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As is well known, the plane Teichmiiller’s modulus theorem which
estimates for the modulus of the plane ring separating a pair of points
0 and ¥ from 0 and -« played an important role in dealing with distor-
tion problems in function theory. Lehto-Virtanen [4] and A. Mori [5]
modified this theorem so as to be suitable for further applications to
distortion problems, that is to say, they estimated for the modulus of
the plane ring separating a pair of points @ and 8 from 0 and <. The
main point of the proof for this modification is that a ring separating «
and B from 0 and o« is doubled by means of two branches of the
inverse of the mapping z = w® and then a ring whose boundary compo-
nents are separated by doubled rings is transformed into another ring
to which the plane Teichmiiller’s modulus theorem can be applied.

Now, in order to estimate for the modulus of a ring in n-space
(n = 3) separating a pair of points @ and B from 0 and -, the ring is
to be transformed into another ring so that one may be able to use
Teichmiiller’s modulus theorem in n-space which estimates for the modu-
lus of a ring separating a pair of points 0 and ¥ from ¢ and <. To
this purpose, an appropriate auxiliary K-quasiconformal mapping is
required, where K can not be equal to 1. The reason can be seen from
the above mentioned situation in the 2-dimensional case and the familiar
result® that every 1l-quasiconformal mapping of a domain in space is
nothing but a restriction of a Mobius transformation to the domain. In
this paper, we estimate in Theorem 1, for the modulus of a ring in =-
space separating a pair of points @« and B from 0 and <, and as its
application, show in Theorem 2, a distortion result of the Holder type
for K-quasiconformal mappings of the unit ball in n-space.

1. The modulus of a ring and K-quasiconformality. A domain R
in the Mobius n-space** is called a ring if its complement has exactly

*) See, for instance, ReSetnjak [7].
**) The Mobius n-space means the one point compactification of the euclidean n-space
obtained by adding the point at infinity.
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two components, which we denote by C, and _Cl. Then, the boundary
of R has also two components, i.e. B,=C,N R and B, = C,N R, where

R is the closure of R.
The modulus of a ring R has been defined in the various but equi-

valent ways. Here, we shall use the definition in terms of the extremal
length, and denote by m, the k-dimensional Lebesgue measure. For
each real-valued and non-negative Borel measurable function o(z) of R,

let
L(p) = int g o(@)ds (ds = dm,) ,

where the infimum is taken over all locally rectifiable curves 7 joining
B, and B, in R. And put

S(p) = in Lp(x)""da (do = dm,_)

where the infimum is taken over all compact piecewise smooth (n — 1)-
dimensional hyper-surfaces 2 separating B, and B, in R. Further we

put
V(p) = Sﬂp(x)“dw o = dm,) .

Then it has been shown by Krivov [3] that
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which are equal to each other, are called the modulus of R and are
denoted by mod R, where do,_, denotes the (n — 1)-measure of the

surface of the unit n-ball.

The following n-dimensional versions of properties of moduli have
been shown by Mostow [6], which will be used later on.

The superadditivity of the modulus of a ring. Let R be a ring
and let R, R, ---, R, be mutually disjoint rings each separating two
boundary components of R, then

mod R, + mod B, + .-+ + mod R,, < mod R,

which reduces to the monotonicity when m = 1.
A ring whose complementary components are the unit ball {z | |z|<1}
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and theray {zjl¢c =2, < oo, &, =2, = +++ =2, = 0, where 1 < ¢} is called
the Grotzsch ring in space and is denoted by Rs(c). This is equivalent
1-quasiconformally to the ring whose complement consists of the segment
{x|0Z 2, =1/¢, 2, = --- = x, = 0} and the exterior {x| |x| = 1} of the
unit ball.

Grotzsch’s modulus theorem. Let R be a ring whose complementary
components are G, and C,. If C, contains the ball {z||z| < a} and C,
contains some point at distance b from the origin, then

mod R =< log @,,(%) )

where log @,(c) means the modulus of the Grotzsch ring Rg(c).

Teichmiiller’s modulus theorem. If C, contains the origin and a
point a at distance a from the origin, and C, contains a point S at
distance b from the origin, then

mod R < 2log @,,(JZ?) .

Next, let D and D’ be domains in the Mobius n-space. If a homeo-
morphism f: D — D’ satisfies the double inequality

%mod R < mod f(R) < Kmod R

for every ring R whose closure is contained in D, then f is said to be
K-quasiconformal.*

Particularly, let f: D— D’ be a diffeomorphism. Let ¢, ¢, ---, e,
be the unit vector in wm-space, and be o = le, + l,e, + --+ + l,e,, Where
B+0L+ -+ =|h*=1. Put

max | f(@)k| = L(f'(z)) and min | f(@k| = US' (@),
where f'(x) means the derivative of f(x). We here refer to a criterion
(Vaisdla [8], Corollary 15.4) for the K-quasiconformality.

LEMMA 1. A diffeomorphism f: D— D' is K-quasiconformal 1f and
only if the double inequality

1
K‘n—l

L(f (@) = [J (@, £)] = KU f'(z)"

* Viisdld [8] defined the modulus of a ring by the (n—1)-power of the quantity in
the definition of the modulus mentioned above. Hence, we remark that f is K-quasicon-
formal in Viis#ld’s sense if and only if f is K'/(*D _quasiconformal by the above definition.
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holds for every x € D.

2. A modification of Teichmiiller’s modulus theorem. In estimating
for the modulus of the plane ring separating @ and 8 from 0 and o,
the ring was transformed by two branches of the inverse of the mapp-
ing z = w?® and by an appropriate Mobius transformation into another
ring to which the plane Teichmiiller’s modulus theorem can be applied.
In order to obtain an estimation for the modulus of a ring R separating
« and B from 0 and < in m-space, we first consider the mapping

(2.0) =Y — Y, ,=29Y,, ¥, =Y, B=J=mn)

in the n-dimensional case (n = 3) corresponding to the mapping z = w?
in the plane. This is clearly a diffeomorphism in a finite domain D not
containing the origin. Denote by = = f(y) this mapping, then it is seen
from some elementary computations that

|J(y, N = 4wt + v2) ,

and
L(f"w) _ { {4yt + v for 4(yi+ ) >1,
[T Al At + ) for 4+ 93 <1,
and
|J(y, ) _ {4(1/% + ¥3) for 4(yi+ %) >1,
W@ {4t + wdf " for Ayt + ) <1.

Hence we have

LW _ T ) _
ST, £) and S ey

from which Lemma 1 implies that the mapping = = f(y) in (2.0) is not

quasiconformal in D. Hence follows that there is neither finite upper

bound nor positive lower bound for (mod R'/mod R) when a ring R

varies. Consequently, we can not use this mapping in our estimate.
Then, we give our eyes to the mapping

x—V—y——‘y_+y; , x—V—zyffy , w=vy; B=j=mn).
1 1

Because, its inverse mapping consists of two branches y = y,(x) and
y = y_(2):

IA
IA

(2.1) y1='rcos—g—, yzzrsin—g—, yi=x; B=j=n)
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for — 7w <6 <m and for mw < 6 < 3w, respectively, and these branches
are 2-quasiconformal as will be proved below and further a ring con-
sidered is doubled by means of these branches, where (r, 6, 5, +--, ,)
is the cylindrical coordinates of a point = of the euclidean n-space.
Each of homeomorphisms y =y (z): {2] — 7 <0< 7} —{y| —72< p <
n/2} and ¥y = y_(2): {x|7r < 0 < 37} —{y|7/2 < ¢ < 37/2} is diffeomorphism
and is called a folding. After some elementary calculations, we have
for y(x) of (2.1),

I (@, y)| = % and |y(@)hP=1— —i—(k sin 6 — 1, cos 6)°

so that
L) =1 and Uy'(x)) =—§-.

Therefore we have

J@ | _ gt gnq LW@) _ 5~ on
Wy o ™M e 2EE

from which Lemma 1 yields that both branches ¥y = y.(x) and y = y_(x)
are 2-quasiconformal.

Now, we prove, by the aid of these branches, the following theorem
which means a modification of Teichmiiller’s modulus theorem stated in
Section 1.

THEOREM 1. If a ring R in m-space separates a pair of points «
and B from the origin and the point at infinity, then

mod R < 2log @(VZ(II“'Z ;:BV)) .
a —_—

ProoF. We first choose the coordinate (hyper) plane x, = 0 so as
to pass through a and B, and take the x;-axis such that « lies on the
positive axis.

Now, denote by R’ the image of R obtained by the branch y = y.(x),
and by R” the image of R by ¥y = y_(x) in (2.1). Let C; and C; be
the bounded components of the complement of R’ and R", respectively,
then the complement of C;U C, forms a ring, which is denoted by R,.
Since both R’ and R" separate one of C; and C, from the other, the
superadditivity of the modulus of a ring implies that

mod R’ + mod R” < mod R, .

Using 2-quasiconformality of branches in (2.1), we have
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mod B’ = mod R” ;% mod R ,
so that
(2.2) mod R < mod R, .

Next, transform R, into another ring R; by the Mobius transfor-
mation

DY —al
w, = k=1 _
2 2
(2.3) (yl + al) + ’Z‘_‘z (l/k
w; = 40y, @<ji<n),

(%+m¥+éﬁ

where @ = (a,, 0, ---,0). Then
2.4) mod B, = mod R; .

Denote by «f, 8. the image points of a =(a,0, ---,0), 8= (b, 0,
bsy ---, b,) by the branch y = y,(x) in (2.1), then we have &), = a and
B = . And denote by a’, 8. the image points of @, 8 by the branch
y =y_(x) in (2.1), then we get " =(—a, 0, ---,0) and 8. = (— b, 0,
by <+, b,). Further, let @, 87 be the image points of «), B, by the
mapping (2.3), then we have

ay = (0, ---, 0) = the origin and

B S —
gr=—27 " o, 40, , 3j=n.

(b, + @) + 3} bt b +a)+30)

And let a”, B” be the image points of a’, 8. by the mapping (2.3),
then we get
a” = the point at infinity and
b2 & b —
O AR~ S fa.b; 3<j<mn.
(=b, + @) + 30 (=b +a) + 38

Since R; separates the points the origin and B from the point at infinity
and B”, the n-dimensional version of Teichmiiller’s modulus theorem

stated in Section 1 yields that
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mod R, < 2 log 0, \/%lﬁ_l)
+

2(a? + b2 + ; b?)

= 2log @, 2
(=b, +a)t + 3, b
2(al + [BP

— 210g 0.( VL2,

Combining it with (2.2) and (2.4), we have the desired estimation.

3. A distortion result in K-quasiconformal mappings of the ball.

In applying Theorem 1 to K-quasiconformal mappings in n-space, an
estimate for @,(a)/a is required. @, a)/a<4 is well known, and @ (a)/a=
4V'2 ¢’* was shown by Gehring [1]. An n-dimensional version of such an
estimation was obtained by us as follows.

LEmMA 2. (Ikoma [2]). @.(a) £ M., where
_ T T n—2 ( ket (—1)k—cos(kx!(n—1))
Ny = 4[exp {—Z cot 2m—1) }iIkI___I1 {sm 1) } .

Then the following distortion theorem 1is proved by applying
Grotzsch’s modulus theorem and Theorem 1 and Lemma 2.

THEOREM 2. Let y = y(x) be any K-quasiconformal mapping of the
unit ball in n-space omto itself normalized y(0) = 0. Then, for every
pair of points &, B with || <1, |B| £ 1,

ly(@) — y(B)| = 2\, | — B,
Proor. Since |y(a) — y(B)| = |y(a)| + |y(B)| < 2, there holds for

9@ — ¥(B) = 2 < 20 (=

1/K

) < 2N, |l — BV,

Hence, our theorem has been proved for (@ — B8] = 1/n,. Since it is
trivial for |a& — B8] = 0, it suffices to prove the theorem for the case
0< |a— B <1/,

First, we prove the theorem for the case |a@ + 8| =< 1. Since the
spherical ring 4 = {z||a — B|/2 < |2z — (o + B)/2| < 1/2} is contained in
the unit ball |z| < 1, the image y(4) of A is also contained in |y|< 1.
Therefore, y(A) is contained in the ball |y — y(@)| < 2, so that the one
component of the complement of y(A) contains both y(«) and y(B), and
the other component of that contains {y||y — y(@)| = 2}. Consequently,
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we have by Grotzsch’s modulus theorem,

2
mod y(4) < log @, .
( ly(@) — y(8)| >
Taking the modulus condition
1 1 1
—mod A =—log———— =<
Kmo e ogla_B|_mody(A)
into account, we have
1 2
log————— < log @, .
la — B|'% ( ly(@) — y(B)] )

Using the above Lemma 2, we get

1 < 2N,
la— BI% 7 ly(@) — y(B)|’

so that
ly(a) — y(B)| < 2\, @ — BVE < 2\, | — BIVEE

Finally, we consider the case |@ + 8| > 1. The ring A in this case
extends over the exterior to the ball |x| < 1, and so we extend y = y(x)
to y*(x) of |x| < o to |y| < e K-quasiconformally. That is to say,
extend y(x) to |z| > 1 by

y@), |lz|=1,
YO ) o)

then y*(x) becomes a K-quasiconformal mapping of 2| < o to [y|< ce.
Now, since the image ring y*(A) of A separates the origin and oo
from y(a) and y(B), we obtain by Theorem 1,

mod y*(4) < 2 log aﬁn(]/z(']??//((?)'zfy (' ,(;/)({8) 2.

Using the preceding Lemma 2 again, we have
V2vV'2 )
ly(@) — y(B)|

< 2log( B

Together this with the modulus condition in the definition of K-quasi-
conformality, we get

’ Ix|>19

mod y*(4) = 2log q)n<
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1 2\
log ——— < 2log ( 2 ’
la — B|V% ly(@) — y(B)| )
whence the required result follows.
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