ON LINEAR TOPOLOGICAL PROPERTIES OF SOME C*-ALGEBRAS

MASAMICHI HAMANA

(Received March 15, 1976)

The purpose of this note is to give Banach space-like characterizations of the following special algebraic properties with respect to a C^* -algebra A and a von Neumann algebra M:

I. each irreducible representation of A is finite dimensional;

II(resp. II'). each irreducible representation of M (resp. A) is finite dimensional with bounded degree;

III(resp. III'). M (resp. A^{**}) is a finite atomic von Neumann algebra, where A^{**} , the bidual of A, is identified with the enveloping von Neumann algebra of A, i.e. the von Neumann algebra generated by the image of the representation of A which is the direct sum of all cyclic representations induced by states of A.

We shall single out these properties by means of the (DP) property and properties (*), (**) defined below. For a Banach space E, let us consider the following conditions:

 (DP_1) for any Banach space F, each weakly compact linear map of E into F transforms each weakly relatively compact subset of E to a relatively compact subset of F;

 (DP_2) each $\sigma(E, E^*)$ -convergent sequence in E is $\tau(E^{**}, E^*)$ -convergent;

(DP₃) each $\sigma(E^*, E^{**})$ -convergent sequence in E^* is $\tau(E^*, E)$ -convergent;

(*) each $\sigma(E, E^*)$ -convergent sequence in E is norm-convergent;

(**) for any locally convex topological vector space F, each weakly compact linear map of E into F is compact.

The implications among these conditions are as follows:

 $(DP_1) \Leftrightarrow (DP_2) \Leftrightarrow (DP_3)$ ([3] or [2; Chapter 9]), (*) or (**) $\Rightarrow (DP_1)$, and (**) \Leftrightarrow "(*) is satisfied with E replaced by E^* ." (See Lemma 6 below.) We say that a Banach space E has the (DP) (=Dunford-Pettis) property [resp. property (*), (**)] if E satisfies any one of the equivalent conditions (DP₁)-(DP₃) [resp. (*), (**)]. The definition and three equivalent forms of the (DP) property are due to A. Grothendieck [3]. The (DP) property can be considered to afford a sort of axiomatization of characteristics of weakly compact linear maps acting on C(K), the Banach space of continuous functions on a compact Hausdorff space K; in fact, a continuous linear map of C(K) into a Banach space F is weakly compact if and only if it transforms each weakly relatively compact subset of C(K) to a relatively compact subset of F([3] or [2; Chapter 9]). This fact shows that the commutative C^* -algebra C(K) has the (DP) property. Another example with the (DP) property is the predual L^1 of the commutative von Neumann algebra L^{∞} , and the sequence space l^1 (resp. c_0) is the typical example with property (*)[resp. (**)]. Therefore it will be meaningful to consider which C^* algebras or preduals of von Neumann algebras have the (DP) property, property (*) or (**). But the example in S. Sakai [7] shows that generally these Banach spaces do not have the (DP) property.

Throughout this note, topological isomorphisms between Banach spaces always mean linear homeomorphisms between them, and for a Banach space E, E_1 denotes the unit ball of E.

Our theorems are stated as follows:

THEOREM 1. For a C^* -algebra A, the following are equivalent:

(1) A^* has the (DP) property;

(2) $[resp. (2')] A^{**}$ is finite (resp. finite type I);

(3) each irreducible representation of A is finite dimensional.

THEOREM 2. For a von Neumann algebra M, the following are equivalent:

(1) M is topologically isomorphic to a $C_0(\Omega)$, the Banach space of continuous functions on a locally compact Hausdorff space Ω ;

(2) M^* has the (DP) property;

(3) M satisfies the property II above, or equivalently M is of the form $\sum_{i=1}^{n} {}^{\oplus}Z_i \otimes B(H_i)$, where the Z_i are commutative von Neumann algebras and the $B(H_i)$ are full matrix algebras on the i-dimensional Hilbert spaces H_i ;

(4) M_* is topologically isomorphic to an L^1 .

THEOREM 3. For a von Neumann algebra M, the following are equivalent:

(1) M is finite atomic;

(2) M_* has property (*);

(3) the strong and weak-operator topologies coincide on M_1 .

In Theorem 3, the implication $(1) \Rightarrow (2)$ is due to K. Saitô [6; Theorems 1 and 2]. These results mean that properties I, II' and III'

are preserved by topological isomorphisms between C^* -algebras and that property II (resp. III) is preserved by a topological isomorphism (resp. σ -weakly bicontinuous linear isomorphism) between von Neumann algebras.

Proofs of Theorems and their Corollaries. To prove Theorems 1 and 2, we prepare 5 Lemmata.

LEMMA 1. The predual M_* of a finite type I von Neumann algebra M has the (DP) property.

PROOF. We first note that, for any von Neumann algebra N, N_* has the (DP) property if and only if, for each sequence (x_n) in N, $x_n \to 0$ $\sigma(N, N^*)$ implies $x_n^* x_n \to 0$ $\sigma(N, N_*)$. To see this, take N_* as E in the condition (DP₃) and remark that $x_n \to 0$ $\sigma(N, N^*)$ implies uniform boundedness of (x_n) and that $x_n \to 0$ $\tau(N, N_*) \Leftrightarrow x_n^* x_n$, $x_n x_n^* \to 0$ $\sigma(N, N_*)$ [1; Theorem II. 7].

By hypothesis, M is of the form $\sum_{i=1}^{\infty} {}^{\oplus}Z_i \otimes B(H_i)$, where the Z_i are commutative von Neumann algebras and the $B(H_i)$ are the $i \times i$ full matrix algebras on the *i*-dimensional Hilbert spaces H_i . Let z_j be the central projection in M such that $Mz_j = \sum_{i=1}^{j} {}^{\oplus}Z_i \otimes B(H_i)$. Then $z_j \uparrow 1$ strongly and the predual $(Mz_j)_*$ of Mz_j has the (DP) property since it is topologically isomorphic to the Banach space of type L^1

$$(Z_1)_* \oplus [\underbrace{(Z_2)_* \oplus \cdots \oplus (Z_2)_*}_{2^2}] \oplus \cdots \oplus [\underbrace{(Z_j)_* \oplus \cdots \oplus (Z_j)_*}_{j^2}] (l^1-\text{sum}).$$

Therefore, by the first paragraph, for a sequence (x_n) in M,

$$x_n \to 0 \ \sigma(M, M^*) \Longrightarrow x_n z_j \to 0 \ \sigma(M z_j, (M z_j)^*)$$

 $\Rightarrow x_n^* x_n z_j \to 0 \ \sigma(M z_j, (M z_j)_*)$
for all j.

Given $\varepsilon > 0$ and a positive φ in M_* , there exists a j_0 with $\varphi(1 - z_{j_0}) \leq \varepsilon/\sup_n ||x_n||^2$; hence

$$\overline{\lim_{n \to \infty}} \varphi(x_n^* x_n) \leq \lim_{n \to \infty} \varphi(x_n^* x_n z_{j_0}) + \varepsilon = \varepsilon$$
.

Thus we have $x_n^* x_n \to 0$ $\sigma(M, M_*)$ as desired.

REMARK. As shown in the proof above, the $(Mz_j)_*$ are topologically isomorphic to L^1 , but so is not M_* (see Theorem 2).

The following Lemmata 2 and 3 are a modification of the argument in [7] and an immediate consequence of the proof of Lemma 1, respectively.

q.e.d.

LEMMA 2. If C(H), the algebra of compact operators in a Hilbert space H, has the (DP) property, then H is finite dimensional.

LEMMA 3. Let M be a von Neumann algebra and N a σ -weakly closed *-subalgebra of M. Then if M_* has the (DP) property, so does N_* too.

LEMMA 4. If the predual M_* of a von Neumann algebra M has the (DP) property, then M is finite.

PROOF. If M is not finite, there exists a σ -weakly closed *-subalgebra N of M which is *-isomorphic to B(H) for some infinite dimensional Hilbert space H. By Lemma 3, $T(H) \cong N_*$ has the (DP) property. Then it is readily verified from the definition of the (DP) property and the fact that $C(H)^* = T(H)$ that C(H) has the (DP) property, contradictory to Lemma 2.

LEMMA 5. Let A be a C^{*}-algebra and A^{**} the enveloping von Neumann algebra of A. Then the following are equivalent:

(i) $[resp. (i')] A^{**}$ is finite (resp. finite type I);

(ii) each irreducible representation of A is finite dimensional.

PROOF. (i) \Rightarrow (ii) and (i') \Rightarrow (i) are obvious. (ii) \Rightarrow (i'): Let z be the central projection in A^{**} corresponding to the finite type I part of A^{**} . Assuming $z \neq 1(1)$, the unit of A^{**} , we deduce a contradiction. Let $I = Az \cap A$. Then I is a proper closed two-sided ideal in A and A/I is a nonzero C^* -algebra whose irreducible representations are all finite Hence by [4; Theorem 6.1] there exists a closed two-sided dimensional. ideal J in A such that $J \supseteq I$ and J/I satisfies a polynomial identity (or equivalently all irreducible representations of J/I are finite dimensional with bounded degree). There exist central projections p, q in A^{**} with $ar{I}^{\sigma-w}=A^{**}p,\ ar{J}^{\sigma-w}=A^{**}q$ and $p\leqq q$. We have $p\leqq z$ since $ar{I}^{\sigma-w}=$ $(Az \cap A)^{-\sigma-w} \subset A^{**}z$. On the other hand, since J/I satisfies a polynomial identity, so does $(J/I)^{**} \cong A^{**}(q-p)$. Hence $q - p \leq z$. Thus $q = p \lor (q - p) \leq z$, $J = Aq \cap A \subset Az \cap A = I$, a contradiction. This completes the proof. q.e.d.

PROOF OF THEOREM 1. $(1) \Rightarrow (2)$ by Lemma 4, $(2) \Leftrightarrow (2') \Leftrightarrow (3)$ by Lemma 5, and $(2') \Rightarrow (1)$ by Lemma 1. q.e.d.

PROOF OF THEOREM 2. $(1) \Rightarrow (2)$: If M is topologically isomorphic to a $C_0(\Omega)$, so is M^* to $C_0(\Omega)^* = \mathfrak{M}^1(\Omega)$ (the Banach space of bounded Radon measures on Ω). Since $\mathfrak{M}^1(\Omega)$ is a Banach space of type L^1 , M^* has the (DP) property [3]. $(2) \Rightarrow (3)$: By Theorem 1, (2) implies that each irreducible representation is finite dimensional, so that M is a CCR algebra. Thus we obtain (3) [4; Theorem 9.1].

 $(3) \Rightarrow (4)$: Immediate from the proof of Lemma 1.

(4) \Rightarrow (1): Suppose (4). Then *M* is topologically isomorphic to $(L^1)^* = L^{\infty} \cong C(K)$, where *K* is the spectrum of the commutative *C**-algebra L^{∞} . q.e.d.

COROLLARY TO THEOREM 2. For a C^* -algebra A, the following are equivalent:

(1) each irreducible representation of A is finite dimensional with bounded degree;

(2) A^{***} has the (DP) property;

(3) A^* is topologically isomorphic to an L^1 .

Theorem 3 will be proved after the statement of some easy Lemmata.

LEMMA 6. Let E be a Banach space. Then:

(i) The following are equivalent:

(i1) E has property (*);

(i2) the topologies $\tau(E^*, E)$ and $\sigma(E^*, E)$ coincide on E_1^* .

(ii) The following are equivalent:

(ii1) E has property (**);

(ii2) E_1^{**} is $\tau(E^{**}, E^*)$ -compact;

(ii3) E^* has property (*).

PROOF. (i) is readily proved, so we omit the proof. (ii1) \Rightarrow (ii2): The canonical injection $j: (E, \text{norm}) \rightarrow (E^{**}, \tau(E^{**}, E^*))$ is weakly compact because $(E^{**}, \tau(E^{**}, E^*))^* = E^*$ and $j(E_1)^{-\tau(E^{**}, E^*)} = E_1^{**}$ is $\sigma(E^{**}, E^*)$ -compact. Hence j is compact, i.e. E_1^{**} is $\tau(E^{**}, E^*)$ -compact. (ii2) \Rightarrow (ii1): Let $T: E \rightarrow F$ be any weakly compact linear map of E into a locally convex space F. Then ${}^{tt}T: E^{**} \rightarrow {}^{tt}T(E^{**}) \subset F$ is $\tau(E^{**}, E^*) - \tau(F, F^*)$ -continuous. Hence if E_1^{**} is $\tau(E^{**}, E^*)$ -compact, $T(E_1) \subset {}^{tt}T(E_1^{**})$ is relatively compact in F, i.e. T is compact. (ii2) \Rightarrow (ii3) follows from (i). q.e.d.

LEMMA 7. Let N be a von Neumann algebra which is not atomic. Then:

(i) There exists a weakly relatively compact subset in N which is not relatively compact.

(ii) There exist a sequence (u_n) of self-adjoint unitary operators in N and a projection p in N with $p \neq 1$ such that $u_n \rightarrow p \sigma(N, N_*)$.

PROOF. (i) We may assume that N is non-atomic and there exists a faithful normal state φ on N. Then there exist orthogonal families M. HAMANA

 $\{p_0, p_1\}, \{p_{00}, p_{01}, p_{10}, p_{11}\}, \cdots$ etc. of projections in N such that

$$egin{array}{lll} p_{_0}+p_{_1}=1 \;, & arphi(p_{_0})=arphi(p_{_1})=1/2 \;; \ p_{_{00}}+p_{_{01}}=p_{_0}\;, & p_{_{10}}+p_{_{11}}=p_{_1}\;, \ arphi(p_{_{00}})=arphi(p_{_{01}})=arphi(p_{_{10}})=arphi(p_{_{10}})=arphi(p_{_{10}})=1/4,\,\cdots$$
 etc

Put $a_1 = p_0 - p_1$, $a_2 = p_{00} - p_{01} + p_{10} - p_{11}$, \cdots etc. and $\varphi_n = \varphi(a_n \cdot) \in N_*$. Then $\varphi(a_n a_m) = \delta_{nm}$, $||a_n|| = 1$ (n, $m = 1, 2, \cdots$) and

$$||\varphi_n - \varphi_m|| \ge |\varphi_n(a_m) - \varphi_m(a_m)| = |\varphi(a_na_m) - \varphi(a_m^2)| = 1$$

for $n \neq m$, so $K = \{\varphi_n\} \subset N_*$ is not relatively compact. But K is weakly relatively compact because, for each x in N,

$$\varphi((x-\sum_{n=1}^{m}\varphi_{n}(x)a_{n})^{*}(x-\sum_{n=1}^{m}\varphi_{n}(x)a_{n}))=\varphi(x^{*}x)-\sum_{n=1}^{m}|\varphi_{n}(x)|^{2} \text{ for all } m$$
$$\Rightarrow\sum_{n=1}^{\infty}|\varphi_{n}(x)|^{2}<\infty\Rightarrow\varphi_{n}(x)\rightarrow 0 \text{ as } n\rightarrow\infty.$$

(ii) follows from the above construction of the a_n . q.e.d.

PROOF OF THEOREM 3. As stated before, $(1) \Rightarrow (2)$ follows from [6; Theorems 1 and 2]. We have $(2) \Leftrightarrow (3)$ by Lemma 6 and [1; Theorem II. 7]. $(2) \Rightarrow (1)$: Suppose (2). Since property (*) implies the (DP) property, M_* has the (DP) property, so that M is finite (Lemma 4). Lemma 7(i), combined with Lemma 6(i), shows that M is atomic. q.e.d.

COROLLARY TO THEOREM 3. Let A be a C*-algebra. Then A^{**} is finite atomic if and only if A has property (**).

PROOF. Immediate from Theorem 3 and Lemma 6(ii). q.e.d.

REMARKS. It follows from Theorem 3 and Lemma 7(ii) that for a von Neumann algebra M, the property III above is also equivalent to compactness in the weak-operator topology of $M_u(\text{resp. } M_p, \text{ext}(M_1))$, where $M_u(\text{resp. } M_p, \text{ext}(M_1))$ denotes the unitary group of M(resp. theset of projections in <math>M, the set of extreme points of M_1 . The equivalence of the property III and compactness in the weak-operator topology of M_u is known in [5; Corollary to Proposition 5].

In Lemma 6, (ii3) \Rightarrow (ii1) is already obtained in [8; Lemma 9].

Finally the author wishes to express his hearty thanks to Prof. M. Fukamiya and Dr. K. Saitô for their valuable suggestions and encouragement in the presentation of this note.

References

 C. A. AKEMANN, The dual space of an operator algebra, Trans. Amer. Math. Soc., 126 (1967), 286-302.

- [2] R. E. EDWARDS, Functional Analysis, Holt, Rinehart and Winston, New York, 1965.
- [3] A. GROTHENDIECK, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math., 5 (1953), 129-173.
- [4] I. KAPLANSKY, The structure of certain operator algebras, Trans. Amer. Math. Soc., 70 (1951), 219-255.
- [5] I. KOVÁCS AND J. SZÜCS, Ergodic type theorems in von Neumann algebras, Acta Sci. Math., 27 (1966), 233-246.
- [6] K. SAITÔ, On the preduals W*-algebras, Tôhoku Math. J., 19 (1967), 324-331.
- [7] S. SAKAI, Weakly compact operators on operator algebras, Pacific J., Math. 14 (1964), 659-664.
- [8] E. LACEY AND R. J. WHITLEY, Conditions under which all the bounded linear maps are compact, Math. Ann., 158 (1965), 1-5.

Mathematical Institute Tôhoku University Sendai, Japan.