SOME SYSTEM OF DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND ITS APPLICATIONS TO CONTACT STRUCTURES

Shûkichi Tanno

(Received January 26, 1976)

1. Introduction. Let (M, g) be a connected $m(\geq 2)$-dimensional Riemannian manifold of class C^{∞}. The existence of a function satisfying some differential equations on (M, g) sometimes determines differential geometric properties of (M, g). For example, a complete (M, g) admits a non-trivial (global) solution f of the system of differential equations

$$
\begin{equation*}
\nabla_{j} \nabla_{i} f+K f g_{j i}=0 \tag{1.1}
\end{equation*}
$$

for some positive constant K, if and only if (M, g) is isometric to a Euclidean sphere $S^{m}(K)$ of radius $1 / \sqrt{K}$ (S. Ishihara and Y. Tashiro [7], M. Obata [11], [12]).

Furthermore, M. Obata [12] announced the following.
Obata's Theorem (*). Let (M, g) be a complete and simply connected Riemannian manifold of dimension m. In order for M to admit a nontrivial solution f for the system of differential equations

$$
\begin{equation*}
\nabla_{j} \nabla_{i} \nabla_{h} f+K\left(2 \nabla_{j} f g_{i h}+\nabla_{i} f g_{h j}+\nabla_{h} f g_{j i}\right)=0 \tag{1.2}
\end{equation*}
$$

for some positive constant K, it is necessary and sufficient that (M, g) be isometric to a Euclidean sphere $S^{m}(K)$.

This system of differential equations is of order 3, and this result is itself of great importance. However, the complete proof has not yet been published unfortunately.

On the other hand, a unit Killing vector field ξ on (M, g) is called a normal contact structure or simply a Sasakian structure, if it satisfies

$$
\begin{equation*}
R(X, \xi) Y=g(\xi, Y) X-g(X, Y) \xi \tag{1.3}
\end{equation*}
$$

for any vector fields (or tangent vectors) X and Y, where R denotes the Riemannian curvature tensor field. In other words, ξ is a Sasakian structure if and only if it belongs to the 1-nullity distribution of (M, g). In this case, the dimension m of M is odd.

Let ξ and η be two Sasakian structures on (M, g). If $g(\xi, \eta)=f$ is not constant, then f satisfies (1.2) for $K=1$ (S. Tachibana and W. N.

Yu [17]). Applying Theorem (*), S. Tachibana and W. N. Yu [17] showed the following.

THEOREM (**). Let (M, g) be a complete and simply connected Riemannian manifold. If (M, g) admits two Sasakian structures ξ and η with non-constant $g(\xi, \eta)$, then (M, g) is isometric to $S^{m}(1)$.

In this paper, without assuming Theorem (*) we give a proof of Theorem (**) for the dimension $m \leq 11$. For this purpose, first we prove Theorem A as a weaker version of Theorem (*), and then we apply a Theorem by D. Ferus [4] on 1-nullity distributions.

Theorem A. Let (M, g) be a complete Riemannian manifold. If (M, g) admits a non-trivial function f satisfying (1.2) and

$$
\begin{equation*}
(1 / K) g^{h j} \nabla_{h} f \nabla_{j} \nabla_{i} f=-4 f \nabla_{i} f, \tag{1.4}
\end{equation*}
$$

then (M, g) is of constant curvature K.
This is a special case of Theorem (*) as will be explained in the Section 4. However, our proof is differential-geometric and we can give a nice frame at a point concretely, which plays an important rôle in the outline of Obata's proof of Theorem (*).
2. Preliminaries. Let (M, g) be a Riemannian manifold with a normal contact structure or a Sasakian structure ξ (cf. S. Sasaki [15], S. Tanno [18], [19]). Since ξ is a Killing vector field, (1.3) is written as

$$
\begin{equation*}
\nabla_{X}(\nabla \xi) \cdot Y=g(\xi, Y) X-g(X, Y) \xi \tag{2.1}
\end{equation*}
$$

where X and Y are vector fields or tangent vectors. If we put $\nabla \xi=-\phi$ (i.e., $\nabla_{x} \xi=-\phi X$), then the (1,1)-tensor field ϕ satisfies the following.

$$
\begin{gather*}
\phi \xi=0, \quad \phi \phi X=-X+g(\xi, X) \xi \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)-g(\xi, X) g(\xi, Y) \tag{2.3}
\end{gather*}
$$

$$
\begin{equation*}
\nabla_{j} \phi_{i}^{h}=g_{j i} \xi^{h}-\delta_{j}^{h} \xi_{i} \tag{2.4}
\end{equation*}
$$

The 1 -form which is dual to ξ with respect to g is called a contact form on M.

We pick up some known results for our later arguments.
[i] If φ is an isometry of (M, g) and ξ is a Sasakian structure on (M, g), then $\varphi \xi$ is also a Sasakian structure on (M, g), where φ denotes also its differential (S. Tanno [19]).
[ii] If ξ and η are Sasakian structures on (M, g), then $g(\xi, \eta)=f$ satisfies (1.2) for $K=1$ (S. Tachibana and W. N. Yu [17]).
[iii] If ξ and η are two Sasakian structures on (M, g) and if $g(\xi, \eta)=f$
is constant $(\neq 1, \neq-1)$, then putting $\xi_{(1)}=\xi$,

$$
\xi_{(2)}=(\eta-f \xi) /|\eta-f \xi|,
$$

and $\xi_{(3)}=\left[\xi_{(1)}, \xi_{(2)}\right] / 2$, we have a Sasakian 3 -structure $\left(\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\right)$ (cf. Y. Y. Kuo [9]). A Riemannian manifold admitting a Sasakian 3 -structure is an Einstein space (T. Kashiwada [8]).

The Riemannian curvature tensor field R is defined by

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{2.5}
\end{equation*}
$$

We define a curvature-like tensor field T by

$$
\begin{equation*}
T(X, Y) Z=R(X, Y) Z-K(g(Y, Z) X-g(X, Z) Y) \tag{2.6}
\end{equation*}
$$

Let x be a point of M and let M_{x} be the tangent space to M at x. Then the K-nullity space N_{x} at x is defined by

$$
\begin{equation*}
N_{x}=\left\{X \in M_{x} ; T(X, Y) Z=0 \quad \text { for all } \quad Y, Z \in M_{x}\right\} \tag{2.7}
\end{equation*}
$$

$\operatorname{dim} N_{x}=\mu(x)$ is called the index of K-nullity at x (S. S. Chern and N. H. Kuiper [2], T. Otsuki [13]). The minimum μ of $\mu(x)$ on M is called the index of K-nullity of (M, g).
[iv] $\mu(x)$ is upper semi-continuous, and hence the set G of M where $\mu(x)=\mu$ is open.
[v] If $\mu(x)$ is constant on an open submanifold M^{0} of M, then the K-nullity distribution: $x \rightarrow N_{x}$ is integrable on M^{0}, and leaves (maximal integral submanifolds) are totally geodesic. Therefore leaves are of constant curvature (K. Abe [1], A. Gray [6], R. Maltz [10], etc.).
[vi] If (M, g) is complete and if $\mu \geq 1$, then leaves on G are complete (K. Abe [1], Y. N. Clifton and R. Maltz [3], D. Ferus [5], etc.).
[vii] Let N be a μ-dimensional involutive (integrable) distribution. Assume that:
(a) each leaf of N is complete and totally geodesic,
(b) sectional curvature $K(X, Y)=$ constant >0 for $X \in N, Y \in N^{\perp}$, where
N^{\perp} denotes the distribution orthocomplementary to N (in case $\mu<m$),
(c) $\mu>\nu_{m}$, where ν_{m} is for example;
$m: ~ 234567 \quad 8910 \quad 1112 \quad 13141516 \quad 171819 \ldots 24252627 \ldots$
$\left.\nu_{m}: ~ \begin{array}{lllllllllllllllllll}10 & 123 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 & \cdots & 8 & 1 & 2 & 3\end{array}\right]$.
Then we have $\mu=m$ (D. Ferus [4]).
Next we summerise the fundamental facts on (1.2).
[viii] If a function f on (M, g) satisfies (1.2), then $\left(\nabla^{i} f\right)=\left(g^{i j} \nabla_{j} f\right)$ is an infinitesimal projective transformation. This follows from (1.2) and the Ricci identity for $\nabla_{j} \nabla_{i} \nabla_{h} f-\nabla_{i} \nabla_{j} \nabla_{h} f$ (M. Obata [12]).
[ix] Let $\{x(s)\}$ be a complete geodesic in (M, g) with arclength parameter s. Then the restriction of f satisfying (1.2) with $K=1$ to $\{x(s)\}$ is given by

$$
f(s)=\left(f^{\prime \prime}(0) / 2\right) \sin ^{2} s+\left(f^{\prime}(0) / 2\right) \sin 2 s+f(0)
$$

This is verified by the fact that (1.2) on the geodesic is $f^{\prime \prime \prime}+4 f^{\prime}=0$, where the dash denotes $d / d s$. In particular, $f(s)$ is bounded and periodic $(f(\pi+s)=f(s))$. Furthermore, if $f\left(s_{0}\right)$ is the maximum, then $f\left(s_{0}+\pi / 2\right)$ is the minimum.
[x] If f satisfies (1.2), then $\left(\nabla^{i} f\right)$ belongs to the K-nullity distribution. This follows from the Ricci identity.
3. Proof of Theorem A. By replacing g by $K g$, we can assume that $K=1$ in proving Theorem A. Let f be a non-trivial function on (M, g) satisfying

$$
\begin{gather*}
\nabla_{j} \nabla_{i} \nabla_{h} f+2 \nabla_{j} f g_{i h}+\nabla_{i} f g_{h j}+\nabla_{h} f g_{j i}=0 \tag{3.1}\\
\nabla_{j} \nabla_{i} f \nabla^{j} f=-4 f \nabla_{i} f \tag{3.2}
\end{gather*}
$$

where $\nabla^{j} f=g^{j h} \nabla_{h} f$, and ∇ denotes the Riemannian connection of (M, g). We define a vector field F by $F=\operatorname{grad} f=\left(\nabla^{i} f\right)$. By (3.2) we have $\nabla_{F} F=-4 f F$, that is, each trajectory of F is a geodesic. Let $\varphi_{t}=\exp t F$ be the (local) 1-parameter group of (local) transformations generated by F. We take and fix a trajectory C of F and take a point p of C. We parameterise C so that

$$
C=\{x(t)\}=\{\exp t F \cdot p\}=\left\{\varphi_{t} p\right\}
$$

Let $f=f(t)$ be the restriction of f to C. Then

$$
f^{*}(t)=\frac{d f}{d t}=F^{i} \frac{\partial f}{\partial x^{i}}=\nabla^{i} f \nabla_{i} f
$$

(3.2) is written as

$$
\nabla_{i}\left(\nabla_{j} f \nabla^{j} f\right)=-4 \nabla_{i} f^{2}
$$

Transvecting the last equation by $\nabla^{i} f$, we get

$$
f^{* *}=-4\left(f^{2}\right)^{*}
$$

where ** denotes $d^{2} / d t^{2}$. Solving this we have

$$
\begin{equation*}
f^{*}=-4 f^{2}+c \tag{3.3}
\end{equation*}
$$

for some constant c. If $c=0$, then

$$
\begin{equation*}
f(t)=(4 t+\beta)^{-1} \tag{3.4}
\end{equation*}
$$

for some constant β. If $c<0$, then

$$
\begin{equation*}
f(t)=-b \tan 4 b(t+\beta), \quad b=(-c / 4)^{1 / 2} \tag{3.5}
\end{equation*}
$$

And if $c>0$, then

$$
\begin{equation*}
f(t)=a\left(e^{8 a t+\beta}-1\right) /\left(e^{8 a t+\beta}+1\right), \quad 4 a^{2}=c \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
f(t)=a\left(e^{8 a t+\beta}+1\right) /\left(e^{8 a t+\beta}-1\right), \quad 4 a^{2}=c \tag{3.7}
\end{equation*}
$$

Since C is a geodesic and (M, g) is complete, we see that the parameter t can be extended as far as $f^{*} \neq 0$. Therefore (3.4), (3.5) and (3.7) can not be bounded. Hence, by [ix] of $\S 2$ we get (3.6). This shows that $f(t)$ takes the value 0 once. So we assume that $f(p)=0$.

Lemma 3.1. A non-trivial trajectory C of F is parameterised so that $C=\{\exp t F \cdot p,-\infty<t<\infty\}, f(p)=f(0)=0$, and

$$
\begin{gather*}
f^{*}(t)=-4 f^{2}+4 a^{2} \tag{3.8}\\
f(t)=a\left(e^{8 a t}-1\right) /\left(e^{8 a t}+1\right) \tag{3.9}
\end{gather*}
$$

for some positive constant a. In particular, $-a<f(t)<a$ and $f(t) \rightarrow a$ (as $t \rightarrow \infty$), $f(t) \rightarrow-a$ (as $t \rightarrow-\infty$).

Proof. This follows from (3.6) and $f(p)=0$. q.e.d.

Lemma 3.2. The tensor field $\left(\nabla_{j} F^{i}\right)=\left(\nabla_{j} \nabla^{i} f\right)$ is symmetric with respect to g and has real eigenvalues at each point of C. There are at most three different eigenvalues at each point:

$$
-4 f, \quad-2 f+2 a, \quad-2 f-2 a
$$

where the multiplicity of $-4 f$ is one.
Proof. F is an eigenvector at each point by (3.2) for the eigenvalue $-4 f$. Let Z be a (local) field of eigenvectors along C which is orthogonal to F. We put

$$
\begin{equation*}
Z^{j} \nabla_{j} \nabla^{i} f=\lambda Z^{i} \tag{3.10}
\end{equation*}
$$

Operating ∇_{h} to (3.2) we obtain

$$
\nabla_{h} \nabla_{j} \nabla_{i} f \nabla^{j} f+\nabla_{j} \nabla_{i} f \nabla_{h} \nabla^{j} f=-4 \nabla_{h} f \nabla_{i} f-4 f \nabla_{h} \nabla_{i} f .
$$

By (3.1) we have

$$
4 f \nabla_{h} \nabla_{i} f=-\nabla_{j} \nabla_{i} f \nabla_{h} \nabla^{j} f-\nabla_{h} f \nabla_{i} f+\left(\nabla_{r} f \nabla^{r} f\right) g_{i h}
$$

Transvecting the last equation with $Z^{h} Z^{i}$ and using (3.10), we get

$$
\begin{equation*}
\lambda^{2}+4 f \lambda-\left(\nabla_{r} f \nabla^{r} f\right)=0 \tag{3.11}
\end{equation*}
$$

Hence, λ can take at most two values. Since $\left(\nabla_{r} f \nabla^{r} f\right)=f^{*}$, applying (3.8) we can solve λ from (3.11) and get $\lambda=-2 f \pm 2 a$.
q.e.d.

Lemma 3.3. By L_{F} we denote the Lie derivation by F. Then

$$
L_{F}\left(\nabla_{j} \nabla^{i} f\right)=-2\left(\nabla_{r} f \nabla^{r} f\right) \delta_{j}^{i}-2 \nabla^{i} f \nabla_{j} f .
$$

Proof. By definition of L_{F} we have

$$
L_{F}\left(\nabla_{j} \nabla^{i} f\right)=F^{h} \nabla_{h} \nabla_{j} \nabla^{i} f-\nabla_{h} F^{i} \nabla_{j} \nabla^{h} f+\nabla_{j} F^{h} \nabla_{h} \nabla^{i} f .
$$

Applying (3.1) we get the required relation.
q.e.d.

Lemma 3.4. Let D_{1}, D_{2}, D_{3} be the fields of subspaces along C defined by the eigenspaces for $-4 f,-2 f+2 a,-2 f-2 a$, respectively. Then D_{1}, D_{2}, D_{3} are orthogonal and invariant by $\varphi_{t}=\exp t F$.

Proof. It is clear that D_{1}, D_{2}, D_{3} are orthogonal. Since $L_{F} F=[F, F]=0$, we have $\varphi_{t} D_{1}=D_{1}$. Next we show that $D_{2}+D_{3}$ is invariant by φ_{t}. Let Z_{p} be a tangent vector at p such that $Z_{p} \in\left(D_{2}+D_{3}\right)(p)$. Define a vector field Z along C by

$$
Z_{\varphi_{t} p}=\varphi_{t} Z_{p}
$$

where φ_{t} denotes also its differential. Define a function $G(t)$ of t by $G(t)=g_{\varphi_{t} p}(Z, F)$. Since $L_{F} Z=0, L_{F} F=0$ and $L_{F} g=\left(2 \nabla_{i} \nabla_{j} f\right)$, we get

$$
\begin{aligned}
G^{*}(t) & =\frac{d G(t)}{d t}=L_{F} G(t) \\
& =2 \nabla_{i} \nabla_{j} f Z^{i} \nabla^{j} f=-8 f G(t)
\end{aligned}
$$

by (3.2). Since actually $G(0)=0$, we have $G(t)=0$ and $Z \in D_{2}+D_{3}$. Next we put

$$
\begin{equation*}
Z=Z_{2}+Z_{3} \tag{3.12}
\end{equation*}
$$

where Z_{2} and Z_{3} are vector fields along C such that $Z_{2} \in D_{2}$ and $Z_{3} \in D_{3}$. It is easily verified that

$$
Z_{2}=\left(\nabla_{z} F+(2 f+2 a) Z\right) / 4 a,
$$

from which the differentiability of Z_{2} on t follows. Operating L_{F} to the both sides of the last equation, applying Lemma 3.3, and using (3.8) and $L_{F} Z=0$, we obtain

$$
L_{F} Z_{2}=0 .
$$

By (3.12) Z_{3} is also differentiable and hence we get $L_{F} Z_{3}=0$. Hence, D_{2} and D_{3} are invariant by φ_{t}. q.e.d.

Let $\left\{\left(E_{i}\right)_{p}, i=1, \cdots, m\right\}$ be an orthonormal frame at p such that

$$
\begin{aligned}
& \left(E_{1}\right)_{p} \in D_{1}(p), \\
& \left(E_{u}\right)_{p} \in D_{2}(p), \quad u=2, \cdots, r, \\
& \left(E_{v}\right)_{p} \in D_{3}(p), \quad v=r+1, \cdots, m .
\end{aligned}
$$

We define a field of frames $\left\{E_{i}\right\}$ along C by $\left(E_{i}\right)_{\varphi_{t} p}=\varphi_{t}\left(E_{i}\right)_{p}$. Then $\left\{E_{u}\right\}$ is a field of basis of D_{2} and $\left\{E_{v}\right\}$ is a field of basis of D_{3}.

Lemma 3.5. With respect to the length of E_{i}, we have

$$
\begin{array}{ll}
G_{2}(t)=g_{\varphi_{t} p}\left(E_{u}, E_{u}\right)=2 e^{4 a t} /\left(e^{4 a t}+e^{-4 a t}\right), & E_{u} \in D_{2}, \\
G_{3}(t)=g_{\varphi_{t} p}\left(E_{v}, E_{v}\right)=2 e^{-4 a t} /\left(e^{4 a t}+e^{-4 a t}\right), & E_{v} \in D_{3} .
\end{array}
$$

In particular, $G_{2}(t) \rightarrow 2($ as $t \rightarrow \infty)$ and $G_{2}(t) \rightarrow 0($ as $t \rightarrow-\infty)$, while $G_{3}(t) \rightarrow 0($ as $t \rightarrow \infty)$ and $G_{3}(t) \rightarrow 2(a s t \rightarrow-\infty)$.

Proof. Let $E_{u} \in D_{2}$. Then

$$
\begin{aligned}
G_{2}^{*}(t) & =L_{F} G_{2}(t)=2 \nabla_{j} \nabla_{i} f E_{u}^{j} E_{u}^{i} \\
& =2(2 a-2 f) G_{2}(t)
\end{aligned}
$$

Consequently

$$
\log G_{2}(t)=\int 4(a-f) d t+L
$$

for some constant L. By (3.9), we get

$$
\int 4(a-f) d t=4 a t-\log \left(e^{4 a t}+e^{-4 a t}\right),
$$

and hence,

$$
G_{2}(t)=e^{L} e^{4 a t} /\left(e^{4 a t}+e^{-4 a t}\right) .
$$

Since $G_{2}(0)=1$, we get $e^{L}=2 . \quad G_{3}(t)$ is similarly obtained. q.e.d.
Similarly we have $g_{\varphi_{t} p}\left(E_{i}, E_{j}\right)=0$ for $i \neq j$. Thus, $\left\{E_{i}\right\}$ is a field of orthogonal frames.

Proof of Theorem A. Now we can apply Obata's method. Since the field of orthogonal frames $\left\{E_{i}\right\}$ is invariant by φ_{t}, its dual $\left\{w^{i}\right\}$ is also invariant by φ_{t}. We put

$$
{ }^{*} E_{i}=E_{i} /\left|E_{i}\right|, \quad * w^{i}=\left|E_{i}\right| w^{i}
$$

Since the projective curvature tensor field P is invariant by φ_{t} (cf. [viii] of $\S 2), P\left(E_{i}, E_{j}, E_{k}, w^{l}\right)$ is constant on C. By Lemma 3.1 and $\left|E_{1}\right|(0)=1$, we obtain

$$
\begin{equation*}
\left|E_{1}\right|^{2}=f^{*} / 4 a^{2}=4 /\left(e^{8 a t}+e^{-8 a t}+2\right) \tag{3.13}
\end{equation*}
$$

Since the length of C is $\pi / 2([i x]$ of $\S 2), P\left({ }^{*} E_{i},{ }^{*} E_{j},{ }^{*} E_{k},{ }^{*} w^{l}\right)$ is bounded
on C. On the other hand,

$$
P\left({ }^{*} E_{i},{ }^{*} E_{j},{ }^{*} E_{k},{ }^{*} w^{l}\right)=\frac{\left|E_{l}\right|}{\left|E_{i}\right|\left|E_{j}\right|\left|E_{k}\right|} P\left(E_{i}, E_{j}, E_{k}, w^{l}\right)
$$

holds on C. If $P\left(E_{i}, E_{j}, E_{k}, w^{l}\right) \neq 0$ for some (i, j, k, l), then by Lemma 3.5 and (3.13) the right hand side can not be bounded when $t \rightarrow \infty$ or $t \rightarrow-\infty$. This is a contradiction. Thus, $P=0$ and (M, g) is of constant curvature K_{1}. Since ($\nabla^{i} f$) belongs to the 1-nullity distribution, $K_{1}=1$.
q.e.d.
4. Remarks. (1) As M. Obata explained in [12], the standard model of f satisfying (1.2) on $S^{m}(1)$ is

$$
\begin{equation*}
f=\sum a_{\alpha}\left(y^{\alpha}\right)^{2}+b \tag{4.1}
\end{equation*}
$$

where a_{α}, b are constant ($a_{0} \geq a_{1} \geqq \cdots \geq a_{m}$), and ($y^{\alpha} ; \alpha=0,1, \cdots, m$) is the standard coordinate system of an $(m+1)$-dimensional Euclidean space E^{m+1}. In this case, at a critical point $\left(y^{0}=1\right),\left(\nabla_{i} \nabla^{h} f\right)$ has eigenvalues $2\left(a_{i}-a_{0}\right)$.

Proposition 4.1. A function f of the form (4.1) satisfies (1.4) for $K=1$, if and only if

$$
\begin{align*}
f= & a\left(y^{0}\right)^{2}+\cdots+a\left(y^{r}\right)^{2} \tag{4.2}\\
& +(a+h)\left(y^{r+1}\right)^{2}+\cdots+(a+h)\left(y^{m}\right)^{2}-a-h / 2
\end{align*}
$$

where a and h are constant and $1 \leq r \leq m-1$.
Proof. Let $\left(U, x^{i}\right)$ be a local coordinate neighborhood such that $x^{i}=y^{i}(i=1, \cdots, m), y^{0}=[1-\Delta]^{1 / 2}\left(\Delta=\sum\left(x^{i}\right)^{2}\right), y^{0}>0$. Then we have

$$
\begin{aligned}
g_{i j} & =\delta_{i j}+x^{i} x^{j} /(1-\Delta) \\
g^{j k} & =\delta^{j k}-x^{j} x^{k} \\
\Gamma_{j k}^{i} & =x^{i} \delta_{j k}+x^{i} x^{j} x^{k} /(1-\Delta)
\end{aligned}
$$

Since $f=\sum\left(a_{i}-a_{0}\right)\left(x^{i}\right)^{2}+a_{0}+b$, calculating (1.4) we get $\left(a_{i}-a_{0}\right)^{2} x^{i}=$ $-2\left(a_{0}+b\right)\left(a_{i}-a_{0}\right) x^{i}$, and hence (4.2). The converse is now clear.

Hence, our Theorem A is modeled on functions (4.2).
For a function f of the form (4.1), it is also verified that if each trajectory of grad f is a geodesic, then it is of the form (4.2) up to an additive constant.
(2) Next we explain about Sasakian structures, for simplicity, on a 3 -dimensional sphere $S^{3}(1)$. We identify $S^{3}(1)$ with the space of unit quaternions Q_{0}. Let i, j, k be units such that $i^{2}=-1, i j=-j i=k$,
etc. For a point $\boldsymbol{q} \in Q_{0}$, we define two curves

$$
\begin{aligned}
& a(t)=\cos t \boldsymbol{q}+\sin t \boldsymbol{q} \boldsymbol{i} \\
& b(t)=\cos t \boldsymbol{q}+\sin t i \boldsymbol{q} .
\end{aligned}
$$

We define ξ_{1} by $\left(\xi_{1}\right)_{q}=(d a(t) / d t)_{t=0}$ and η_{1} by $\left(\eta_{1}\right)_{q}=(d b(t) / d t)_{t=0}$. Then ξ_{1} and η_{1} are Sasakian structures. Similarly for j and k, we have ξ_{2}, η_{2}, ξ_{3}, η_{3}. ($\xi_{1}, \xi_{2}, \xi_{3}$) defines a Sasakian 3 -structure. By our definition, the actions of $\exp t \xi_{1}$ and $\exp s \eta_{1}$ are commutative. Hence $\left[\xi_{1}, \eta_{1}\right]=0$. Similarly $\left[\xi_{\alpha}, \eta_{\beta}\right]=0, \alpha, \beta=1, \cdots, 3$.
$\xi_{1}, \xi_{2}, \xi_{3}, \eta_{1}, \eta_{2}, \eta_{3}$ form a basis of the Lie algebra of Killing vector fields on $S^{3}(1)=Q_{0}$.
$\xi_{1}, \eta_{1}, \eta_{2}, \eta_{3}$ form a basis of the Lie algebra of infinitesimal automorphisms of the Sasakian structure ξ_{1} on $S^{3}(1)$.
$g\left(\xi_{1}, \eta_{1}\right)$ is not constant and satisfies (1.2) and (1.4) (cf. Lemma 5.3).
(3) If (M, g) is complete and real analytic, a paper by A. S. Sodovnikov [16] is remarkable.

5. Applications to Sasakian structures.

Theorem 5.1. Let (M, g) be a 3-dimensional Riemannian manifold. If ξ and η are Sasakian structures on (M, g) with $\xi \neq \eta$ and $\xi \neq-\eta$, then (M, g) is of constant curvature 1.

Proof. Except for a set of measure zero, we have a 2 -plane field defined by ξ and η. Therefore, 1-nullity index is equal to 2 or greater than 2 , and hence (M, g) is of constant curvature 1.
q.e.d.

Lemma 5.2. Let ξ and η be two Sasakian structures on (M, g). If we put $\nabla \xi=-\phi$ and $\nabla \eta=-\psi$, then $f=g(\xi, \eta)$ satisfies

$$
\begin{equation*}
\nabla^{j} f \nabla_{j} \nabla^{i} f=-3 f \nabla^{i} f-\psi_{j}^{i} \phi_{r}^{j} \psi_{s}^{r} \xi^{s}-\phi_{j}^{i} \psi_{r}^{j} \phi_{s}^{r} \eta^{s} \tag{5.1}
\end{equation*}
$$

Proof. First we have

$$
\begin{equation*}
\nabla_{i} f=\nabla_{i}\left(\xi^{r} \eta_{r}\right)=\psi_{i r} \xi^{r}+\phi_{i r} \eta^{r}, \tag{5.2}
\end{equation*}
$$

where $\psi_{i r}=g_{i s} \psi_{r}^{s}$, etc. Then

$$
\begin{aligned}
\nabla_{j} \nabla_{i} f & =-\nabla_{j} \psi_{i}^{r} \xi_{r}-\psi_{i r} \phi_{j}^{r}-\phi_{i r} \psi_{j}^{r}-\eta^{r} \nabla_{j} \phi_{r i} \\
& =-2 f g_{i j}+\eta_{i} \xi_{j}+\xi_{i} \eta_{j}-\psi_{i r} \phi_{j}^{r}-\phi_{i r} \psi_{j}^{r}
\end{aligned}
$$

By these two relations we get

$$
\nabla^{j} f \nabla_{j} \nabla_{i} f=-3 f\left(\psi_{i r} \xi^{r}+\phi_{i r} \eta^{r}\right)-\psi_{i r} \phi_{j}^{r} \psi_{s}^{j} \xi^{s}-\phi_{i r} \psi_{j}^{r} \phi_{s}^{j} \eta^{s},
$$

from which we have (5.1).
Lemma 5.3. In Lemma 5.2, if $[\xi, \eta]=0$, then

$$
\begin{equation*}
\nabla^{j} f \nabla_{j} \nabla^{i} f=-4 f \nabla^{i} f \tag{5.3}
\end{equation*}
$$

Proof. [$\xi, \eta]=\nabla_{\xi} \eta-\nabla_{\eta} \xi=0$ implies $\phi_{r}^{i} \eta^{r}=\psi_{s}^{i} \xi^{s}$. Then, by (5.1) and (5.2), we obtain (5.3). q.e.d.

ThEOREM 5.4. Let (M, g) be a complete Riemannian manifold. If (M, g) admits two Sasakian structures ξ and η with non-constant $g(\xi, \eta)$ and satisfying $[\xi, \eta]=0$, then (M, g) is of constant curvature 1.

Proof. If $[\xi, \eta]=0$, by Lemma 5.3 we have (1.4) for $K=1$. By [ii] of $\S 2, f=g(\xi, \eta)$ satisfies (1.2) for $K=1$. Therefore, Theorem A shows that (M, g) is of constant curvature 1.

THEOREM 5.5. Let (M, g) be a complete Riemannian manifold of dimension $2 n+1=m ; 5 \leq m \leq 11$ (or more generally, $m=5,7,9,11$, $17,19,25,27,33, \cdots)$. If (M, g) admits two Sasakian structures ξ and η with non-constant $g(\xi, \eta)$, then (M, g) is of constant curvature 1.

Proof. If $[\xi, \eta]=0$, Theorem 5.5 follows from Theorem 5.4. Now we assume that $[\xi, \eta] \neq 0$. First we show that four vector fields $\xi, \eta,[\xi, \eta], F=\operatorname{grad} f$ are linearly independent almost everywhere. Since ξ is a Killing vector field, we get

$$
\begin{aligned}
L_{\xi} f & =L_{\xi}(g(\xi, \eta))=g(\xi,[\xi, \eta]) \\
& =g\left(\xi, \nabla_{\xi} \eta-\nabla_{\eta} \xi\right) \\
& =g(\xi,-\psi \xi+\phi \eta)=0
\end{aligned}
$$

Similarly we have $L_{\eta} f=0$. Denoting by d the exterior differentiation we get $L_{\xi} d f=d L_{\xi} f=0$ and $L_{\eta} d f=0$. These relations show

$$
\begin{aligned}
& {[\xi, F]=L_{\xi} F=0,} \\
& {[\eta, F]=L_{\eta} F=0 .}
\end{aligned}
$$

At the same time, we obtain

$$
0=L_{\xi} f=d f(\xi)=g(\xi, F)
$$

Similarly, $g(\eta, F)=0$. Then we get

$$
\begin{aligned}
& 0=L_{\xi}(g(\eta, F))=g\left(L_{\xi} \eta, F\right)=g([\xi, \eta], F) \\
& 0=L_{\xi}(g(\eta, \eta))=2 g([\xi, \eta], \eta)
\end{aligned}
$$

and $g([\xi, \eta], \xi)=0$. F vanishes only on the set of measure zero. Since different two Killing vector fields can not be identical on any open set, $\xi, \eta, F,[\xi, \eta]$ are linearly independent almost everywhere by $\xi \perp F$, $\eta \perp F,[\xi, \eta] \perp \xi,[\xi, \eta] \perp \eta,[\xi, \eta] \perp F$. Assume that $\xi, \eta, F,[\xi, \eta]$ are linearly independent at each point of an open set U. ξ, η, F belong to
the 1-nullity distribution D on U. Since D is integrable on U, we have $[\xi, \eta] \in D$. Therefore the index of 1-nullity $\mu(x) \geq 4$ on U, and consequently $\mu \geq 4$ on M. Then we can apply [vii] of $\S 2$, and we get Theorem 5.5.
q.e.d.

Corollary 5.6. Let (M, g) be a complete Riemannian manifold of dimension $m ; 3 \leq m \leq 11$. If it admits non-proportional two Sasakian structures, then it is an Einstein space.

Proof. This follows from Theorem 5.5 and [iii] of $\S 2$. q.e.d.

References

[1] K. ABE, A characterization of totally geodesic submanifolds in S^{n} and $C P^{n}$ by an inequality, Tôhoku Math. J., 23 (1971), 139-244.
[2] S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. Math., 56 (1952), 422-430.
[3] Y. H. Clifton and R. Maltz, The k-nullity spaces of the curvature operator, Michigan Math. J., 17 (1970), 85-89.
[4] D. Ferus, Totally geodesic foliations, Math. Ann., 188 (1970), 313-316.
[5] D. Ferus, On the completeness of nullity foliations, Michigan Math. J., 18 (1971), 61-64.
[6] A. Gray, Spaces of constancy of curvature operators, Proc. Amer. Math. Soc., 17 (1966), 897-902.
[7] S. Ishihara and Y. Tashiro, On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ., 9 (1959), 19-47.
[8] T. Kashifada, A note on a Riemannian space with Sasakian 3-structure, Nat. Sci. Rep. Ochanomizu Univ., 22 (1971), 1-2.
[9] Y. Y. Kuo, On almost contact 3-structure, Tôhoku Math. J., 22 (1970), 325-332.
[10] R. Maltz, The nullity spaces of the curvature operator, Cahiers de Topo. et Geom. Diff., 8 (1966), 1-20.
[11] M. Оbata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.
[12] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. United States-Japan Sem. in Diff. Geom. Kyoto, Japan, 1965, 101-114.
[13] T. Otsuki, Isometric imbedding of Riemann manifolds in a Riemann manifold, J. Math. Soc. Japan, 6 (1954), 221-234.
[14] A. Rosenthal, Riemannian manifolds of constant nullity, Michigan Math. J., 14 (1967), 469-480.
[15] S. SASAKI, Almost contact manifolds, Lecture notes, I, II, III, Tôhoku Univ.
[16] A. S. SolODOVNIKOv, The group of projective transformations of a complete analytic Riemannian manifold, Dokl. Acad. Nauk. SSSR., 186 (1969); [Sov. Math. Dokl., 10 (1969), 750-753.].
[17] S. Tachibana and W. N. Yu, On a Riemannian spaces admitting more than one Sasakian structure, Tôhoku Math. J., 22 (1970), 536-540.
[18] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tôhoku Math. J., 21 (1969), 21-38.
[19] S. Tanno, On the isometry groups of Sasakian manifolds, J. Math. Soc. Japan, 22 (1970), 579-590.
[20] S. Tanno, Killing vectors on contact Riemannian manifolds and fiberings related to the Hopf fibrations, Tôhoku Math. J., 23 (1971), 313-333.

Mathematical Institute
Tôhoou University,
Sendai, Japan
Added in Proof: Theorem (*) in the introduction has been completely proved by the present author (: Differential equations of order 3 on Riemannian manifolds [to appear]), and consequently Theorem (**) is also verified.

