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Let H= H(X,2,m) be an abstract H* space; that is, (X, 2, m) is a
probability measure space and H is a nontrivial ¢(L*(m), L'(m)) closed
(i.e. weak* closed) complex subalgebra of L*(m) such that 1€ H and

Suvdm = Sudmgvdm for all u,ve H. We fix arbitrarily an abstract H”

space H throughout this paper. In our former works [13, 15] we have
shown how the function values of an f e H distribute on the outer
boundary of its essential range. In this note we shall show how the
function values of an f e H distribute on the interior of its essential
range (Proposition 2.1 and Theorem 2.3). We apply it to the distributions
of conjugate functions of conjugable bounded functions and those of
functions of class H* (definition will be given later). And then we shall
see how our results can be applied to the classical case and the function
theory. We give new proofs of all the theorems in Davis [1] without
use of Brownian motion and some theorems of Stein-Weiss [10]. In Section
1 we give some preliminaries from the abstract Hardy space theory and
definition of conjugation operation and some of its properties [6, 12].
We state there three key lemmas for this paper, which we already know
[15]. Our main results on the distributions of functions in H are treated
in Section 2. Proposition 2.1 is general but weak one and Theorem 2.3
is given under assumption of Jensen measure. In Section 3 we treat the
distributions of conjugate functions of bounded functions and functions
of class H*. Our results are generalizations of those of B. Davis. In
Section 4 we shall see that a theorem of Stein-Weiss is valid for our
case. We compute precisely how function values of conjugate functions
of characteristic functions distribute. In Section 5 we remark that results
of Zygmund and Pichorides are also valid for our setting. In Section
6 we apply our results in former sections to the classical case. We shall
also see how our method is applied to the distributions of conjugate
functions (Hilbert transforms) of characteristic functions on the real line.

1. Preliminaries and Notations. We write u, — u if a sequence of
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m-measurable functions u, converges m-almost everywhere to an m-
measurable function u as » tends to infinity. L = L(m) is the set of
all m-measurable functions and L* = L%m) is the set of all functions
f e L(m) such that there exist u,e¢ H with |u,| <1, %,—1 and u,f €
L(m). H*= H¥%m) is the set of all functions f € L(m) for which there
exist w, € H and Fe L¥m) such that |u,| < F and w,—f. L% and H*
are algebras and we have L*(m)cC L% Hc H*c L* and H = H*N L*(m).
Let us denote by ¢ the multiplicative linear functional on H defined by
#(u) = \udm for we H. Then there exists a unique extension of ¢ to a

multiplicative linear functional ¢: H*— C such that if u,, uw € H% FeL?
and if |u,| < F and u,— u, one has ¢(u,) — #(u). We recall further the
function class H*. H* consists of all m-measurable functions f such
that Re f = 0 and ¢ * € H for all £t > 0. We have H* ¢ H* and for non-
constant f e H* Reg(f)>0 and f'e H*. As is easily seen, if fc H and
Ref=0,feH'. If f,e H and f,—f, then fe H' [12, p. 165]. Next
we recall the definition of conjugate functions.

DEFINITION 1.1. A real-valued function f € L is said to be conjugable
if there exists g € L such that

(1) expt(f + 1g)e H* for all teR = (—o, o).

In this case g is unique up to an additive real constant and there exist
a unique g€ L and a real number A\(f) such that

(2) #(exp t(f + i9)) = e* for all tecR.
This unique g is denoted by f.
It is known that if f is bounded and conjugable, A(f) = Sfdm. Note
also that if f is bounded, (1) is equivalent to
(3) expt(f +19)e H for all teR,
since H = H*N L~.
REMARK. The following are equivalent.

(i) All feL”(m) are conjugable.
(ii) All characteristic functions are conjugable.

(iii) m is a Szego measure, i.e., if feL'(m), f =0 and Sufdm =
Sudm for all w e H, then f = 1.

An approximation theorem holds for bounded conjugable functions,
which we learned in a lecture of Konig.

LEMMA 1.2. Let f be bounded and conjugable. Then there exist
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h, € H such that

i) . k,— f +if,
ii) \h,| < | f + if],
iii) |Re k| < |1 f1,
iv) [1mA,dm =0,
v) adm — {fam .

We rewrite the proof by Konig, since he gave it only in his lectures.
Let s=u+ iweC, a>0 with a¢|u| <1. Then

(4) 2(1-:as+1—as>‘<l—|?6|¥u)z’

1 1 |u|
Re < ]s :
\ € (1+as + 1——as) =1— (auy
Let ¢ = || f]l., and @ > 0 with ac <1. Then, if we write &k = f + if,
by assumption we have expt(l = ah)e H for all te R. It is easily seen
that

(1 + ah)" = r exp — ¢(1 + ah)dtc H .
Let
he = (1 — (@ )h((L + @h)™ + (1 — ah)™)/2.

Then, since k, = (1 — (@e))((1 — a¢h)™ — (1 + ah)™)/2c;, we have h,c H.
Further by (4) we get |h,| < |h| and |Re k.| < |f|. Since

Sexp — (1 £+ ah)dm = exp — t(l + andm) ,

S(l + ah)‘dm are also real. Hence \ Im z,dm = 0. Therefore, if «, > 0,

cx, <1 and if @,— 0, the sequence of functions &, = h,, satisfies i), ii),
iii), iv). Further, since |expth,|<expt|f|e L*CL?# by the continuity of ¢

#(exp th,) = exp té(h,) — ¢(exp th) = exp ¢ Sf dm .

Hence Sh,,dm = ¢(h,) — Sfdm. This completes the proof of the lemma.
We next recall some results of our previous work.

LEMMA 1.3 (An extension of Lowner’s lemma). Let u € H with |u|<1
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and Sudm =0b,|b| <1l. Then
l—lfrulzd _ 1—|rbf
Sle”’—'ru,|2 m Ieio_,rblz
forall 0<r<1and e’cT={z =1}.

And for any Lebesgue measurable set E on T
1—|uf S 1—[b
Sz o (lutz) <1t | @¥ — o4 |? m zle? — b

— 2rmf{r e X: u(x) e E} .

Further, if |u| =1 and Sudm =0,
mi{x: u(x) € E} = L(E),

where L is the normalized Lebesgue measure on T. [13, p. 90].

LEMMA 1.4. Let u,b be the same as in Lemma 1.3. Let1l < p < oo,
f(e”)e L*(T) and f(re®) be the Poisson integral of f. Then the composed
function fou = f(u) is well-defined and

i) lii? flru) = f(u) m-a.e. and in L*(m),
i) 17l = (F21) 7151
ii) Sf(u)dm — f(gudm>. [15, p. 521] .

Finally in this section we recall the definitions of Jordan domain and
Carathéodory domain. A Jordan domain is a bounded domain in the
complex plane C bounded by a closed Jordan curve. A bounded domain
D in C is said to be a Carathéodory domain if the boundary 6D of D
coincides with that of the unbounded component of the complement of
the closure of D. Naturally D is simply connected. If D is a domain
in C and a€ D, y,,, will denote the harmonic measure on the boundary
of D with respect to @ and D. If f is a mapping of a set E into another
set F and G is a subset of E, we denote by f(G), as usual, the set
{f(9): 9€G}. We use these notations throughout this paper.

2. Distributions of functions in abstract H*” spaces. As a conse-
quence of Lemma 1.4 we give first

PropPoSITION 2.1. Let D be a Carathéodory domain in C and acD
be fized. Let G be a Jordan domain such that a € G C D. Suppose further
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there exists a bounded harmonic function on D such that
a(z)=1 on oGND
=0 on oGNoD
=1 on D\G.

Then, if ue H, Sudm = a, m{x: w(x) e D} = 1, it holds

m{z: w(x) ¢ G U (0G N dD)} £ t..«(0G N D),
or equivalently

m{z: w(z) € G U (3G N 8D)} = t..4(3G N 4D) .

Proor. Let g be a conformal mapping of the unit disc U onto the
domain D such that g(0) = a. Then the composed function @g is bounded
and harmonic in U. We know by Theorem 3.1 in [15] that g~'ew € H,

Sg“oudm = g“(Sudm) =g %a) =0 and |gtou| <1. Hence by Lemma
1.4 we have

(5) {acgogoudm = aog([groudm) = a(g(t») = a(a) = 1. /6G N D).

On the other hand, since a(z) =1 on D\{G U (éG N oD)}, using Lemma
1.4 @ogog™ou(x) = 1 on the set {u(z)¢ G U (6G N 0D)}. Hence by (5) we
get the desired inequality.

If m is a Jensen measure for H, i.e., logl Sudm < \log |u|dm for all
% € H, then one can get the best result in this direction. Before stating
it we give a lemma, which we need only for the case of bounded sub-
harmonic functions.

LEMMA 2.2. Suppose m is o Jensen measure for H. Let D be a
Carathéodory domain, and u < H, Sudm e D and m{x: u(x) e D}=1. Then,
of f 18 a subharmonic function in D such that for a p:1 < p<c there

exists a harmonic majorant g(z) of | f(z)|?, the composed function f(u)
18 well-defined and

Sf(u)dm > f(gudm) .

Proor. It is sufficient to show in the case where D is the unit disc
U by Theorem 3.1 in [15]. By an easy variant of a theorem of Littlewood
(see for example Tsuji [11, p. 173]), f(2) has the representation of the form

(6) 7@ = h(a) - | 1og | =22 |ap(a),

Qa
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where £ is harmonic in U, lim,_, A(re*’) = lim,._,, f(re’) a.e. and

sup S[k(fre“’)l"dﬁ < oo

0<r<1

and u is a o-finite nonnegative measure on U such that S 1—|a)dp(a)< .

Hence by Lemmas 1.3 and 1.4 f(u) is well-defined. Since weH, |ul<1,
we have (¢ — ru)/(1 — @ru)e H for all 0 < »r < 1. Hence by assumption

1—ard

Slog’l—_mldm§ —logH—a—_—widm‘ =log! — |

a— ru 1— aru

where b = Sudm. Since |(1 — @ru)/(e — ru)| = 1, we have via Fubini’s

theorem
(1) SSlog ‘l;-mldy(a)dm - SS log ‘k_@lldmdy(a)

a— ru a — ru

1—ard
< flog | =05 (@

For h(z) we have by Lemma 1.4
(8) [paam = 1) .
Combining (6), (7) and (8) we get
(9) Sf(ru)dm =fb) (0<r<1).

Let G(z) be the Poisson integral of ¢/?(¢?/). Then, since by Lemma 1.4
G(ru) converges in L?(m) to G(u), there exist a sequence r; and an F' € L*(m)
such that |G(r;u)| < F. Since | f(ru)| < |g(ru)|'’? < G(ru), by Lebesgue’s
dominated convergence theorem we get

lim [ £(randm = {Fwdm,
and hence combining this with (9)
[raam = s .

This completes the proof.

REMARK. If the conclusion in Lemma 2.2 is valid for all bounded
subharmonic functions in D and for all w e H with xudm e D and
mfx: u(x) e D} =1, then m is a Jensen measure for H. In fact, let v ¢ H.
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Then there exist M > 0 and a€C such that S(M'v(x) + a)dm(x) € D and
m{x: Mv(x) + a € D} =1. Hence by assumption, for any 0 < p <« we have
M'vdmlp =< glelpdm, since |2 — a|? is bounded and subharmonic in D.

Hence ‘S’ud'ml < <S[’u|"dm)l/p, 0<p<co. Letting » — 0 we have Hvdm) =

exp |\ log |v|dm, the Jensen inequality for w.
Now we state our main result.

THEOREM 2.3. Suppose m is a Jensen measure for H. Let D be a
Carathéodory domain and ae€D be fized. Let G be a Jordan domain

such that a € G D. Then +f ue H, Sudm = a and miz: u(x)e D} =1,
mf{x: w(x) ¢ G U (0G N dD)} < p..s(0G N D) .

PrOOF. Let a(z) be the harmonic function on G such that a(z) =1
on 0GN D, a(z) =0 on oG NéD. Let

B()=a(z) on G
=1 on D\G.

Then —/A(2) is bounded and subharmonic in D. Hence by Lemma 2.2
S,B(u)dm < B(Sudm) = Ba) = &(a) = e J(3G N D).
Since B(u) =1 on {x: u(x) ¢ G U (0G N aD)}, we have

mf{z: w(x) ¢ G U (0G N 0D)} < p,,s(0G N D) .
This completes the proof.

REMARK 1. If m is not Jensen, the above theorem is in general false.
In fact, let 0 <a <1 and X = {z| =1} U {a} and

1—a 1 1—a 1-—af
= b} —(1- ao ,
m 1+a,a+27r:(1 1+a,1+a,2—2acosﬁ)

where 0§, is the Dirac measure at {a}. Let H= H*(U)|y. Then H =
H(X, m) is an abstract H™ space. Let

,;,;_l—a 1'_"'2
Fre®) = 1+al+22—2rcosf

Then f is harmonic in U\[e, 1], and f(e?’) = 0 for 0 < § < 27 and f(r) > 1
for ¢« <7 <1l. Hence
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1—a
1+a’

to, ([, 1)) <

Hence there exists 6, 0 < 6, < ©/2 such that

l1—a

L,UL._ ,
Ly U L) < 3/

where L. are the line segments joining a and e¢*% respectively, and g,
is the harmonic measure with respect to the origin and the domain D
bounded by the curves C, = {¢%: 0, < § < 2x — 6} and L., L_. Let w(z) =2

for ze X. Then u e H(dm), |u(z)| < 1, Su(z)dm — w(0) = 0. Now

mize X: u(z)e O\(DUCY} = =2 4

1 S"o 2a(1 — cos f) do
l+a o

-01 + a* — 2a cos 6

Ssl-e s L. uL)=pEDND).
l+a

This implies the theorem is false in this case.

REMARK 2. The proofs of Lemma 2.2 and Theorem 2.3 show that
they are valid if m is Jensen only for the linear span of {1, u, u? ---}.
In particular, they always hold for the functions of the form f(u), where
we H,|u| =1 and f is a bounded holomorphic function on the unit disc
U. In fact if P is a polynomial in 2z, then by Lemma 1.3 we get

[ 1og | P 1dm = | 10g | Pt = log| PO

= log |[P(Fwyam| ,

where b = \udm. That is m is Jensen for the linear span of {1, f(u),
(f@))y, ---}

REMARK 3. In Theorem 2.3 the constant in the inequality is the
smallest possible one if there exists a nonconstant we H with |u| = 1.
In fact, there exists v € H with |v| = 1 and Svdm = 0 in this case. Let

9(z) be a conformal mapping of U onto G such that g(0) = a. Then for
the composed function g(v) we have

m{z: g(v)(x) €oG} =1, Sg(v)dm = g(Svdm) =a,

and by Lemma 1.3
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m{x: g(v)(x) ¢ G U (0G N D)} = mfx: v(x) € g7*(0G N D)}
= t,v(g7'(0G N D)) = t,,6(0G N D) .

3. Distributions of conjugate functions of bounded functions and
of functions of class H*. In this section we apply our results in the
previous sections to the distributions of conjugate functions of conjugable
bounded functions and of functions of class H*. As consequences of

Lemma 1.8 or Proposition 2.1 we have two results. f e Lz(m) means
that f is a bounded real-valued m-measurable function.

THEOREM 3.1. Let feLz(m),0= f =<1 and be conjugable. Let g
be a conformal mapping of U= {|z| < 1} onto {weC: 0 < Re w < 1} such

that ¢(0) = S fdm. Then

i) m{z: fx) =y} < 2L{e“:Img(e?) =y} y>0.
ii) m{z: fx) £ —y) < 2L{e"": Im g(e¥) =y} ¥ >0.
In particular,

iii) m{z: |f(x)| = y} < Const. e, y>0.

We give here two proofs. The first one uses Lemma 1.8 and the
second one uses Proposition 2.1. The first one gives somewhat better
estimate than the second, but the second is clearer than the first.

FIRST PROOF. Let v(z) = f(x) + if(x) and v, =f, + ih,cH be a
sequence guaranteed by Lemma 1.2, i.e., v, — v, ¢(v,) = Sf,,dm — S fdm =
9(0). For each fixed n there exists an R > 0 such that m{xz: v.(x)e
{zeC:0=Rez=<1l, —R=<Imz=R}}=1 and Svndm lies in that rectangle.

Since g~! can be approximated uniformly on that rectangle by polynomials
in 2 (by virtue of Walsh theorem), ¢g~'(v,) clearly belongs to H and

Sg"‘(’u,,)dm = g“(Sv“dm) and |g7'(v,)| =< 1. Letting n — «, we get
o'W eH, Sg“(fv)dm - g“‘(Svdm) =g (Sfdm) —0, and |g"'(v)] = L.
Let D={2€C:0<Rez< 1, Ax>0and C,={iy:y =)}, C, = {1 + 1y: y = \}.
Then if e D and 0 <\ < Im{, by symmetry we see that

e (C,UC) = —% .

Since harmonic measures are invari~ant under conformal mappings, we
have for each z€ X with Im v(x) = f(x) = N, 0 < Re v(x) = f(x) <1,
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L] 1— 0@ gy» 1
21 Jumgihzan|e? — g '(w(x))F T 2
Integrating the both sides with respect to m on the set {x € X: f(:v) =N,
0 < f(z) < 1} and using Lemma 1.3, we have

L{e*: Im g(¢*) 2 M} — m{z: g7'(v()) € {¢¥: Im g(e¥) = M}

>%Mmﬂwgh0<ﬂ@<n-

Hence

m{z: f(x) = N} + mz: f@) =\, f(@) =0 or 1)
< 2L{e*: Im g(e®) = N},
which implies the desired inequality i). The same argument yields the
inequality ii), since L{e":Im g(e*’) = y} = L{e": Im g(¢*’) < —y}. iii) is
gained by direct calculation or by a theorem of Stein-Weiss, which we
shall prove later by our method.

SECOND PROOF. As in the first proof we have g~(v) € H, g g '(v)dm =0
and |g7'(v)| £ 1. Let»>0and C, C,, D be as before. Let C; = {iy:y =\},
C.c={1+ty:y=A\}, Cs={x +in0<2<1} and G be the domain in D
bounded by curves C,, C, C;. Let a(z) be the harmonic function on G
satisfying @(z) =1 on C,, ®(2) = 0 on C, U C,. Then by the principle of
reflection, @(z) can be continued harmonically into D\G. If we denote
by «a(z) this continued function, we have a(z) = 2 on C,UC, and |a(z)| =1
on D\G. Now applying Proposition 2.1 we have

m{z: fl@) = A} = m {22 g7(v(@)) € 7 (G\Co)} £ o, -10(07(Cy))
= Uy,a(Cs) -

Since a(z) is harmonic on D and @(z) = 1 on C,, @(z) = 0 on C, U C,, a(z) =2
on C,UC, we have

Lo0,6(Cs) = 2t4,10,5(C,UC) ,

which proves i). The same argument yields ii). iii) is showed as before.
Next we state similar estimates for functions in class H*.

THEOREM 3.2. If ve H* is monconstant and y > 0, then

i) miz: Im v(z) = y + Im g(v)} < 2 R;ysﬁ(v) ’
ii) mie: Im v(@) < —y + Im ¢(v)} < 2 R; y¢(v) _
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ProoF. We may assume ¢(v) = 1 without loss of generality. Let
9() = (¢ — 1)/(z + 1). Then g maps the half plane S = {zeC: Rez > 0}
onto the unit disc U and g(1) =0. We know g(v)eH, |g(v)] £1 and
#(g(v)) = g(¢(v)) = g(1) = 0 [12, p. 165-166]. Hence quite in the same
way as in the proofs of Theorem 8.1 we have

m{x: Im v(x) = y} = #1,(Rez>o,lmz<y)({x + iy: x> 0})
= 2#1,(Rez>0]({7:x: z = ?/})

_ 2 S‘” dx 2

T il < zl "

The same argument yields the second inequality.

REMARK 1. In Theorems 3.1, 3.2 the bounds are the smallest possible
ones respectively, if there exists a nonconstant we H with |u| =1, as
is shown similarly to Remark 3 in Section 2.

REMARK 2. Let h be a characteristic function of an arc of the unit
circle T such that (1/27t)Smh(e”)dﬁ = Sfdm, where f is given in Theorem
3.1. Then the Poisson intoegral k of h + ik is a conformal mapping of
the unit disc onto the strip {z€C:0 < Rez < 1} satisfying k(0) = Sfdm
and hence a candidate for ¢ in Theorem 3.1.

If m is a Jensen measure, we can say more.

THEOREM 3.3. Suppose m 1is o Jensen measure. Let fe Lg(m), 0=
F =<1 and be conjugable. Let y > 0 and h(z) be a conformal mapping
of the unit disc U onto the rectangle R = {0 < Rew <1, —y < Imw < y}

such that h(0) = Sfdm. Then

m {2 | f(@)| = y} < L{e”: |Im h(e”)| = v} .

PrROOF. Let g(2) be a conformal mapping of U onto D = {0 < Re w<1}
with ¢(0) = Sfdm, and J={z £ iy:0 <z <1} and v = f + if. Then as
in Theorem 3.1, g7'(v) € H, |g7'(v)| £ 1, S g '(v)dm = 0. Applying Theorem
2.3 to g7'(v), we have

m{z: | f@)| = y} = mix: g7(v(x)) € g7(R) U g (R N 4D)}
= to,1w(97'()) -
On the other hand

Lo~ (97 () = tyor,2() = tho,z(J)
= tu(h7(J)) = L{e’: |Im h(e”)| = },
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which completes the proof.

THEOREM 3.4. Suppose m is a Jensen measure. If ve H' is mon-
constant and y > 0, then

m{z: |Im v(z) — Im ¢(v)| = ¥} < Re Z(v) .

PROOF. We may assume ¢(v) = 1 without loss of generality. A
similar argument to the proof of Theorem 3.3 yields

m{z: | Im v(x)| = ¥} £ L, (Ress0,—y<tme<n({® £ Ty ©>0}) .

The right side is equal to C(y) = (2/m) Sj(l + 2%)'dz, where 1/a = sinh
n/2y. Let k(y) =y — C(y). Then lim,_.. k(y) = 0 and
E(y) = —y*+ y*( + sinh®7/2y)~* cosh 7/2y
=y *(cosh/2y)* —1) <0 for y>0.
Hence we get k(y) > 0 for y > 0, which completes the proof.

REMARK. Also in the above two theorems, the same remarks as
those to Theorems 3.1 and 3.2 hold.

Combining Theorem 8.4 with the remark to Definition 1.1 we have
the following result whose proof we omit.

COROLLARY 8.5. If m s a Szegd measure, the conjugation operator
18 @ linear operator of weak type (1.1), i.e.

miz: |fi@)| 2 9} = 2 || 7o) | dm

for all y > 0 and fe L'(m).

One more result is the following one of strong type which is valid
without additional assumption for m.

THEOREM 3.6. Let feLz(m),0=f <1 and be conjugable. Let g
be a conformal mapping of the unit disc U onto {weC:0 < Rew < 1}
such that ¢(0) = Sfdm. Then, if @ is a nonnegative convexr function
on (—OO: oo)’

Sq)( Pdm < LS”@(Im 9(e))dé .
27 Jo

PrOOF. Let u(x) = f(x) + if(x). Then as in the proof of Theorem
3.1 we get g7 (w)e H, [g7(u)| < 1 and Sg"(u)dm =0. For each0<r<1
let
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11— |rg (W) "\d0
Fer(@) 2r So |6 — rg(u) 2 m g(")df .

Then, since (1/z7z)§2"(1 — lap)/le?® — a|®dd =1 for all a:|a|< 1, we have
0
by Jensen’s inequality

1 (=1~ |rg(u)f
o) = 5= | s 0lm g(e)ds

Integrating the both sides with respect to m and using the first part of
Lemma 1.3 and Fubini’s theorem

S@(lc,(x))dm <1 S o(Im g(e*))dd .
27 Jo

Letting » — 1, we have by Lemma 1.4 the desired inequality. The proof
is thus complete.

4. Distributions of conjugate functions of characteristic functions.
Here we show that if f is a conjugable characteristic function one can
compute precisely the distribution function of the conjugate function of
f. For an m-measurable set £ we denote by ¥, the characteristic function
of E.

THEOREM 4.1. Let E be an m-measurable set in X such that ¥z s

conjugable. Then for any Lebesgue measurable subset of the set {iR}U
{1 4+ <R} it holds

(%) m{z: (e + iX:)(@) € F} = L(W(F))

_ 11— [gm@)P
s 7 — gm@)F

where g, h are the conformal mappings of the strip {0 < Rez < 1} onto
the unit disc given by

T 1
g(z) = tan E(z — —2—> ,
hz) = (9(2) — g(m(EN)/(L — g(m(E))g(z)) .

In particular, the distribution of Xz + i)z depends only on m(E).

PROOF. Let w(x) = xz(x) + iXz(x). Then by assumption for » we
have as in the proof of Theorem 3.1 h(u)e H, |h(u)| =1 and Sh(u)dm =
h(&udm) = h(m(E)) = 0. Hence by Lemma 1.3

mi{x: u(x) € F} = m{x: h(u(x)) € h(F)} = L(R(F)) .
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The second equality follows immediately from the invariance of harmonic
measures under conformal mappings, or one can get it in a similar way
to the first one. The proof is complete.

As a consequence we have a theorem of Stein-Weiss for our setting.

COROLLARY 4.2 (Stein-Weiss). Let E be as above and \y) be the
distribution function of Xz, i.e., My) = m{|Xz(x)| = y}. Then

sinh 7y + 4 sin Tm(E)

exp mwin(y) = .
P @) sinh 7y — ¢ sin 7m(E)

Proor. Let a = tan (7/2)(m(E) — 1/2). Then by simple computation
we have (1 — a?)/(1 + a*) =sinam(E). Further if we let (A (y) =
m{X:(x) = y}, then we have by Theorem 4.1

exp 2mint(y) = h(ty)/h(1 + 1Y)
= [1 + @) sinhzy + (1 — a®?]/[1 + a®) sinh 7y — (1 — a?)q] .
Since (I — a®)/(1 + &*) = sin 7m(E), we have

sinh 7y + 1 sin 7m(K)

exp 2wint(y) = .
P @) sinh 7y — ¢ sin 7m(E)

In a similar way we have the same equality for A (y) = m{¥:(x) < —y}.
Hence we obtain the desired equality.

5. Results of Zygmund-Pichorides type. Here we give inequalities
of strong type which are deduced easily from Lemma 1.2.

THEOREM 5.1 (Pichorides). Let f be a real-valued, bounded and con-
jugable function on X such that |f| <k < xw/2. Then

|| sinh (7/2) |l < (cos k)™/2||sin (£/2)]], -

PrOOF. Let h = f + if and h, = u, + v, be a sequence in H satis-
fying the approximation property of Lemma 1.2. Then one easily sees

that cos h, ¢ H and Scos h,dm = cos Shndm ¢ R. Hence

Scosh v, COS U, dm = S Re cos h,dm = S cos h,dm
= COS Sh,,dm = cos S‘u“dm .
Therefore, since cos %, = cos | f| = cos k, we have

cosk S sinh? (v,/2)dm < S(cosh v, — 1) cos u,dm
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= cos S.u,,dm — S cos u,dm

= S sin® (u,,/2) — sin® S(un/z)dm .
Letting n — ~ we have

|| sinh (f/2)113 < (cos k)~[|| sin (f/2)[|} — sin® S(f/z)dm] ’
which implies the desired inequality. This completes. the proof.

A similar argument, applied to exp +4h, yields the Zygmund type
inequality, which will be also proved by Theorem 3.5.

THEOREM 5.2. Let f be a real-valued bounded and conjugable function
on X such that |f| <1 and 0 <k < xw/2. Then

S exp k| f|dm < 2(cos k)~ .

6. Applications. Let T={2¢C:|z2|=1} and U= {ze C:|z| < 1}.
Let H*(T) = {feL”(T): Shf(e”)e"””dﬁ =0,n=1,2, ---} with essential
supremum norm and H °°(0U ) be the set of all bounded holomorphic
functions in U with supremum norm. Then boundary functions of
functions in H*”(U) are in H®(T) and this correspondence is an iso-
metrical isomorphizsm, and H*(T) is weak* closed in L*(T). For each
f e H=(U), (1/27:)8 ”f(e"")da = f(0). Hence ¢: f e H(T)— (1/277:)S f(e*)do
is a multiplicative linear functional on H*(T) and hence H>(T) with
Lebesgue measurable sets and dd/2r7 satisfies the assumptions for abstract
H~> space, and df/2r is a Jensen measure as is well-known. The classical
conjugation operation coincides with our one in Definition 1.1. If g is
a finite nonnegative measure on 7, f is its conjugate function and g is
the absolutely continuous part of p¢ with respect to Lebesgue measure,
f is defined on T by g + ¢ and F(2) is defined on U by

FE) = o= | P, e)dp(e”) + i—= | Qe edpe”) ,

where P and Q are the Poisson and conjugate Poisson kernels respectively.
F' is holomorphic in U and Re F'(z) > 0 there. Hence F'(re*’) e H*(d6/2m)
for all 0<»<1. Since lim,_, F(re’)=f(e*) a.e., by the property of H' as is
noted in Introduction, we have f € H*(d6/2r) and ¢(f) = lim,_, s(F'(re*’)) =
F(0) = i(T). Hence we can apply all the results in the previous sections
to this classical case. These applications give new proofs of known



152 K. YABUTA

results due to Stein-Weiss [10] and B. Davis [1]. Especially, for results
by Davis we can give proofs without use of Brownian motion. Unfor-
tunately we could not prove the Davis’ result on the best possible constant
in weak type (1.1) inequality for conjugate functions. We also note that
our method can be applied for any domain in C and C". Finally we see
how our method can be applied to conjugate functions on the real line
R. Here we prove only an analogue of Theorem 4.1 which can be deduced
from that theorem or directly from Lemma 1.3.

THEOREM 6.1. Let E be a Lebesgue measurable set on R such that
|E| < oo and Xz be the conjugate function of the characteristic function
Yz of E. Then for any Lebesgue measurable set F on the set J = {tR} U
{1 + <R},

(+) (bR (e + TN FY = TyB(| 2

{iteF} .
*" sinh? %t

S dt
e M eosh? Lt
2

’

where | | denotes the usual Lebesgue measure on R. We understand
the equality (x) as follows; if the left side is infinite, the right side s
also infinite and vice versa.
PrOOF. Let f(it) = xz(t) + iXz(t) and
. 1 S‘” x .
== ————f(@@t)dt.
Sl + iy) =) ey prg t)zf(”

Then f(z) is holomorphic on the right half plane S = {ze€C:Rez > 0}
and 0 < Re f(z) <1 there and f(iy) € {t{R}U{1l + iR} for almost all y € R.
Let g(z) = tan (7/2)(z — 1/2), h(z) = exp wi(z — 1/2) and

k(z)= —i(z — 1)z + 1)*.
Then ¢(z) = koh(z2) and h maps D = {z€C:0 < Rez < 1} conformally onto
S and k& maps S conformally onto U. Now for { = ¢ + it€ S let

1 o
dp(t) =
#e(®) T ot + (T — )
Let H>(S) be the set of all bounded holomorphic functions on S. Then
for any b€ H*(S) lim,_, b(z + it) = b(it) exists a.e. and b(it) € L=(R). Let
H=(R) be the set of all boundary functions of H=(S) with essential su-
premum norm. Then H=(R) is a weak* closed subalgebra of L>(R), which
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is isometrically isomorphic to H>(S), and

Sb(it)dmc(t) — b8  for all beH=(S).

Hence ¢,: b(it) € H*(R) — \b(it)dm(t) is a multiplicative linear functional
on H*(R). Hence H*(R) with dm, is an abstract H> space. The classical
conjugation operation coincides with that of Definition 1.1. Now for our
f(@it) we have m(E) = f({). Hence by Theorem 4.1

’m,c({f(":t) € F}) = %Sg(i)%da .

Changing the integration variable by e = k(it) we get

X ) 1 Re ko f(§)
(%) m({f(it) € F'}) = —ESMF) Re ko f(Q)) + (Im ko f(§) — ¢)° #

As is easily seen,

lim & Re hof(x + iy) = lim z exp (7 Im f(x + 1y)) sin (x Re f(z + iy))

=00

—_— H x fond
~ l,‘EE”SE—__xz ot =Bl

and
hﬂrg 2*(Im hof(x + 1y) + 1)
= lim #*(1 — exp (7 Im f(x + <y)) cos (7= Re f(x + iy)))

£—00

= lim ﬁz(SEW(%-—_t);dty — lim 2%z Im f(x + iy))?

T—oo 2 T—c0
_ 1EP
2 .

Hence multiplying the both sides of ({) by o and then letting o —
we get

raery =B 2.

Here if the left side is infinite, the right side is infinite and vice versa.
Next changing the variables by —e™ =t for t <0 and ¢ =1t for
t > 0, we have

dt _ = dy i dy
14+ ¢ - Z {iyeF} . T {1+iyeF} T ’
o sinh? =y cosh? >V
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which completes the proof.

As a consequence we have

COROLLARY 6.2 (Stein-Weiss). Let E be as in Theorem 6.1. Then

Sfor each y >0

2| E]

[{te R: : ]
sinh y

X Z v} =

Proor. Applying Theorem 6.1 we have

7z:|E'|/§°° ds +S°° ds

{t e R: | Xx(t) = y}| = >
\ ! sinh? 12r—s ! cosh? %s

2|E|
sinhzwy

The proof is complete.
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