T6hoku Math. Journ.
29 (1977), 125-136.

SOME SYSTEM OF DIFFERENTIAL EQUATIONS
ON RIEMANNIAN MANIFOLDS AND ITS
APPLICATIONS TO CONTACT STRUCTURES

SHOKICHI TANNO

(Received January 26, 1976)

1. Introduction. Let (M, g) be a connected m(>2)-dimensional Rie-
mannian manifold of class C*. The existence of a function satisfying
some differential equations on (M, g) sometimes determines differential
geometric properties of (M, g). For example, a complete (M, g) admits a
non-trivial (global) solution f of the system of differential equations

(1'1) VjVif + ngii =0

for some positive constant K, if and omnly if (M, g) is isometric to a
Euclidean sphere S™(K) of radius 1/V'K (S. Ishihara and Y. Tashiro [7],
M. Obata [11], [12]). _

Furthermore, M. Obata [12] announced the following.

OBATA’S THEOREM (*). Let (M, g) be a complete and simply connected
Riemannian manifold of dimension m. In order for M to admit a non-
trivial solution f for the system of differential equations

(1.2) VYT + K@V ;fgu + V.fgu; + Vifgi) =0

Jor some positive constant K, it is mecessary and sufficient that (M, g)
be isometric to a FEuclidean sphere S™(K).

This system of differential equations is of order 3, and this result is
itself of great importance. However, the complete proof has not yet been
published unfortunately.

On the other hand, a unit Killing vector field & on (M, g) is called a
normal contact structure or simply a Sasakian structure, if it satisfies

(1.3) R(X, &)Y = 9§, V)X — g(X, Y)&
for any vector fields (or tangent vectors) X and Y, where R denotes
the Riemannian curvature tensor field. In other words, ¢ is a Sasakian
structure if and only if it belongs to the 1l-nullity distribution of (A, g).
In this case, the dimension m of M is odd.

Let ¢ and 7 be two Sasakian structures on (M, g). If g(§, 1) =rf is
not constant, then f satisfies (1.2) for K = 1 (S. Tachibana and W. N.
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Yu [17]). Applying Theorem (x), S. Tachibana and W. N. Yu [17] showed
the following.

THEOREM (xx). Let (M, g) be a complete and simply connected
Riemannian manifold. If (M, g) admits two Sasakian structures & and
N with non-constant g(&, 1), then (M, g) is isometric to S™(1).

In this paper, without assuming Theorem (x) we give a proof of
Theorem (xx) for the dimension m < 11. For this purpose, first we prove
Theorem A as a weaker version of Theorem (), and then we apply a
Theorem by D. Ferus [4] on 1-nullity distributions.

THEOREM A. Let (M, g) be a complete Riemannian manifold. If
(M, g) admits a non-trivial function f satisfying (1.2) and

(1.4) A/K)G" VWV o f = —4fV.f
then (M, g) is of constant curvature K.

This is a special case of Theorem (x) as will be explained in the
Section 4. However, our proof is differential-geometric and we can give
a nice frame at a point concretely, which plays an important role in the
outline of Obata’s proof of Theorem (x).

2. Preliminaries. Let (M, g) be a Riemannian manifold with a

normal contact structure or a Sasakian structure £ (cf. S. Sasaki [15],
S. Tanno [18], [19]). Since ¢ is a Killing vector field, (1.8) is written as

(2.1) Vx(7§)-Y = g(§ Y)X — g(X, Y)&,

where X and Y are vector fields or tangent vectors. If we put Vé= —¢
(i.e., V3¢ = —¢X), then the (1, 1)-tensor field ¢ satisfies the following.
(2.2) ¢¢=0, ¢sX=—X+ g(§ X)§,

(2.3) 96X, ¢Y) = 9(X, Y) — g(§, X)9(§, Y),

(2.4) Vigt = gi€" — 03¢, .

The 1-form which is dual to & with respect to g is called a contact
form on M.

We pick up some known results for our later arguments.

[i] If @ is an isometry of (M, g) and ¢ is a Sasakian structure on
(M, g), then @¢ is also a Sasakian structure on (1, g), where @ denotes
also its differential (S. Tanno [19]).

[ii] If & and % are Sasakian structures on (X, g), then g(§ 7) =f
satisfies (1.2) for K = 1 (S. Tachibana and W. N. Yu [17]).

[iii] If & and 7 are two Sasakian structures on (M, g) and if g(&, ) = f
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is constant (= 1, # —1), then putting &, = &,

fw = — FOn — f&l,

and &, = [£w, Ew]/2, we have a Sasakian 3-structure (&), &w, &w) (cf.
Y. Y. Kuo [9]). A Riemannian manifold admitting a Sasakian 3-structure
is an Einstein space (T. Kashiwada [8]).

The Riemannian curvature tensor field R is defined by

(2.5) R(X, Y)Z = VxVYz - VyVXz - V[X,Y]Z .
We define a curvature-like tensor field T by
(2.6) T(X, Y)Z = R(X, Y)Z — K(9(Y, 2)X — 9(X, 2)Y) .

Let x be a point of M and let M, be the tangent space to M at x. Then
the K-nullity space N, at z is defined by

2.7 N,={XeM,;T(X,Y)Z=0 foral Y,ZeM,).

dim N, = p(x) is called the index of K-nullity at 2 (S. S. Chern and N. H.
Kuiper [2], T. Otsuki [13]). The minimum g of p(x) on M is called the
index of K-nullity of (M, g).

[ivl p(x) is upper semi-continuous, and hence the set G of M where
m(x) = ¢ is open.

[v] If p(x) is constant on an open submanifold M° of M, then the
K-nullity distribution: z — N, is integrable on M’ and leaves (maximal
integral submanifolds) are totally geodesic. Therefore leaves are of
constant curvature (K. Abe [1], A. Gray [6], R. Maltz [10], etc.).

[vi] If (M, g)is complete and if ¢£ > 1, then leaves on G are complete
(K. Abe [1], Y. N. Clifton and R. Maltz [3], D. Ferus [5], etec.).

[vii] Let N be a p-dimensional involutive (integrable) distribution.
Assume that:

(a) each leaf of N is complete and totally geodesic,

(b) sectional curvature K(X,Y)=constant>0for X e N,Y € N*, where
N* denotes the distribution orthocomplementary to N (in case ¢ < m),

(¢) p>v,, where v, is for example;

m: 234 567 8910 1112 13141516 171819-..24252627 ---
v,: 010 123 01 2 34 5670 123...8123-.-.
Then we have ¢ = m (D. Ferus [4]).

Next we summerise the fundamental facts on (1.2).

[viii] If a function f on (M, g) satisfies (1.2), then (Vif) = (¢*V;f)
is an infinitesimal projective transformation. This follows from (1.2) and
the Ricci identity for ViV y,f — V¥ 7,.f (M. Obata [12]).
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[ix] Let {x(s)} be a complete geodesic in (M, g) with arclength
parameter s. Then the restriction of f satisfying (1.2) with K =1 to
{x(s)} is given by

f(8) = (f"(0)/2) sin® s + (f'(0)/2) sin 2s + f(0) .

This is verified by the fact that (1.2) on the geodesic is f"' + 4f' =0,
where the dash denotes d/ds. In particular, f(s) is bounded and periodic
(f(z + s) = f(s)). Furthermore, if f(s,) is the maximum, then f(s, + 7/2)
is the minimum.

[x] If f satisfies (1.2), then (V‘f) belongs to the K-nullity distribu-
tion. This follows from the Ricei identity.

3. Proof of Theorem A. By replacing g by Kg, we can assume
that K =1 in proving Theorem A. Let f be a non-trivial function on
(M, g) satisfying

3.1) ViVthf+2ijgih+7ifghi+7hfgji:0!
(3.2) VjViijf = _4f71f ’

where V/f = ¢’*,f, and V denotes the Riemannian connection of (M, g).
We define a vector field F by F =gradf = ("'f). By (3.2) we have
VeF = —4fF, that is, each trajectory of F is a geodesic. Let
@, = exptF be the (local) l-parameter group of (local) transformations
generated by F. We take and fix a trajectory C of F and take a point
p of C. We parameterise C so that

C = {x(t)} = {exp tF-p} = {p.p} .
Let f = f(t) be the restriction of f to C. Then
sy — O _ if _
f (t)—d—t—F—a?—VfVif'

(3.2) is written as
V(Z;fVif)y= —4r.f*.
Transvecting the last equation by /if, we get
f** = —4()*,
where ** denotes d?/dt>. Solving this we have
3.3) f*=—4f"+¢
for some constant ¢. If ¢ = 0, then

(3.4 ~ f(t) = (4t + B)™
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for some constant 8. If ¢ < 0, then

(3.5) S(t) = —btandb(t + B), b= (—c/4)*.
And if ¢ > 0, then

(3.6) f(t) = a(e® ¢ — 1)/(e***? + 1), 4a*=c,
or

3.7) S(t) = a(e®+f + 1)/(®F — 1), 4a*=c.

Since C is a geodesic and (M, g) is complete, we see that the parameter
t can be extended as far as f* # 0. Therefore (3.4), (3.5) and (3.7) can
not be bounded. Hence, by [ix] of §2 we get (3.6). This shows that
Sf(t) takes the value 0 once. So we assume that f(p) = 0.

LEMMA 3.1. A non-trivial trajectory C of F is parameterised so
that C = {exp tF-p, — < t < =}, f(p) = f(0) =0, and

(3.8) | FH(t) = —4f* + 4a?,
(3.9 f(t) = a(e™ — 1)/(e™* + 1)

for some positive constant a. In particular, —a < f(t) < a and f(t)—a
(as t — ), f(t)— —a (as t — — ).

Proor. This follows from (3.6) and f(») = 0. q.e.d.

LEMMA 3.2. The tensor field (V;F*) = (FV'f) is symmetric with
respect to g and has real eigenvalues at each point of C. There are at
most three different eigenvalues at each point:

—4f, —-2f+2a, —2f—2a,
where the multiplicity of —4f is one.

PROOF. F'is an eigenvector at each point byb (3.2) for the eigenvalue
—4f. Let Z be a (local) field of eigenvectors along C which is orthogonal
to F. We put

(3.10) ZWFif =\Z*.
Operating 7, to (3.2) we obtain

Vv fVif + vy fvvif = -4V, fv.f — 4fv.v.f .
By (3.1) we have

AfVWof = =V FIVIf —VifVf + .0V g -
Transvecting the last equation with Z*Z* and using (8.10), we get
(3.11) N+ 4=, frf)=0.
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Hence, )\ can take at most two values. Since (7,fV"f) = f*, applying
(3.8) we can solve \ from (3.11) and get » = —2f =+ 2a. q.e.d.

LEMMA 3.3. By L, we denote the Lie derivation by F. Then
Ly vif) = =207, fV"f)o; — 2V fV;if .
ProoF. By definition of L, we have
LW Vif)=FWyyif —V,FVFrf + 7, F7.0f .
Applying (3.1) we get the required relation. q.e.d.

LEMMA 3.4. Let D,, D,, D, be the fields of subspaces along C defined
by the eigenspaces for —4f, —2f + 2a, —2f — 2a, respectively. Then
D,, D,, D, are orthogonal and invariant by ¢, = exp tF.

Proor. It 1is clear that D, D, D, are orthogonal. Since
L.F =|[F,F] =0, we have ¢,D, = D,. Next we show that D, + D, is
invariant by ¢,. Let Z, be a tangent vector at p such that
Z,€(D, + D)(p). Define a vector field Z along C by

Z P = Py

where o, denotes also its differential. Define a function G(t) of ¢ by
G(t) = 9,,,(Z, F). Since L;Z =0, LyF =0 and L,g = (2V'/F;f), we get
@) = 960 _ 1, G
dit
=WV, fZVif = —8fG(t)
by (3.2). Since actually G(0) =0, we have G(t) =0 and ZeD, + D,
Next we put
(3.12) Z e Z2 + Z3
where Z, and Z, are vector fields along C such that Z,e D, and Z,eD,.
It is easily verified that
Z, = (V;F + (2f + 2a)Z)/4a ,
from which the differentiability of Z, on ¢ follows. Operating L, to the
both sides of the last equation, applying Lemma 3.3, and using (3.8) and
L.Z =0, we obtain
L;Z,=0.
By (3.12) Z, is also differentiable and hence we get L,Z, = 0. Hence,
D, and D, are invariant by ¢,. q.e.d.

Let {(E)),, ¢t =1, ---, m} be an orthonormal frame at p such that
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(E)), € Dy(p) ,
(Eu)peDz(p)’ =2 00,7,
(Ev)peDs(p)y ?7='I'+1,-~-,m.

We define a field of frames {E;} along C by (E.),, = @(E.),. Then {E,}
is a field of basis of D, and {E,} is a field of basis of D,.

LEMMA 3.5. With respect to the length of E, we have
Gy(t) = go,,(EL, E,) = 2¢**/(e*** + ¢***), E,eD,,
Gi(t) = 9y,,(E, E,) = 267*/(e*** + ¢**'), E,eD,.

In particular, G t)—2 (as t— ) and Gy(t)—0 (as t— —o0), ‘while
Gy(t) — 0 (as t — ) and G4t) —2 (as t — — ).

Proor. Let E,eD,. Then
G () = LsGy(?t) = 2V ¥ .fELE;
= 2(2a — 21)Gy(t) .
Consequently
log Gy(t) = S da — f)dt + L
for some constant L. By (3.9), we get

S Aa — f)dt = dat — log (et + e~
and hence, »
Gz(t) — eLe4at/(e4at + e—4at) .
Since G,(0) = 1, we get X = 2. G4(t) is similarly obtained. q.e.d.

Similarly we have g,,(E;, E;) =0 for ¢ = j. Thus, {E)} is a field of
orthogonal frames.

PrRoOOF OF THEOREM A. Now we can apply Obata’s method. Since
the field of orthogonal frames {E,} is invariant by ¢,, its dual {w?} is also
invariant by @,. We put

*E, = E|/|E;|, *w'=|E]|w".
Since the projective curvature tensor field P is invariant by ¢, (cf. [viii]
of §2), P(E, E;, E,, w') is constant on C. By Lemma 3.1 and | E,|(0) = 1,
we obtain . '
(3.13) |E, 2 = f*/4a® = 4/(€® + e7%* + 2) .
Since the length of C is #/2 ([ix] of §2), P(*E,, *E;, *E,, *w') is bounded
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on C. On the other hand,

P(*E,, *E,, *E,, *w') = — B pE. g, B, w

( i J k ’W) IEzIIEgllEki ( i 3 k;w)

holdson C. If P(E, E;, E,, w') # 0 for some (3, j, k, 1), then by Lemma

3.5 and (3.13) the right hand side can not be bounded when ¢— o or

t — —oo. This is a contradiction. Thus, P = 0 and (M, g) is of constant

curvature K,. Since (/'f) belongs to the 1l-nullity distribution, K, = 1.
q.e.d.

4. Remarks. (1) As M. Obata explained in [12], the standard
model of f satisfying (1.2) on S™(1) is
(4.1) f=2ay) +0,
where a,, b are constant (¢, >a,= - > @a,), and (y5a=0,1, ---, m) is
the standard coordinate system of an (m + 1)-dimensional Euclidean space
Emt, In this case, at a critical point (¥°=1), (7./*f) has eigenvalues
2(0/,{ - ao)o

PROPOSITION 4.1. A function f of the form (4.1) satisfies (1.4) for
K =1, if and only if

(4.2) f=a@)y+ - +ay)
+ (@ +h)Y )2+ oo + (@ + B)Yy™)} — a — k2,

where a and h are constant and 1 <r<m — 1.

PrOOF. Let (U, x°) be a local coordinate neighborhood such that
o=y(i=1---,m), ¥ =[1— 44 =3 =), ¥°>0. Then we have

9:; = 0y + x'?/(1 — 4),
g = 0% — pigk
F?k = mia,k + xix]wk/(l - A) .
Since f = 3, (a; — a,)(&*)* + a, + b, calculating (1.4) we get (a;, — a,)z’ =

—2(a, + b)(a; — a,)x’, and hence (4.2). The converse is now clear.
q.e.d.

Hence, our Theorem A is modeled on functions (4.2).

For a function f of the form (4.1), it is also verified that if each
trajectory of grad f is a geodesic, then it is of the form (4.2) up to an
additive constant.

(2) Next we explain about Sasakian structures, for simplicity, on
a 3-dimensional sphere S%(1). We identify S%(1) with the space of unit
quaternions Q,. Let i, j, k be units such that i*= —1, ij = —ji =k,
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etc. For a point g€ @, we define two curves

a(t) = cos tq + sin tqi ,
b(t) = cos tq + sin tiq .

We define & by (&), = (da(t)/dt).e, and 7, by (7)), = (db(t)/dt):=,. Then
& and 7, are Sasakian structures. Similarly for j and k, we have &, 7,
&y M5 (&4 & &) defines a Sasakian 3-structure. By our definition, the
actions of exptf, and expsy, are commutative. Hence [£, 7] =0.
Similarly [Ea; 775] =0,ap8=1,---,38.

&, &, &, My Moy s form a basis of the Lie algebra of Killing vector
fields on S*(1) = Q,.

&, M1, ey s form a basis of the Lie algebra of infinitesimal automor-
phisms of the Sasakian structure &, on S3(1).

9(¢, m,) is not constant and satisfies (1.2) and (1.4) (cf. Lemma 5.3).

(8) If (M, g) is complete and real analytic, a paper by A. S.
Sodovnikov [16] is remarkable.

5. Applications to Sasakian structures.

THEOREM 5.1. Let (M, g) be a 3-dimensional Riemannian manifold.
If & and 7 are Sasakian structures on (M, g) with & =7 and & + —7),
then (M, g) is of constant curvature 1.

PrROOF. Except for a set of measure zero, we have a 2-plane field
defined by & and 7. Therefore, 1-nullity index is equal to 2 or greater
than 2, and hence (M, g) is of constant curvature 1. q.e.d.

LEMMA 5.2. Let & and 7 be two Sasakian structures on (M, g). If
we put Ve = —¢ and V'p = —, then f = g(& 1) satisfies

(5.1) VifP7if = —=8fVif — igii&® — givriorm’ .
Proor. First we have
(5.2) Vil =VdEN,) = ¥vus + ¢u1",

where v, = ¢.,¥}, ete. Then
V]sz = _Vﬂﬁzér - ’\”Mﬁg - ¢i’r"p\§ - 7]TVJ'¢1'1;
= —2fg9.; + N:&5 + EMi — Vind; — PurV; -
By these two relations we get
VIfV 7 f = =8f(i& + ¢, 77) — udihi€® — G idin’
from which we have (5.1).

LEMMA 5.3. In Lemma 5.2, if [§, 9] = 0, then
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(5.8) Vify Wif = —AfVf .
Proor. [§ 9] =V —V,6 =0 implies ¢.7" = 4i&°. Then, by (5.1)
and (5.2), we obtain (5.3). q.e.d.

THEOREM 5.4. Let (M, g) be a complete Riemannian manifold. If
(M, g) admits two Sasakian structures & and 7 with non-constant g(&, n)
and satisfying [¢, ] = 0, then (M, g) is of constant curvature 1.

Proor. If [¢ 7] =0, by Lemma 5.3 we have (1.4) for K =1. By
[ii] of §2, f = g(§ 7) satisfies (1.2) for K = 1. Therefore, Theorem A
shows that (M, g) is of constant curvature 1.

THEOREM 5.5. Let (M, g) be a complete Riemannian manifold of
dimension 2n +1=m; 5 < m <11 (or more generally, m =5,7,9, 11,
17,19, 25, 27, 33, ---). If (M, g) admits two Sasakian structures & and
7 with non-constant g(&, 1), then (M, g) is of constant curvature 1.

Proor. If [§, 9] =0, Theorem 5.5 follows from Theorem 5.4. Now
we assume that [§ 7] #0. First we show that four vector fields
& n, [& 1], F = grad f are linearly independent almost everywhere. Since
& is a Killing vector field, we get

L.f = Lg(& 1) = 9( [& 7]
= Q(E, 7677 - Vﬂs)
Similarly we have L,f = 0. Denoting by d the exterior differentiation
we get L.df = dL.f =0 and L,df = 0. These relations show
[¢, F]=L.F =0,
[p, F]=L,F =0.
At the same time, we obtain
0=L.f =df(§) =g F).
Similarly, g(», F) = 0. Then we get
0= Le(ﬂ(’?: F)) = Q(Lﬂ], F) = g([E; 77]: F) ’
0 = L(g(m, 7)) = 29([¢, 7], 1) ,

and g([, 7], &) = 0. F vanishes only on the set of measure zero. Since
different two Killing vector fields can not be identical on any open set,
& 7, F, [, 7] are linearly independent almost everywhere by & L F,
nLF [&n] L& 6] Ly [§79] L F. Assume that & 7, F, [§ 7] are
linearly independent at each point of an open set U. &, 5, F belong to
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the 1-nullity distribution D on U. Since D is integrable on U, we have
[¢, 7]e D. Therefore the index of 1-nullity () >4 on U, and conse-
quently #>4 on M. Then we can apply [vii] of §2, and we get
Theorem 5.5. q.e.d.

COROLLARY 5.6. Let (M, g) be a complete Riemannian manifold of
dimension m; 3<m<1l. If it admits non-proportional two Sasakian
structures, then it is an Einstein space.

Proor. This follows from Theorem 5.5 and [iii] of §2. q.e.d.
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ADDED IN PROOF: Theorem (*) in the introduction has been com-
pletely proved by the present author (: Differential equations of order
3 on Riemannian manifolds [to appear]), and consequently Theorem (x*)
is also verified.





