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0. Introduction. Let p > 1 and W e L\oc(Rn). B. Muckenhoupt [5]
has recently proved that the inequality

(1) \ (f*(x)YW(x)dx^c\ \f(x)\>W(x)dx,

/*(*) = sup-M \f(y)\dy
xeQ \Q\ JQ

is valid for all f e Lp(W(x)dx) if and only if W satisfies the condition:

s u p (r̂ T \ WWdx)(ϊh \ Wixr^
Q \\Q\ JQ '\Q\ JQ

Here, Q denotes a cube with sides parallel to the axes. This condition
has already appeared many times in the literature in connection with
several different questions. The purpose of this paper is to show that
the analogue of his result holds even in the setting of martingale theory.
This problem is indicated by C. Watari.

Let (Ω, F, P) be a probability space with a non-decreasing right con-
tinuous family (Ft) of sub σ-fields of F such that FQ contains all P-null
sets. Fix a random variable Z such that Z > 0 a.s. and E[Z] = 1. In
our setting the above condition takes the form:

(Ap) sup ess sup ZtE\ I -±-) FA < oo

where Zt — E[Z\Ft]. In Section 1 we show that, under some additional
conditions, the condition (Ap) holds, if and only if, for every Lp(dP)-
bounded martingale X over (Ft)

( 2 )

where X* = sup* | Xt \ and E[ ] denotes expectation over Ω with respect
to the new weighted probability measure dP = ZdP. In the later sections
we deal only with continuous local martingales. If the martingale Zt is
continuous such that Zo = 1, then, as is well known, there is a unique
continuous local martingale M such that Zt = exp (Mt — {l/2)(M)t).
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Conversely, for every continuous local martingale M, exp (Mt — (l/2)(M)t)
is a positive continuous local martingale. Here (M) denotes the unique
continuous increasing process such that M2 — (M) is a local martingale.
We show in Section 2 that if M belongs to the class BMO with respect
to dP, there holds

(3) E[(X*)P] < CPE[(X)PJ>]

for every P-continuous local martingale X over (Ft). In Section 3 we
prove that Z satisfies the condition (Ap) for some p > 1 if and only if
M is a SilfO-martingale with respect to dP.

We thank heartily C. Watari and M. Kaneko with whom we had
many helpful conversations.

1. The (Ap) condition. Throughout this paper we denote by C a
positive constant and by Cp a positive constant depending on the indexed
parameter p, both letters are not necessarily the same in each occurence.
Let p > 1, and let q be the exponent conjugate to p. For simplicity,
we assume that Vô ί<oo Ft = F. As dP — ZtdP on each Fu an easy
calculation shows that

(1) E[X\Ft] = E^zχ\Ft] a . s . u n der dP and dP
Zt

for every XeL\dP).

THEOREM 1. Let 1 < p < °o, and assume that 1/Z e Lq~\dP). If the
inequality

holds for all P-martingale X such that sup* E[\Xt \p] < oo, then Z satisfies
the condition (Ap).

PROOF. For any AeF, we get from Holder's inequality

E[\Xt\) A] ^ EMXtl'ZY'ΈiZ-1*-1*; A]1/9 .

The first term on the right hand side equals E[\Xt\
p]ι/p which is domi-

nated by some constant C. Then, as Z~{q~1] e L\dP), it is clear that
the martingale X is uniformly integrable with respect to dP. That is,
sup, JS7II Xt \p] = E[\ Zoo I']. Now, E[l/Z« \ Ft] - E[\\Z^ \ Ft]/Zt from (1) and
so Ell/Z*-11 Ft] = ZtE[l/Z« \ Ft\. Therefore ZtE[(l/Z)ι/{p'ι) \ Ft]

p~ι =
Zp

tE\HZq\Ft\
p-\ Now let T be any stopping time. For AeFτ, put

Nt = E[IAIZq-^\Ft\. Then N is a P-martingale such that iSTΌo = IJZq'\
and Nt = ZtE[IJZq\Ft]. It follows from the assumption that
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The left hand side equals E[Z^E[(l/Zq)\Fτ]
p; A]. Thus we get

and an application of the section theorem concludes the proof.

THEOREM 2. If Z satisfies (APo) for some pQ > 1, then the inequality

(2) E[(X*Y]tίCpE[\X-\p], V>Po

for every P-uniformly integrable martingale X.

PROOF. We may assume that X*, e Lp(dP). Denote by #0 the exponent
conjugate to pQ. As Xt = ZtE[(l/Z)Xoo\Ft]9 we get from Holder's
inequality

f ^Γ/ 1 Vo

\xt\>* ^ pr°4(-|)
The first term on the right side equals ZtEKl/Z)90'1 \ Ft]90"1 which is
dominated by some constant C. Then, applying the Doob inequality to
the P-martingale {j&[|Xo|P0|i^t]}, for every p > p0,

E[(X*Y] ^

which completes the proof.

In particular, the inequality (2) is valid for every p if and only if
Z satisfies (Ap) for every p.

THEOREM 3. Let Z satisfy (Ap), and set Vt = E[V\Ft] where V =
p"ι\ If there is some constant k > 0 such that

(3) [ VdP ̂  CXP(A, V > kx) , AeFt, λ > 0 ,
JAf){V>λ>Vt]

then there holds
E[(X*)P] ̂  CβWX^]

for any P-uniformly integrable martingale X.

PROOF. From Theorem 3 it is sufficient to prove that (Ap) implies
(Ap_ε) for some ε > 0. To see this, we first show the "reverse Holder
inequality":

(4) E[V1+δ\Ft]^CVl+δ
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for some 3 > 0. For any A e Fu we have from (3)

Γ dxlx'A VdP) ^ CΓ XδP(A, V > kX)dX
JO \ jAf]{V>λ>Vt) / JO

jAf]{V>λ>Vt)

\V'\sdX;^ CEΪ\V'

t i + δ L~ ( 1 + δ)te™ •>*

By the Fubini theorem, the left hand side equals

V1+sdP.

^ ^ ( V(Vι - Vl)dP
O JA

which is equal to (1/3)ί (V1+! - Vl+δ)dP since A e Ft. Thus for sufficient-

ly small δ > 0

-1- Q_
- d)k1+δ )

Vl+idP

which proves (4). Now, put e = (p - 1)<5/(1 + δ) > 0. As 1 + 3 =
- ε - 1 ) , we get

The right hand side equals E[(l/Z)ι/{p-l) | Ft]
p-\ Consequently, the theorem

is established.

These results are valid for discrete time martingales. It is proved
in [2] that the condition (3) holds in the special case that the probability
space is the ώ-dimensional unit cube QQ and the family of sub <7-fields is
the sequence (Fn) of finite fields obtained by successive dyadic partitions
of Qo, but we don't know whether the inequality (3) is true in general.

2. Weighted norm inequalities for continuous martingales. In what
follows, assume that the martingale Zt is continuous, and we deal only
with continuous local martingales. Now we state several lemmas used
later.

LEMMA 1 (Ito's formula). Let Xi be a continuous local martingale,
A1 be a continuous process with bounded variation, ξl be a F^measurable
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random variable and ξl = & + Xi + At (i = 1, 2, -. , d). If F:Rd->R
is a twice continuously differentiate function, then

( 5 ) F(ξt) = F(ξ0) + Σ Γ FXi{QdXl + Σ Γ ^(f.:
i = l Jo ί = l JO

1 d f*
I X ^-π I 7τr / & \/J/ "V*i Ύ~j\

2 <fi=i Jo * 5

wfterβ <JSΓ', JP> = (1/2)«X* + XJ'> - <X*> - <-X?». (for example, see [6]).

Let M be the continuous local martingale defined by the stochastic

integral [ (l/Z8)dZ8.
Jo

LEMMA 2. If X is a P-continuous local martingale, then X =
X — (X, M) is a P-continuous local martingale such that (X) = (X)
under either probability measure. Conversely, if Xf is a P-continuous
local matingale, then Xf + <X', M) is a P-continuous local martingale.

PROOF. Because of (1)

E[Xt+8\Ft] - -L-E[Z£t+a\Ft] - -±-E[Zt+X+.\Ft] .

Thus to prove that X is a P-local martingale, it suffices to show that
ZX is a P-local martingale. As d(X, M)t = (l/Zt)d(X, Z)t, by applying
Lemma 1 to the case such that ξl = Zt, ξ2

t = Xt = Xt — <X, M>ί and
F(xlf x2) = x^ we get

ft. Ct.

Z8dX8

which is a P-local martingale. It is immediate to see that (X) = (X)
under dP and dP.

We are going to prove the later part of the lemma. As before, to
see that X' + (Xf, M} is a P-continuous local martingale, it is sufficient
to prove that (l/Zt)(X't + (X', M)t) is a P-local martingale. As 1/Zt is a
P-local martingale, by applying again Lemma 1 to the case such that
ξl = 1/Zt, ξ2

t = X't + (X'f M)t and ^(0?!, a?2) = x,x2, we get

—(X't + <X', M>0 = JEo' + Γ (χs + <x'> M)8)d— + [* —dX'sZt Jo Z8 Jo Z8

which is a P-local martingale. This completes the proof.

From Lemma 2, for every P-continuous local martingale X', X =
Xf + (X', M) is a P-local martingale and then X = X - (X, M) is a P-
continuous local martingale. Thus X — Xf = <X', M"> — <X, M> is also a
P-continuous local martingale zero at t = 0, so that X = -X"'.
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A P-continuous local martingale X belongs to the class BMO(P) if

\\X\\2

B{P) = sup ess-sup #[<XXo - <X)t\Ft] < oo .
t ω

Similarly we define the class BMO(P) relative to the measure dP.

LEMMA 3. Let X and Ϋ be P-continuous local martingales. Then:
( i ) {Davis's inequality)

i £ ^ E[(X}lί2] ^ 2E[X*] .

(ii) (Fefferman's inequality)

E[\~\d<X, Ϋ)t\] ^
(see [3]).

We are now in a position to state another weighted norm inequalities.

THEOREM 4. Let X be any P-continuous local martingale. Then
we have:

( 6 ) E[X*] ^ τ/T(4

( 7 ) 1 ( 1 -

PROOF. Since X = X — (X, M) is a P-continuous local martingale
with (X) = (X), we get from Lemma 3

ίV~2E[(X)ϊ2] ^ E[X*]

^E[X*- \~\d(X,M)t\)
Jo

^ E[X*] - • 2"\\M\\B(hE[(X>^]

which implies (6). Similarly, as X — X + (X, M}f we get

E[X*] ^ E[X*] - VΎ \\M\\mϊMxYJ?\

By Davis's inequality, the first term on the right hand side is larger than
(1/2)^[<X>^2], so that the right hand side equals (l/2-V~2\\M\\mh)x
E{(Xyj?\. This completes the proof.

Consider now a non-decreasing continuous function φ on [0, °o[ with

φ(s)ds satisfies the growth condition:

Φ(2t) ̂  cΦ(t).

LEMMA 4 (A. Garsia). Let At be a continuous increasing process.
If there is a positive P-integrable random variable Y such that
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for every t, then E^A^)] ^ CE[Φ(Y)]. Here, the choice of C depends
only on the growth parameter of Φ. (for example, see [1])

THEOREM 5. Assume that \\M\\mh < l/2τ/ΊΓ Then for any P-con-
tinuous local martingale X

( 8 ) cί3[Φ(X*)\ ^ E[Φ{{XYJ?)] ̂  CE[Φ(X*)] .

Here, the choice of c and C depends only on the growth parameter of
Φ.

PROOF. At first we prepare some notations. Let T be any stopping
time, and set

Then X't == Xτ+t — Xτ is a P'-continuous local martingale over (F[) such
that (X')t = (X)τ+t - <X)τ, so that Z\ = Zτ+t/Zτ = exp (M't - (l/2)<Λf'>f).
Let dP = (ZIZτ)dPf and X* = X' - (X', AΓ>. As before, X' is a P'-
continuous local martingale over (i*Y) such that <X'> = <X'>. If S is an
^-stopping time, S+ T is an Ft-stopping time. Thus for any A e Fs=Fτ+s,
we get from (1)

- {M')s\F's\dP' - ( « # % - (M'ys)dPf

JA

the right hand side is dominated by

that is, E'[(M')«, - (M')S\F'S\ ^ | |M| | | ,^, so that from the section theorem

we have |j ji?'||s(i>,, ^ II^IU(P) < l/2τ/"2\ Then from Theorem 4

c^'[(X')*l ^ ^'[<X'>U2] ^ CE'[(X')*] .

Let i4 e K = -PV Substituting X' by X'L, we obtain

cE'[(xγ i Fo] ̂  E'Kxy^FΌ] ^ c^[(xo* IK].

Clearly, X*-X?^(X')*^2X* and <X>^-<X>J-'2^<X'>L/2^<X>^, so that
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E[X* - X$ I Fτ] ^ CE[(Xyj? I Fτ]

E[(XY12 - (X)ιJ2\Fτ] ^ 2CE[X*\FT] .

Then by Garsia's lemma we get (8).

3. A characterization of i?MO-martingaIes. In this section we study
the relation between the condition (Ap) and the class BMO. We start
with the next "John-Nirenberg type inequality".

LEMMA 5. If X is a P-continuous martingale such that | |X| |B ( P ) < 1 ,
then for any Ft-stopping time T

Fτ] <, - ±

PROOF. If E^X}^ - (X)t\Ft] ^ c = \\X\\2

mP) < 1 a.s. for all t ^ 0,

then the energy inequalities (see [4]) give E[(X)l] ^ cnn\, n — 0, 1, •••.

Thus E[e<*>~] = Σ?=o(l/n\)E[(X)l] ^ Σ - o c n = 1/(1 - | |X| | i ( P )) < - . Let

T be any Frstopping time, and let ΛeFτ. We may assume that

P(Λ) > 0. Put Ω' = Λ, and we adopt the same notations as in the proof

of Theorem 5. Then for any AeF's = Fτ+S

4 J ^ P{Ω')

^ \ \\X\\%iP)dP'
JA

from which £"[<X'>TO - (X')S\F'S] ^ | | X | | | ( P ) . Therefore, according to the

section theorem, ||X'H^p/) = ll-ΪΊUtp) < 1> s o that we get

< P(Ω')
\\B(P')

~" 1 -

which implies (9).

THEOREM 6. Z satisfies the condition (Ap) for some p > 1 if and
only if the P-continuous local martingale M belongs to the class
BM0(P).

PROOI\ Suppose firstly that | |M| | 5 ( P ) < oo, and choose p>l such
that | |(τ/p + l/(p - 1))M\\B{P) < 1. Then we get for any stopping time T
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=

" Mτ)

~ Mτ) ~

x e χ p ( 2 ( p - l ) * ( < M > " -

—
p - 1

P-D/2

x

The first term on the right hand side is smaller that 1, and the second
term is dominated by

(p-D/2

from (9). Therefore, according to the section theorem, Z satisfies (Ap).
On the other hand, for every p > 1, by using the Jensen inequality

ZTE\m p - l

<M)T -

- <M\\FT])

from which we get ||Λf ||B(p) < °o if Z satisfies the condition (Ap) for some
p. This completes the proof.

THEOREM 7. If \\M\\B(P) < 1/τ/T, then \\ M\\mh £ (4/(1 - 2| |ilί | | | ( i > )))1 / 4.

PROOF. Let T be any stopping time. As x < 2ex/2 for every a; > 0,
we have
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- (M)T\FT) = £;[A«M>M - <M)T)\FT]

= 2?[{exp ((M. - Mτ) -

x {exp(i«ilί>^ - <ikf>r))} x

sΞ 2#{{exp ((Jf. - ΛfΓ)
^ 2#[exp(2(iHo - ΛfΓ) - 2«Jlf>. - (M)τ))\Fτ]

ί/2

x £[exp (2«M>» - <M>Γ)) I Fτ\
ut

by the Schwarz inequality. The right hand side is dominated by

2
Vl-2\\M\\\m

from the John-Nirenberg type inequality. Thus the theorem is established.

Finally, we give such an example that M does not belong to the
class BMO(P) even if Z is bounded. Let B = (J5ί( Ft) be a 1-dimensional
Brownian motion such that Bo = 0. Put τ = inf {t; Bt ̂  1} and Mt = BtAτ.
Then Zt = exp (Λft - (l/2)<ilί>() ̂  β, but for each ί > 0
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