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1. Introduction. Let (M, g) be a connected m(>2)-dimensional Rie-
mannian manifold of class C°°. The existence of a function satisfying
some differential equations on {M, g) sometimes determines differential
geometric properties of (M, g). For example, a complete (M, g) admits a
non-trivial (global) solution / of the system of differential equations

(1.1) VJ?J + KfgH = 0

for some positive constant K, if and only if (ikf, g) is isometric to a
Euclidean sphere Sm(K) of radius 1/VΊΓ (S. Ishihara and Y. Tashiro [7],
M. Obata [11], [12]).

Furthermore, M. Obata [12] announced the following.

OBATA'S THEOREM (*). Let (M, g) be a complete and simply connected
Riemannian manifold of dimension m. In order for M to admit a non-
trivial solution f for the system of differential equations

(1.2) vpyj + K(2Fjfgih + FJghj + VjgH) = 0

for some positive constant K, it is necessary and sufficient that (ikf, g)
be isometric to a Euclidean sphere Sm(K).

This system of differential equations is of order 3, and this result is
itself of great importance. However, the complete proof has not yet been
published unfortunately.

On the other hand, a unit Killing vector field ξ on (M, g) is called a
normal contact structure or simply a Sasakian structure, if it satisfies

(1.3) R{X, ξ)Y= g(ξ, Y)X - g(X, Y)ξ

for any vector fields (or tangent vectors) X and Y, where R denotes
the Riemannian curvature tensor field. In other words, ξ is a Sasakian
structure if and only if it belongs to the 1-nullity distribution of (ikf, g).
In this case, the dimension m of M is odd.

Let ξ and η be two Sasakian structures on (M, g). If g(ξ, rj) = / is
not constant, then / satisfies (1.2) for K = 1 (S. Tachibana and W. N.
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Yu [17]). Applying Theorem (*), S. Tachibana and W. N. Yu [17] showed
the following.

THEOREM (**). Let (M, g) be a complete and simply connected
Riemannian manifold. If (M, g) admits two Sasakian structures ξ and
Ύ] with non-constant g(ζ, ΎJ), then (M, g) is isometric to Sm(ϊ).

In this paper, without assuming Theorem (*) we give a proof of
Theorem (**) for the dimension m < 11. For this purpose, first we prove
Theorem A as a weaker version of Theorem (*), and then we apply a
Theorem by D. Ferus [4] on 1-nullity distributions.

THEOREM A. Let (M, g) be a complete Riemannian manifold. If
(M, g) admits a non-trivial function f satisfying (1.2) and

(1.4) (l\K)g^VjFάVJ = -AfΓJ ,

then {My g) is of constant curvature K.

This is a special case of Theorem (*) as will be explained in the
Section 4. However, our proof is differential-geometric and we can give
a nice frame at a point concretely, which plays an important role in the
outline of Obata's proof of Theorem (*).

2. Preliminaries. Let {M, g) be a Riemannian manifold with a
normal contact structure or a Sasakian structure ξ (cf. S. Sasaki [15],
S. Tanno [18], [19]). Since ζ is a Killing vector field, (1.3) is written as

(2.1) Vx{Vξ). Y = g{ξ, Y)X - g{X, Y)ξ ,

where Xand F a r e vector fields or tangent vectors. If we put Fξ — — φ
(i.e., Fzζ = —φX), then the (1, l)-tensor field φ satisfies the following.

(2.2) φξ = 0 , φφX = -X + g(ξ, X)ξ ,

(2.3) g(φXt φY) = g{X, Y) - g(ξ, X)g(ζ, Y) ,

(2.4) Fdφϊ = gHξh - δ% .

The 1-form which is dual to ξ with respect to g is called a contact
form on M.

We pick up some known results for our later arguments.
[ i ] If φ is an isometry of (M, g) and ξ is a Sasakian structure on

(M, g), then φξ is also a Sasakian structure on {M, g), where φ denotes
also its differential (S. Tanno [19]).

[ ii ] If ξ and η are Sasakian structures on (M, g), then g(ζ, η) = f
satisfies (1.2) for K = 1 (S. Tachibana and W. N. Yu [17]).

[iii] If ξ and η are two Sasakian structures on (ikf, g) and if g(ζ, η) — f
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is constant (Φ 1, Φ — 1), then putting ξω = ξ,

ξω = (V - fS)/\V ~ fξ\ f

and ί(3) = [ξω, f(2)]/2, we have a Sasakian 3-structure (£(1), £(2), £(8>) (cf.
Y. Y. Kuo [9]). A Riemannian manifold admitting a Sasakian 3-structure
is an Einstein space (T. Kashiwada [8]).

The Riemannian curvature tensor field R is defined by

(2.5) R(X, Y)Z = VXVYZ - VYVXZ - FίZt7lZ .

We define a curvature-like tensor field T by

(2.6) T(X, Y)Z = R(X, Y)Z - K(g(Y, Z)X - g(X, Z)Y) .

Let x be a point of M and let Mx be the tangent space to M at x. Then
the ϋΓ-nullity space Nx at # is defined by

(2.7) Nx = { l e i , ; T(X, Γ)Z = 0 for all Y, Z eMx} .

dim Nx = μ(#) is called the index of Z-nullity at x (S. S. Ghern and N. H.
Kuiper [2], T. Otsuki [13]). The minimum μ of μ(x) on M is called the
index of ίΓ-nullity of (M, g).

[iv] μ(x) is upper semi-continuous, and hence the set G of M where
μ(x) = μ is open.

[ v ] If μ(#) is constant on an open submanifold M° of jfcf, then the
ίΓ-nullity distribution: x-+Nx is integrable on M°9 and leaves (maximal
integral submanifolds) are totally geodesic. Therefore leaves are of
constant curvature (K. Abe [1], A. Gray [6], R. Maltz [10], etc.).

[vi] If (M, g) is complete and if μ > 1, then leaves on G are complete
(K. Abe [1], Y. N. Clifton and R. Maltz [3], D. Ferus [5], etc.).

[vii] Let N be a ^-dimensional involutive (integrable) distribution.
Assume that:

( a ) each leaf of N is complete and totally geodesic,
(b) sectional curvature K(X, Y) = constant > 0 for X e N, Y 6 N1, where

N1 denotes the distribution orthocomplementary to N (in case μ < m),
(c ) μ > vm, where vm is for example;

m: 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 • 24 25 26 27

vm: 0 1 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3 - . . 8 1 2 3 - . . .

Then we have μ = m (D. Ferus [4]).
Next we summerise the fundamental facts on (1.2).
[viii] If a function / on (ikf, g) satisfies (1.2), then (F'f) = (g'Ψjf)

is an infinitesimal protective transformation. This follows from (1.2) and
the Ricci identity for FjFtFJ - F/fJ (M. Obata [12]).
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[ix] Let {x(s)} be a complete geodesic in (AT, g) with arclength
parameter s. Then the restriction of / satisfying (1.2) with K — 1 to
{x(s)} is given by

f(s) = (/"(0)/2) sin2 8 + (/'(0)/2) sin 2s + /(0) .

This is verified by the fact that (1.2) on the geodesic is / " ' + 4/' = 0,
where the dash denotes d/ds. In particular, f(s) is bounded and periodic
(/(π + s) = f(s)). Furthermore, if f(s0) is the maximum, then f(sQ + π/2)
is the minimum.

[ x ] If / satisfies (1.2), then (F</) belongs to the iΓ-nullity distribu-
tion. This follows from the Ricci identity.

3. Proof of Theorem A. By replacing g by Kg, we can assume
that K = 1 in proving Theorem A. Let / be a non-trivial function on
(M9 g) satisfying

(3.1) FsFtFj + 2Fjfgik + FJghj + FJgH = 0 ,

(3.2) VJTjF'f = -4fFJ ,

where F*'f — gjhFhf, and F denotes the Riemannian connection of (M, g).
We define a vector field F by F = g r a d / = (F'f). By (3.2) we have
FFF=—4:fF, that is, each trajectory of F is a geodesic. Let
φt = exp £JF be the (local) 1-parameter group of (local) transformations
generated by F. We take and fix a trajectory C of F and take a point
p of C We parameterise C so that

C ={«(«)} = {exp tF.p} = {^p}.

Let / = f(t) be the restriction of / to C. Then

(3.2) is written as

nrjfr'f) = -4F,/ 2 .

Transvecting the last equation by F*f, we get

/** =

where ** denotes df/dt1. Solving this we have

(3.3) / * = - 4 / 2 + c

for some constant c. If c = 0, then

(3.4) f(t) = (it + β)-1
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for some constant β. If c < 0, then

(3 5) f(t) = -& tan 4δ(ί + β) , b = (-c/4)1/2.

And if c > 0, then

(3.6) /(*) = a(e8at+β - l)/(β8αί^ + 1) , 4α2 = c ,

or

(3.7) /( ί ) = a(e8at+t + l)/(e8at+β - 1) , 4α2 = e .

Since C is a geodesic and (ifcf, #) is complete, we see that the parameter
t can be extended as far as / * Φ 0. Therefore (3.4), (3.5) and (3.7) can
not be bounded. Hence, by [ix] of §2 we get (3.6). This shows that
f(t) takes the value 0 once. So we assume that f(p) = 0.

LEMMA 3.JL A non-trivial trajectory C of F is parameterised so
that C = {exp tF p, - oo < t < <*>}, f(p) = /(0) = 0, and

(3.8) /•(*) = - 4 / 2 + 4α2,

(3.9) fit) = aie8at - l)/ie8at + 1)

for some positive constant a. In particular, —a< fit) < a and fit) —* a
(as t —• oo), /(£) —»• — a ias ί - + — oo).

PROOF. This follows from (3.6) and /(p) = 0. q.e.d.

LEMMA 3.2. The tensor field iVjF*) = ψpf) is symmetric with
respect to g and has real eigenvalues at each point of C. There are at
most three different eigenvalues at each point:

-4/ , -2/ + 2a , -2/ - 2a ,

where the multiplicity of —4/ is one.

PROOF. F is an eigenvector at each point by (3.2) for the eigenvalue
—4/. Let Z be a (local) field of eigenvectors along C which is orthogonal
to F. We put

(3.10) ZΨjF'f = XZ* .

Operating Fh to (3.2) we obtain

By (3.1) we have

±fVhVJ = -rpjΓjr'f - VJVJ + (

Transvecting the last equation with ZhZi and using (3.10), we get

(3.11) λ2 + 4/λ - iFjF'f) = 0 .
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Hence, λ can take at most two values. Since {VrfV
rf) = /*, applying

(3.8) we can solve λ from (3.11) and get λ = —2/ ± 2α. q.e.d.

LEMMA 3.3. By LF we denote the Lie derivation by F. Then

LATjF'f) = -2(Fr/F'/)δJ - 2FifFjf .

PROOF. By definition of LF we have

LAF/'f) = FΨ.FjF'f - FhFΨ5F
hf + FjFΨ^f .

Applying (3.1) we get the required relation. q.e.d.

LEMMA 3.4. Let Dlf D2, A be the fields of subspaces along C defined
by the eigenspaces for —Af, — 2/ + 2α, —2/ — 2α, respectively. Then
Dlf D2, A are orthogonal and invariant by φt — exp tF.

PROOF. It is clear that Dίf D2i D3 are orthogonal. Since
LFF = [F, F\ = 0, we have φtΌx = A Next we show that D2 + DΛ is
invariant by <£>t. Let Zp be a tangent vector at p such that
Zp e (A + A)(p). Define a vector field ^ along C by

where φt denotes also its differential. Define a function G(t) of t by
G(t) = gΨtV(Z, F). Since LFZ = 0, L^F = 0 and LFg = (2FiFjf)f we get

G*(t) =

= 2FiFjfZ
ίFjf = —

by (3.2). Since actually G(0) = 0, we have G(t) = 0 and Z € Da + A
Next we put

(3.12) Z = Z2 + Z3

where Z2 and ZB are vector fields along C such that Z2 e A and Zz e A
It is easily verified that

Z2 = (F^F + (2/ + 2α)Z)/4α ,

from which the differentiability of Z2 on t follows. Operating LF to the
both sides of the last equation, applying Lemma 3.3, and using (3.8) and
LFZ = 0, we obtain

LFZ2 = 0 .

By (3.12) ZB is also differentiate and hence we get LFZZ = 0. Hence,
A and A are invariant by φt. q.e.d.

Let {(^)p, i = 1, , m} be an orthonormal frame at p such that
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(Eu)peD2(p), u = 2,...,r,

(Ev)peD,(p) , v = r + l, , m .

We define a field of frames {E,} along C by ( J E ^ P = φt(E%)p. Then {J57M}
is a field of basis of D2 and {Ev} is a field of basis of D3.

LEMMA 3.5. With respect to the length of Eif we have

G2(t) = gΨtP(Eu, Eu) = 2e*at/(e'at + e~^\ , Eu e D2,

G,(t) = gΨtP(Ev, Eυ) = 2e-<at/(eiat + e~^) , EυeD5.

In particular, G2(t)-+2 (as £—»oo) and G2(t)—>0 (as t—>— oo), while
Gz(t)-+Q (as t->oo) and G,(t)^2 (as t~*-oo).

PROOF. Let Eu e D2. Then

= 2(2a - 2f)G2(t) .

Consequently

log G2(t) = ί 4(α - f)dt + L

for some constant L. By (3.9), we get

[ A(a - f)dt - 4αί - log (eiat + e~'at) ,

and hence,

G2(t) = eLeiat/(eiat + e~4at) .

Since (?2(0) = 1, we get eL — 2. G3(t) is similarly obtained. q.e.d.

Similarly we have gΨtP(Eif E3) = 0 for i Φ j . Thus, {Et} is a field of
orthogonal frames.

PROOF OF THEOREM A. Now we can apply Obata's method. Since
the field of orthogonal frames {£7J is invariant by φt9 its dual {w1} is also
invariant by φt. We put

Since the protective curvature tensor field P is invariant by φt (cf. [viii]
of §2), P(Eίf Ejf Ek, wι) is constant on C. By Lemma 3.1 and | JBΊ|<0) = 1,
we obtain

(3.13) I Ey |2 = /*/4α2 = A/(e8at + e~8at + 2) .

Since the length of C is π/2 ([ix] of §2), P(*#,, * ^ , *^A f *wι) is bounded
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on C. On the other hand,

P{*Eif *Ei9 *Ek, *w>) = —JφL—P^ E,, Ek,
I J&, I I Λ j I I ϊLk I

holds on C. If P(Eit Ejf Ek, wι) Φ 0 for some (i, j , h, I), then by Lemma
3.5 and (3.13) the right hand side can not be bounded when f-*oo or
I _ _ oo. This is a contradiction. Thus, P = 0 and (M, g) is of constant
curvature K,. Since (f7*/) belongs to the 1-nullity distribution, K, = 1.

q.e.d.

4. Remarks. ( 1 ) As M. Obata explained in [12], the standard
model of / satisfying (1.2) on Sm(l) is

(4.1) / = Σ M r ) 2 + δ,
where αα, 6 are constant (aQ ;> «! ^ > αm), and (s/α; α = 0,1, , m) is
the standard coordinate system of an (m + l)-dimensional Euclidean space
Em+1. In this case, at a critical point (y° = 1), {Vfhf) has eigenvalues
2(α, - α0).

PROPOSITION 4.1. A function f of the form (4.1) satisfies (1.4) for
K = 1, i/ and owϊ?/ i/

(4.2) f=a(yy+ . . . + a(^) 2

+ (a + Λ)(2/r+1)2 + - + (a + ΛXiΓ)1 - a - Λ/2 ,

where a and h are constant and 1 < r < m — 1.

PROOF. Let (C7, of) be a local coordinate neighborhood such that
x* = y*(i = 1, . . . , m), / = [1 - J]1/2(J = Σ (^)2), y° > 0. Then we have

ΰu = **y +
^* = δjk -

Γ)k = α'5y*

Since / = ] £ ( « < - αoίία;*)2 + a0 + b, calculating (1.4) we get (α* - aQfxl =
—2(α0 + b)(ai — ao)x\ and hence (4.2). The converse is now clear.

q.e.d.

Hence, our Theorem A is modeled on functions (4.2).
For a function / of the form (4.1)^ it is also verified that if each

trajectory of grad / is a geodesic, then it is of the form (4.2) up to an
additive constant.

( 2 ) Next we explain about Sasakian structures, for simplicity, on
a 3-dimensional sphere S3(l). We identify S3(l) with the space of unit
quaternions Qo. Let ί, j , k be units such that i2 — — 1, ij — —ji = k,
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etc. For a point q e Qo, we define two curves

a(t) = cos tq + sin tqi ,

b(t) — cos tq + sin tίq .

We define ξ, by (£,), = (da(t)/dt)t=0 and ft by (ft)* = (db(t)/dt)t=0. Then
fi and ft are Sasakian structures. Similarly for j and k, we have £2, ft,
is, ft. (fi, £a, 5β) defines a Sasakian 3-structure. By our definition, the
actions of exp tξ1 and exp sft are commutative. Hence [ζl9 ft] = 0.
Similarly [£α, ft] = 0, α, β = 1, . . , 3.

ίi, Si, £» Vif V*f Vz form a basis of the Lie algebra of Killing vector
fields on S3(l) = Qo.

fif Vu Vif Vs form a basis of the Lie algebra of infinitesimal automor-
phisms of the Sasakian structure ξτ on S3(l).

fKfi, Vi) i s n o t constant and satisfies (1.2) and (1.4) (cf. Lemma 5.3).
(3) If (M, g) is complete and real analytic, a paper by A. S.

Sodovnikov [16] is remarkable.

5. Applications to Sasakian structures.

THEOREM 5.1. Let (M, g) be a ^-dimensional Riemannian manifold.
If ξ and η are Sasakian structures on (M, g) with ζ Φ η and ζ Φ — ft
then (M, g) is of constant curvature 1.

PROOF. Except for a set of measure zero, we have a 2-plane field
defined by ζ and η. Therefore, 1-nullity index is equal to 2 or greater
than 2, and hence (M, g) is of constant curvature 1. q.e.d.

LEMMA 5.2. Let ζ and rj be two Sasakian structures on (M, g). If
we put Vξ = — φ and Vη = —ψ, then f = g(ξ, rj) satisfies

(5.1) V'fvrf = -3/FV - ψiΦWζ8 - ΦWΦ'sV8

PROOF. First we have

(5.2) VJ = VH?ηr) = ψίrξ
r + φirrf ,

where ψir = gisψr, etc. Then

VάVj = -Poψiξr - ψirΦΐ - Φirψ'j " ^iΦri

= - 2 / & i + Viξj + ξiVl ~ ψirφTJ - Φtrψ'j

By these two relations we get

V*fV]?J - - 3 / ( ^ < r r + φirrf) - ψtrΦWiξ* - φirΨΪΦtV ,

from which we have (5.1).

LEMMA 5.3. In Lemma 5.2, if [ζ, η\ = 0, then



134 S. TANNO

(5.3) V'fV.iV*/ = -4/FV .

PROOF, [ξ, rj\ = Vξη - Fηζ = 0 implies φlηr = ψiζ8. Then, by (5.1)
and (5.2), we obtain (5.3). q.e.d.

THEOREM 5.4. Let (M, g) be a complete Riemannian manifold. If
(M, g) admits two Sasakian structures ξ and ΎJ with non-constant g(ξ, rj)
and satisfying [ζ, η] = 0, then (M, g) is of constant curvature 1.

PROOF. If [ξ, η\ = 0, by Lemma 5.3 we have (1.4) for K = 1. By
[ii] of §2, f=g(ζ,η) satisfies (1.2) for K = 1. Therefore, Theorem A
shows that (ikf, g) is of constant curvature 1.

THEOREM 5.5. Let (M, g) be a complete Riemannian manifold of
dimension 2n + 1 = m; 5 < m < 11 (or more generally, m = 5,7, 9, 11,
17,19, 25, 27, 33, •)• If (̂ > ΰ) admits two Sasakian structures ζ and
Ύ] with non-constant g(ξ, ή), then (M, g) is of constant curvature 1.

PROOF. If [f, η] = 0, Theorem 5.5 follows from Theorem 5.4. Now
we assume that [ζ, η] Φ 0. First we show that four vector fields
ξ, 7], [ξ, η], F = grad / are linearly independent almost everywhere. Since
ξ is a Killing vector field, we get

LJ = L<(g(£, V)) = ff(£, [£, V\)
= 9(ζ, Vfl - Vηξ)

Similarly we have Lvf = 0. Denoting by d the exterior differentiation
we get Lξdf = dLJ = 0 and Lηdf = 0. These relations show

[ξ,F\ = L9F=0,
[η, F] = LvF=0.

At the same time, we obtain

0 = Lξf = df(ξ) = g(ξ, F) .

Similarly, g{η, F) = 0. Then we get

0 = Lζ(g{η, F)) = g(LξV, F) = g([ξ, η\, F) ,

0 = Le(g(y, V)) = 2g([ξ, η], η) ,

and g([ξ, η], ξ) — 0. F vanishes only on the set of measure zero. Since
different two Killing vector fields can not be identical on any open set,
ξ, Ύ], F, [ξ, η] are linearly independent almost everywhere by ξ _L F,
V±Ff l& V] J- ξf [f, V] J- V> [£, V] -L F. Assume that ξ, y, F, [ί, rj\ are
linearly independent at each point of an open set U. ξf rjy F belong to
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the 1-nullity distribution D on U. Since D is integrable on U, we have
[ξ, 7]] 6 D. Therefore the index of 1-nullity μ(x) > 4 on U, and conse-
quently μ > 4 on M. Then we can apply [vii] of § 2, and we get
Theorem 5.5. q.e.d.

COROLLARY 5.6. Let (M, g) be a complete Riemannian manifold of
dimension m; 3 < m < 11. If it admits non-proportional two Sasakian
structures, then it is an Einstein space.

PROOF. This follows from Theorem 5.5 and [iii] of §2. q.e.d.
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ADDED IN PROOF: Theorem (*) in the introduction has been com-
pletely proved by the present author (: Differential equations of order
3 on Riemannian manifolds [to appear]), and consequently Theorem (**)
is also verified.




