v)dv)du ,  scR.

It is easy to verify that
0sp,<1l,p,=1lon[—mn],®,=0o0n (—c, —3n]U[3n, + ),

| (s)ds = an,
| 1o ds = |l @)ds ==

Now we define for every n = 1 the function f, as being the Fourier
transform of ®,:

1 (+= )
mn=—{ p.(s)etds, tecR.
2T J-=

So, for every ¢,

1 (*+ _ 2n
17401 = 2= | Ta(ads = 22

Since
. 1 +oo .
(it £u(t) =_S P(s)eds, teR,
27 J-o

we have for every ¢t = 0

1 (™ n 1 _ 2 1
0= 2| iellds L = 22

Consequently,
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1

[ iea = Ty [T 2 Lly

2 S
n t* —a~l T tpn ¢

I

T T T
8

T

If (X, #) and {U,} are as in the statement of the lemma, then for
every x€ X, €. # and € > 0 there exists 6 > 0 such that for [¢]| < 0 we
have |[{Ux — x, )| < me/16. Since

+oo ~
| “rwdt =0 = 2.0 =1,
there results

|<5r - Si: fOUadt — x, cp>‘

= || rio¢va - 2, 2rat)

e 2 1
<| @i | 2 Lay1+suplUll)liall (2]
= £+ (14 supl|U) ol ]l -

Hence there exists n. such that for n = =,
Kﬁ'— rwfn(t)Utwdt — x, <p>~ <e¢.

q.e.d.

Suppose that (X, %) and (&, X) satisfy (A, and xe =2;. If {f.}
are as in Lemma 5.5, then by Lemma 5.4

©, = T — Sf: £t Uzdt € X2([e=, &),
by Corollary 2.5
Br, = 5 — gi:fﬂ(t) U,Bzdt
and by Lemma 5.5

z,—%, Bzx,— Bx

in the “#-topology. Consequently, for bounded groups Corollary 2.6 can
be improved:
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(vi) if (X, F) and (&, X) satisfy (A, then the sequential F-
closure of B| Uo<11§12<+w X5([Ns 7\'2]) s B.
Supposing that (X, &) satisfies (A,), we define for 0 <\, <A, < + o0

feLXR), feC¥R), } .

XMy \2) = - ” ¢ ’ -
(O 22)) {f S_mf(t)det suppf Cllnx, In),], x€ X

By Lemma 5.4, X%((\, \p)) C XZ([\yy Na))-
We prove a “regularity property” which improves [1], Proposition
2.2 in the case of the additive group R:

THEOREM 5.6. Let (X, &) be o dual pair of Banach spaces, satis-
fying (A), {Uher @ bounded .F -continuous one-parameter group in
B .(X), B its analytic generator and 0 < A, <\, < +co. Then

XP([u Xe]) = ) XP((M07, Ne0))
0>1

for every feLR),feC¥R), supp 7
ze X; compact, suppf N [Inx, InX,] = @,

we have F — S+mf(t) Ugdt = 0

ProoF. We denote the last set in the above equalities by S.
Let xeS, &> 0 and feLY(R) such that feCXR), /=1 on [In, —¢,
In), + €] and suppf C[Iln), — 2¢, In\, + 2¢]. Consider a sequence {f,} in

. /\ ~ AA
L(R) as in Lemma 5.5. Since f, — fxf, =f, — ff. belongs to C*R),
has compact support and vanishes on [In\, — ¢, In ), + €], there results

F - Sj:fn(t) Uadt
= 7 U OUzar + 5T~ For Vst
=7 - Sf:(f *f)E) Udt

If n=n, = max {|Inx, — 2¢|, | In %, + 26|} then Fxfi(s) = F(s)Fu(s) = F(s),

sc R, hence fxf, = f. Consequently, for n = n,
7\ r0Uait = 57— | s )Vt .
By Lemma 5.5
F — E:f”(t) Uadt —

in the & -topology, so we deduce
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x = F — Simf(t) U,xdt € X5((Me7%, Me%))

In conclusion, for every 6 > 1, S X%((\.07", \y9)).
Using Lemma 5.4, the above inclusion and property (ii) of the spectral
subspaces, we deduce:
Xy N]) S
C N XP((M07Y M0)) < N XP([M07% Nu9])
6>1 6>1
= XP([My ) -
q.e.d.

If (X, &) and (%, X) satisfy (A,) then for every f € L'(R) the operator
Xoxm 7 — S+°°f(t) Uwdt

is F#-continuous ([1], Proposition 1.4). Hence Theorem 5.6 implies:

vil) if (X, F) and (F, X) satisfy (A, then every X5([\, \.]) is
F~closed.

COROLLARY 5.7. Let (X, &) be a dual pair of Banach spaces such
that (X, Z#) and (&, X) satisfy (A), {U}er @ bounded F-continuous
one-parameter group in B-(X), B its analytic gemerator and 0 <\, <
A < +oo. Then

for every feLR),suppf N[lnx,Inx]= @,

X2([My Ma]) = {xe X5 e have .G — Si“’ f(t)Uadt = 0

PrOOF. We denote the right hand side of the above equality by M.
By Theorem 5.6 M C X5([n,, M)

Now let x e X*([\, N\;]) and f € L'(R), supp n [Inn, Inn,] = @. Then
there exists ¢ > 0 such that f vanishes on [In A, — ¢, In ), + ¢]. Following
Theorem 5.6 e XZ((\e7¢, \¢%)), so for some g€ LY(R), supp §C[In ), — ¢,
In ), + €], and for some ye X

x=F — S+mg(s)Usyds .
Using the fact that
X5z — §+°°f(t) U,zdt

is .#-continuous, for every @ e &
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+oo +oo (400
(7= rwUadt, o) = || s 0@ V.0 Prdtds
+00
= | (Fraex U, Prdt
S ~
Since fxg = f§ = 0, there results f*g = 0, so

T S+wf(t) Uadt =0 .

In conclusion, X%([\, \,]) C M.
g.e.d.

The right hand side of the equality from Corollary 5.7 was defined
by W. Arveson in [1], where he denotes it by MY([ln )\, In);]). Hence
the spectral subspaces of B considered by us coincide with the spectral
subspaces of {U,} defined by Arveson.

The use of spectral subspaces reduces the study of bounded .#-con-
tinuous one-parameter groups to computations with bounded uniformly
continuous one-parameter groups.

We remark that further progresses may be expected using techniques
of generalized scalar operators (see [4]).

6. Some examples. In this section we examine two important par-
ticular cases.

Firstly we consider strongly continuous groups of unitary operators
on a Hilbert space. For functional calculus with self-adjoint operators
we send to [11].

THEOREM 6.1. Let H be a Hilbert space, {u,};.r @ strongly continuous
one-parameter group of unitary operators on H, b, its analytical exten-
siton in @eC and b = b, its analytic generator. Then b is self-adjoint,
positive, tnjective and for any aecC

b, = b*.
Proor. Let ¢ > 0.
For each ¢, 7€ .2, the mappings
a— (§| Fy(@)) = (F(@)]§)
are regular extensions of ¢t — (u,£|7) on {°¢eC; 0 < Rea < ¢}, hence they
coincide. Consequently

(b£[7) = (&lbe)
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that is b, is symmetriec.
If ¢e =z, and 7€ Z,* then the mapping

ai— (Fa)|n)

is bounded and regular on {¢c€C;0 < Rea < ¢}. We have the following
estimations on the boundary:

[(Fe(it) )| = [(ug )| = €] |71l

|(Fe(e + 1t) ()| = [(u£]bXn)| =< [|€]] |6 7] .
Using the Phragmen-Lindelof theorem,

|[(F(@)|p)| < [[&]] max {|[7]], [[bx7]]}, O0=Reacxe.
Thus there exists G(@)<€ H such that
ElG(@) = (F)|n), ¢Eez,.

It is easy to see that @+ G(a) is an H-regular extension of 4t w7
on {¢eC; 0 < Rea <¢}. Hence 7c.2,, so b, is self-adjoint.

Since by Theorem 2.4 b = b,,b,,,, it follows that b is self-adjoint,
positive and injective.

By Theorem 2.4 and by the unicity of the self-adjoint positive square
root of a self-adjoint positive operator, we deduce that for all dyadic
rationals re R

b, =b".
Hence for each ¢ e N> .. Z,» the integer mappings

ai— FE(a) ’
a— be¢
coincide on the dyadic rationals; therefore they coincide on C. Conse-

quently, for any @ € C, b, and b* coincide on N}>_.. 2,» and, using Corollary
2.6, we deduce:

b, = b~.
q.e.d.
In particular, we obtain the Stone representation theorem:
u, = b*, teR.

We remark that, applying Corollary 3.5 with ¢ = 1 in this case, we
obtain [5], Lemma 4.3.

Now we consider our second particular case.

Let H be a Hilbert space and {u.}, {v,} strongly continuous one-para-
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meter groups of unitaries on H. It is known that in B(H)* there exists
a unique norm-closed linear subspace B(H), such that the duality between
B(H) and B(H)* induces the relation B(H) = (B(H))* (see for example
[12], Corollary 1.13.3). The linear forms

BH)>xw (xtn), §7neH,

form a total set in B(H), in the norm-topology. Define for every te R
an isometry U, in By (B(H)) by

Ux = vxu, .
It is easy to see that {U,} is a B(H).-continuous one-parameter group.

THEOREM 6.2. Let H be a Hilbert space, {w.)},cr, {V.}icr Strongly con-
tinuous omne-parameter groups of wunitary operators on H, b, d their
analytic generators, {Ul,cr the above defined B(H ). -continuous one-parae-
meter group of isometries in By (B(H)) and B, its analytical extension
wm aeC. Then for every acC

Dy, = {€ € B(H); b"| Dyapye = b* and d°axb® is bounded)
and if xe < then
Dgagpe = ;@b_a_ ,
B,x = d*xb~ .
ProoF. We consider, for example, that Rea = 0. In the case

Rea < 0 the proof is similar.
Suppose that x e B(H) is such that 6*| Dy, = b* and

[[dxd*¢|| < clléll, &€ Dhage .
Then
[@beeld™ )| < cllE ], &€ Diapses P E D .

Since 0% Dya,pe = b, we deduce that the above inequality holds for every
£€ D, Ne Dya. Using the Phragmen-Lindelof theorem, there results:

|(xb7&|dy)| < max {||=]], e} |1 1711,
Segba) 7769,1?, 0§Re’7§Rea.

Hence for 0 < Rev < Re @ there exists F(v) € B(H) such that
IFM) = max {|[z]], c} ,
(F(ME|n) = (xb" £|d'), & € Dy NE D7 -

It is easy to see that ¥+ F(7) is an B(H),-regular extension of it — v,2u,
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on {ve€C; 0 < Rev = Rea}. Consequently x€ ;.
Conversely, let x€. ;. For &€ D, € Fa
V= (FLME)
Y (2b7E | dT7)
are regular extensions of it — (v,zu,&|7) on {v€C; 0 £ Re v < Re a}, hence
they coincide. In particular,
(B.x)e|7) = (xb8|d™n) .
For every e 9.
|(@bs|d )| < [|(Ba)2]| (1711,  7ne D,
so 71— (b6 |dn) defines a bounded antilinear functional on H. Conse-

quently
bt € Djay = Dya

that is
§ € Dyagpa
Moreover,
(B2)e|n) = (dxb*¢|n) , M€ D,
(B,x)é = d*xb¢ .
In conclusion, Dya,0 = Dye, d°ab® is bounded and B,x = d°xb”. q.e.d.

Applying Corollary 3.5 with e =1 to {U} and B, it follows [5],

Lemma 4.2.

We remark also that Theorem 4.4 is applied in this particular case
in [15].

We are grateful to A. van Daele who communicated us an example
of {w,} and {v,} for which g(B) = C. Hence he contributed to correct an
error in our initial version. However, it seems that, using techniques
from [14], it can prove that if b or d is bounded then ¢(B)C R,.
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