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Introduction. In previous papers [14, 15] the present authors have
studied totally real submanifolds of Kaehler manifolds, especially those
of complex space forms.

Let M be a real 2m-dimensional Kaehler manifold with almost com-
plex structure J. An w-dimensional Riemannian manifold M isometrically
immersed in M is said to be totally real or anti-invariant in M if
Ta(M)±JTx(M) for each xeM, where TX(M) denotes the tangent space
to M at x. Here we have identified TX(M) with its image under the
differential of the immersion. Since, if X is a vector tangent to M
at x then JX is normal to M, we see that, the rank of J being 2m,
n ^ 2m — n, that is, n ^ m.

In [14] we have studied ^-dimensional totally real submanifold of a
real 2π-dimensional complex space form M satisfying certain conditions
on the second fundamental forms, and in [15] we have studied ^-dimen-
sional totally real submanifolds of a real 2m-dimensional complex space
form.

The purpose of the present paper is to study similar problems for
submanifolds of almost contact metric manifolds, especially for those of
Sasakian space forms (cf. [1], [6], [8], [11] and [12]).

Let M be a (2m + l)-dimensional almost contact metric manifold
whose (1, l)-type structure tensor field is φ. An (n + l)-dimensional
Riemannian manifold M isometrically immersed in M is said to be anti-
invariant if Tx(M)±φTx(M) for each xeM. Then we have n^m. In
the present paper, we study the case n = m.

1. Sasakian manifolds. In this section we would like to recall de-
finitions and some fundamental properties of a Sasakian manifold.

Let M be a (2m + l)-dimensional differentiate manifold of class C°°
and φ, ξ, η be a tensor field of type (1,1), a vector field, a 1-form on
M respectively such that

φ*= -I+η®ξ, φξ = 0 , η{φX) = 0 , η{ζ) = 1

for any vector field X on M, where / denotes the identity tensor. Then
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M is said to have an almost contact structure (φ, ζ, rj) and is called an
almost contact manifold. The almost contact structure is said to be
normal if

N + dv (x) ξ = 0 ,

where N denotes the Nijenhuis tensor formed with φ and drj the dif-
ferential of the 1-form η. When a Riemannian metric tensor field g is
given on M and g satisfies the equations

g{φX, ΦY) = g(X, Y) - V(X)V(Y), v(X) = g(X, ζ)

for any vector fields X and Y, (φ, ζ, η, </)-structure is called an almost
contact metric structure and M an almost contact metric manifold. If

dy(X, Y) = g(φX, Y)

for any vector fields X and Y, then an almost contact metric structure
is called a contact metric structure. If moreover the structure is normal,
then a contact metric structure is called a Sasakian structure and a
manifold with Sasakian structure is called a Sasakian manifold. It is
well known that in a Sasakian manifold with structure (φ, ζ, η, g) we
have

Vxζ = φX , (Fxφ) Y = - g(X, Y)ζ + V( Y)X

for any vector fields X and Y, where V denotes the operator of covariant
differentiation with respect to g.

A plane section in the tangent space TX(M) at a; of a Sasakian
manifold M is called a ^-section if it is spanned by a vector X orthogonal
to ξ and φX. The sectional curvature K(X, φX) with respect to a φ-
section determined by a vector X is called a ^-sectional curvature. It
is easily verified that if a Sasakian manifold has a ^-sectional curvature
k which does not depend on the ^-section at each point, then k is a con-
stant in the manifold. A Sasakian manifold is called a Sasakian space
form and is denoted by M(k) if it has the constant ^-sectional curvature k.

A typical example of Sasakian manifolds is an odd-dimensional sphere
S2n+1 (cf. [7]).

2. Anti-invariant submanifolds. Let M be an almost contact metric
manifold of dimension 2m + 1 with structure tensors (φ, ξ, η, g). An
(n + l)-dimensional Riemannian manifold M isometrically immersed in
M is called an anti-invariant submanifold if Tx(M)lφTx(M) for each
xeM where TX(M) denotes the tangent space to M at xeM. Here we
have identified TX(M) with its image under the differential of the im-
mersion because our computation is local. By the definition, if Xe TX(M),
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then φX is a normal vector to M. Since the rank of φ is 2m, we have
n tί (2m + 1) — (n + 1), from which n ^ m. In the sequel, we shall
study the case m — n.

Let gr be the induced metric tensor field of M. We denote by 7
(resp. 7) the operator of covariant differentiation with respect to g (resp.
g). Then the Gauss and Weingarten formulas are respectively given by

7XY = 7XY + B{X, Y) and 7XN = - ANX + DXN

for any tangent vector fields X, Y and a normal vector field N on M,
where D is the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle. Both A and B are called
the second fundamental forms of M and satisfy

g(B(Σ, Y), N) = g{ANX, Y) .

A vector field N normal to M is said to be parallel if DXN = 0 for any
tangent vector field X on M. The mean curvature vector m of M is
defined to be m = (Tr B)/(n + 1) where Tr B = Σ , B(eu eτ) for an ortho-
normal frame {βj. If m = 0, then M is said to be minimal and if the
second fundamental form of M is of the form B(X, Y) = g(X, Y)m, then
M is said to be totally umbilical. If the second fundamental form of
M vanishes identically, i.e., B = 0, then M is said to be totally geodesic.

Let TX(M)L be the normal space to M at x e M. Since m = n, we
see that φTx(M) = TX(M)L at each point xeM. Since, for any tangent
vector field X on M, we have g{ξ, φX) = —g{φξ, X) = 0, we see that £
is tangent to Λf. Thus we have

LEMMA 2.1. Let M be an almost contact metric manifold of dimen-
sion 2n + 1 and let M be an anti-invariant submanifold of M of di-
mension n + 1. Then the vector field ξ is tangent to M.

In the sequel, we assume that the ambient manifold M is a Sasakian
manifold.

We choose a local field of orthonormal frames e0 = ξ, e19 , en; e^ =
φβu *' * f en* — φen in M in such a way that, restricted to M, e0, elf , en

are tangent to M. With respect to this frame field of M, let ω° =
)?, ω1, , ωn; ω1*, •.• ,ω** be the field of dual frames. Unless otherwise
stated we use the conventions that the ranges of indices are respectively:

A, B,C,D = 0,1, ---,11,1*, -- ,n* ,

t, s, i,j,k,l = l, , n ,

α, 6, c, ώ = 0, 1, , n ,

and that when an index appears twice in any term as a subscript and
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a superscript, it is understood that this index is summed over its range.
Then the structure equations of M are given by

(2.1) dωΛ = ωi A ωB , ωi + ωB

A = 0 ,

(2.2) dωi = -ωt Λωc

B + Φi , Φi = \κA

BCΌωc A ωD .

Restriction of these forms to M gives

(2.3) ω** = 0 ,

(2.4) dωa = - ωa

b Aωh , ωa

b + ωb

a = 0 ,

(2.5) 0^ = 0 $ , ωΓ = ωί , ω* = < ,

(2.6) ώω? = -ωa

c A ωc

b + Ωa

b , Ωa

b = —JS?C(iω
c Λ ω<* .

Since 0 = ώω'* = — α>i*Λ o)a, by Cartan's lemma, we have

(2.7) α>r = Λί»ωft, Λl» = ΛL ,

where we use h%

ah instead of λ**6 to simplify the notation. From (2.5)
and (2.7) we have

(2.8) h)k = h{k = hk

ijf Λίo = O , λί» = « .

Moreover we see that g(Ateaf eb) = ln\b where At — AΦu. The Gauss equa-
tion is given by

(2.9) Ra

bcd = Ka

bcd + Σ (KM* - KMc).

We also have

(2.10) dω}l = - ω& A ωf* + Ω}1, Ω}1 = — R}ledω
e A ωd,

2

and consequently the Ricci equation is given by

(2.11) R£ed = Kpcd + Σ (ΛUίd - * U ί β )
a

We define the covariant derivative fe*6c of Aiδ by putting

(2.12) Khdω
c = e % - Λ^ωf - fe^6ωf + h\hσ& .

The Laplacian Jhib of feαδ is defined to be

(2.13) Mb = XKbccf
0

where we have put
(2.14) Khcdω

d = AKu - Λ5*cfi>2 - KdM - λiMω2 + Kbβω$ .
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The Riemannian connection of M is defined by (ωb). The form (ωjl) de-
fines a connection induced in the normal bundle of M from that of M.
The second fundamental form of M is represented by ht

abω
aωbet* and is

sometimes denoted by its components h*ab. If hι

ahc = 0 for all t, α, 6 and
c, the second fundamental form of M is said to be parallel. If Σ α h*aa = 0
for all t, then M is a minimal submanifold of M.

If a Sasakian manifold M is of constant ^-sectional curvature k,
then we have

(2.15) Kio = hk + SWACSBD - S^BC) + -kfc - 1)(VBVCSAD - ηBηDδAc4 4

D^BC — VAVC^BD + ΦACΦBD — ΦADΦBC + 2>ΦABΦCD) t

where dAC denotes the Kronecker delta. This is a Sasakian space form
and is denoted by M(k). If a Riemannian manifold M is of constant
curvature c, then we call such a manifold a real space form and denote
it by M(c).

3. Fundamental properties. Let M be a Sasakian manifold of di-
mension 2n + 1 with structure tensors (φ, ξ, η, g) and M be an anti-
invariant submanifold of M of dimension n + 1. For any tangent vector
field JΓ to ikΓ we have

^X - Vxζ = Fxξ + B(X, 6) .

Consequently, comparing the tangential part and the normal part, we
have Pxξ = 0 and φX = B(X, ξ). Putting X = ξ in the second equation,
we obtain B(ξ, ξ) = 0. Thus we have

LEMMA 3.1. Let M be a Sasakian manifold of dimension 2n + 1
and M be an anti-invariant submanifold of M of dimension n + 1.
Then the vector field ξ restricted to M is parallel.

PROPOSITION 3.1. Let Mbe a Sasakian manifold of dimension 2n + l
and M be an anti-invariant submanifold of M of dimension n + 1.
Then M is not totally umbilical when n*zl.

PROOF. Let us assume that M is totally umbilical. Then B(X, Y) =
g(X, Y)m for any tangent vectors X, Y to M, where m denotes the
mean curvature vector. Since B(ζ, ξ) = 0, we have g(ζ, ζ)m = 0, which
shows that M is minimal. Therefore M is totally geodesic. Then we
have φX = B(X, £) = 0 for any tangent vector X to M. But this is a
contradiction, and Proposition 3.1 is proved.

Next we shall study the second fundamental form of an anti-in-
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variant submanifold. For each t ( = 1, •••,?&) the second fundamental
form At is represented by the symmetric (n + 1, n + l)-matrix At = (hU).
Equations (2.8) show that

(3.1)

0

0

•
0
1
0

ό

o
t

••OIO O

K

Hereafter we put Ht = (ft-,-), which is a symmetric (n, w)-matrix. Let
S denote the square of the length of the second fundamental form of
M, i.e.,

Σ(^ 6)
t,a,b

obtainPutting T = Σ , Tr H\ = Σu,*,/ (Ay)1.

(3.2) S = T + 2n .

On the other hand, we see from (2.8) that

Thus M is minimal if and only if Tr Ht = 0 for all t.

PROPOSITION 3.2. Let M be a Sasakian manifold of dimension 2n + l
and M be an anti-invariant submanifold of M of dimension n + 1.
Then M is flat if and only if the normal connection of M is flat, i.e.,
Rpcd = 0.

PROOF. Since M is a Sasakian manifold and M is anti-invariant, we
have

(3.3) K%cd = K)cd - (δicδjd - δidδjc) .

On the other hand, from Lemma 3.1, we have

(3.4) R\ci = Rlci = 0 .

From (2.8), (2.11) and (3.3) we obtain

(3.5) R%d = K%d + Σ (KJiU - hUhl)
a

= K%d + Σ (KhU - hldh'ic)
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Equations (2.9) and (3.5) imply that R*jed = R%cd. This combined with
(3.4) proves our assertion.

Next we assume that the ambient manifold M is of constant ^-sec-
tional curvature k. Since M is anti-invariant, (2.15) implies that

(3.6) K%cd = hk + 3)(δacδbd - Ϊ A ) + \{k - l){r]hηβad

4 4

If AtAs = A8At for all t and β, then the second fundamental form of M
is said to be commutative, which is equivalent to Σ 6 KMC = Σ& h9

ahh\e.
If we assume that the second fundamental form of M is commutative,
then by a direct computation and (2.8), we have

(3.7) Σ (KM* - KMc) = -(«.A* - δ α A c ).

From the Gauss equation (2.9) and (3.7) we obtain

(3.8) R a

b c d - Ka

bcd - ( δ a c δ b d - d a d δ b e ) .

When M is of constant ^-sectional curvature k, substituting (3.6) into
(3.8), we find

(3.9) R a

b c d = hk - l)(δacδbd - δadδbe + r]bVcδad - VbVdδac

4

From this we have

PROPOSITION 3.3. Let M be an (n + l)-dimensional (n ^ 2) anti-
invariant submanifold of a Sasakian space form M2n+1(k) with com-
mutative second fundamental form. Then M is flat if and only if M
is of constant curvature 1, i.e., k = 1.

By Lemma 3.1, ξ is parallel with respect to the induced connection
on M. Therefore, by (3.9) and a theorem in [9; p. 274], we have

THEOREM 3.1. Let M be an (n + lydίmensional anti-invariant sub-
manifold of a Sasakian space form M2n+1(k). If the second fundamental
form of M is commutative, then M is locally a Riemannian direct
product Mn x R\ where Mn is a hypersurface of Mn+1 of constant
curvature (l/4)(& — 1) and is totally geodesic in Mn+ι.

4. Anti-invariant submanifolds of a sphere. In this section we
shall study the Laplacian for the square of the length of the second
fundamental form of anti-invariant submanifolds. In the first place, we
prove the following
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LEMMA 4.1. Let M be an (n + l)-dimensional anti-invariant sub-
manifold of a Sasakian space form M2n+1(k). Then we have

(4.1) Σ KbJKb = Σ K*hleab + hk + 3)(Λ + 1) Σ Tr H\
t,a,b t,a,b,c 4 t

+ 3) Σ (Tr Htγ + Σ {Tr (HtH, - H,Htγ
2 t t,8

- [Tr (HtHs)Y + Tr H8 Tr (HtH8Ht)} .

PROOF. By the assumption, the second fundamental form of M
satisfies the Codazzi equation, i.e., h\hc — hίcb. Therefore, by a straight-
forward computation, we have

Σ WabΔhab — Σ (hίbhlcab ~~ iΠ*α<Λ6<Λαδ + KcaMbhlb
t,a,b t,a,b,c

+ KUMJiU) - Σ [(KM. - hlKMKΛU - h'bih'ai)
t,8,a,b,c,d

+ habhcdhabhcd, — habhcahcbhddl

Substituting (2.15) into this equation, we have

(4.2) Σ hUΔKh = Σ Kbhlcah + hk + 2>)(n + 1) Σ Tr A\
t,a,b t,a,b,c 4 ί

- -kfc + 1) Σ (Tr Atf - hk - l)n(n + 1)
Δ t Δ

+ Σ {Tr (AtA, - AsAtf - [Tr (AtA,)Y + Tr A. Tr (iM.il,)}.

On the other hand, by (2.8) and (3.1), we have

(4.3) Σ Tr (AtA. - A.AtY = - 2 Σ Σ WMMMt
tψs tψs i,j,h,l

- KfoMMi - 2 Σ {1 + Σ WthU - 2KMi)}
tΦs i

= Σ Tr (HtH, - H,Htγ + 4 Σ [Tr H\ - (Tr Ht)*] - 2n(n - 1),
tφ8 t

(4.4) Σ [Tr (AtAe)Y = Σ (Tr Aίf = Σ (Tr Hff + 4 Σ Tr Hi + An ,
t,8 t t t

(4.5) Σ Tr A, Tr (il.il.ii,) = Σ Tr Hs Tr {HtH,Ht) + 3 Σ (Tr Htf .
t,8 t,8 t

Substituting (3.2), (4.3), (4.4) and (4.5) into (4.2), we have (4.1), and
Lemma 4.1 is proved.

LEMMA 4.2. Let Mbe an (% + l)-dimensional anti-invariant minimal
submanifold of a Sasakian space form M2n+1(k). Then we have
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(4.6) Σ hUJhU = —(k + 3)(ίi + 1) Σ Tr HI
t,a,b 4 t

+ Σ Tr (HtH, - H,HtY - [Tr (HtH.)]*.
t,s

In the sequel, we need the following lemma proved in [3].

LEMMA 4.3 ([3]). Let A and B be symmetric (n, n)-matrices. Then

- Tr (AB - BA)2 ^ 2 Tr A2 Tr B2,

and the equality holds for non-zero matrices A and B if and only if
A and B can be transformed simultaneously by an orthogonal matrix
into scalar multiples of A and B respectively, where

0

1

1

0

0

0

0 .

B =

~ 1

0

0

0

- 1
0

0 _

Moreover, if A19 A2, Az are symmetric (n, n)-matrices such that

- Ύr(AaAb - AbAaf = 2 T r A2

aTr A\, l ^ α , 6 ^ 3 , aΦb ,

then at least one of the matrices Aa must be zero.

In the following, we put Tt8 = Σ*,y ΛίyΛίy and Tt = Ttt. Then we

have T = ΣtTt.

THEOREM 4.1. Let M be an (n + lydimensional compact orientable
anti-invariant minimal submanifold of a Sasakian space form iίί2Λ+1(l).
Then we have

(4.7) \ Σ (Kbc)
2*l ^ \ Γ(2 - -)T - (n + 1)1 Γ l .

jMt,a,b,c JML\ nf J

PROOF. We can write (4.6) as

(4.8) U = (n + 1)T + Σ Tr (HtH8 - H8Ht)
2 - Σ T\.

t t
Σ U ( ) Σ

t,a,b t,8

Applying Lemma 4.3, we obtain

(4.9) - Σ Tr (HtH8 - H8Ht)
2

t,8

= Γ(2 - l)τ - (n +

Since Λί is compact orientable, we have

Σ
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( Σ (,Kieγ*l = - \ Σ KtJhU*l
jMt,a,b,c JMt,a,b

Therefore (4.8) and (4.9) imply (4.7) and Theorem 4.1 is proved.

COROLLARY 4.1. Let M be an (n + lydimensional compact orientable
anti-invariant minimal submanifold of a Sasakian space form M2n+ί(l).
Then either T = 0, or T — n{n + l)j{2n — 1) or at some point xeM,
T{x) > n{n + l)/(2τ* - 1).

Next we shall study the case in which T = n(n + l)/(2n — 1), that
is, the square of the length of the second fundamental form of M
satisfies S = n(5n - l)/(2n - 1).

THEOREM 4.2. Let M be an (n + ί)-dimensional anti-invariant
minimal submanifold of a Sasakian space form M2n+1(l). If S =
n(5n — l)/(2w — 1), then n = 2 and M is fiat. With respect to an
adapted dual orthonormal frame field ω°, ω\ ω2, ω1*, ω2*, the connection
form (ωi) of M\l), restricted to M, is given by

X =

PROOF. From the assumption we have T = n{n + l)/(2w — 1). Then
the second fundamental form of M is parallel by (4.8) because
Σ*,α,δ KJhU = - Σί.M. (hibcY in this case. From Lemma 4.3 and (4.9)
we have

0
0

0

ω
1

a)
2

0
0

0

a )
0
 + λft)

2

λft)
1

0
0

0

λft)
1

ft)
0
 - λft)

2

- f t )
1

ft)
0
 + λft)

2

λft)
1

0

0

- f t )
2

λft)
1

ft)
0
 - λft)

2

0

0

(4.10)
OS

(4.11) - Tr (HtH, - HtHtf = 2 Tr HI Tr HI,

and hence Tt = T, for all t, s and we may assume that Ht = 0 for ί =

3, •••:

(4.12)

«. Therefore we must have n = 2 and we obtain

0

by putting h\2

(4.13)

= λ = From (3.1) and (4.12) we have

0
1

0

1
0

λ

0
λ

0
, Λ =

0
0

1

0
λ

0

1
0

-λ
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On the other hand, by (2.12), we have

(4.14) dKb = KM + KM - KM .

Putting t = 1, a = 1 and 6 = 0, we see that dλ = ft)2 = 0, which shows
that λ is a constant. Since T = 2, we get 4λ2 = 2. Thus we may assume
that λ = l/τ/~2~. Moreover (4.13) and (4.14) imply the equations:

/, iKx ω? = α)1 = 0 , ft)° = ft)2* = 0 , ω j ^ - ω 1 , ft^=-ft)2,
(4.10)

α)f = λft)1 , ω{* = ft)0 + λω2 , ft)2* = ft)0 - λft)2 , ft)? = 0 .

From the Gauss equation (2.9) and (4.13) we see easily that M is flat.
From these considerations we obtain our assertion.

EXAMPLE 1. We give an example of an anti-invariant submanifold
in S\ Let J = (ats) {t, s = 1, , 6) be the almost complex structure of
C3 such that α2ί,2i_i = 1, a2i_1)2i = —1 (i = 1, 2, 3) the other components
being zero. Let S^l/l/3 ) = {z eC: \z\2 = 1/3}, a plane circle of radius
1/VΊΓ. We consider S^l/l/T) x S^l/i/T) x S^l/vΊΓ) in S5 in C3,
which is obviously flat. The position vector X of S1 x S1 x S1 in Sδ in
C3 has components given by

-X" = --7=(cos u1, sin u1, cos u2, sin u2, cos i63, sin u5) ,

u\ u2 and t63 being parameters on each S^l/i/ 3 ). Putting X4 = δiX =
dX/du*, we have

Z : = - ί = ( - s i n u\ cos w1, 0, 0, 0, 0) ,
v 3

X2 = --jL(O, 0, -sin < cos u2, 0, 0) ,

Xz = -jL(O, 0, 0, 0, -sin n\ cos u3) .

The vector field ξ on S5 is given by

ζ — JX = •—τ=( — sin uι

f cos u1, — sin u2, cos t62, — sin u5, cos ^3) .
1/ 3

Since ξ = X, + X2 + X3, ξ is tangent to S1 x S1 x S\ On the other hand,
the structure tensors (φ, ξ, rj) of Sδ satisfy

which shows that φXt is normal to S1 x S1 x S1 for all i. Therefore
S1 x S1 x S1 is an anti-invariant submanifold of S5. Moreover S1 x
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S1 x S1 is a minimal submanifold of Sδ with S = 6 and the normal con-
nection of this is flat (see [3, 5]).

T H E O R E M 4.3. Let M be an (n + l)-dimensional anti-invariant mini-
mal submanifold of S2n+i. If M is compact orientable and ifS =
(5n2 - n)/(2n- 1), then

5. Flat normal connection. Let S^l/l/ 2) be a plane circle of
radius l/l/ 2. By a similar method as that in Example 1, we see that
S'il/VΊί) x S^I/T/ΊΓ) is an anti-invariant submanifold of S3, which is
flat and minimal. Moreover this has flat normal connection and S = 2.

In this section, we characterize S^l/i/ΊΓ) x S^l/i/lΓ) of S\ First
we have the following

LEMMA 5.1 ([3]). Let M be an (n + l)~dimensional minimal sub-
manifold of S2n+ί. Then

(5.1) Σ KhΔh\h = (n + 1) Σ Tr A\ + Σ {Tr (Afil. - AβA<)2 - [Tr (A^)]2} .
ί,α,6 ί ί,β

THEOREM 5.1. Let M be an (n+l)-dimensional anti-invariant mini-
mal submanifold of S2n+1 with flat normal connection. If S = n + 1,
then M is flat and n = 1.

PROOF. From the assumption and (2.11) we see that the second
fundamental form of M is commutative, i.e., AtA8 = A8At. Putting

ibh'ab , Stt = St , S = Σ St t
t

we obtain, from (5.1),

Kh = (n + 1)8

- (Σ stγ + Σ s,s..
t t

(5.2) Σ KhΔKh = (n + 1)8 - Σ SI
t,a,b t

Since S — constant, we have

Σ hUΔhU = - Σ (hU.Y
t,a,b t,a,b,c

From this and (5.2) we have

(5.3) 0 ^ Σ (hίbcy - S[S - (» + 1)] - Σ StS, ^ S[S - (n + 1)] .
t,a,b,c tψs

If S = n + 1, we have Khc = 0 and Σ*** ^tiS8 = 0. Thus we may assume
that St = n + 1 and Si = 0 for £ = 2, , n. Thus we obtain the fol-
lowing



ANTI-INVARIANT SUBMANIFOLDS OP SASAKIAN SPACE POEMS 21

Σ (hltf = U + 1 ,
(5.4) ° 6

hi,, = 0 for all ί > 1 and for all a, b.
Using (3.1) we see that Σ.,, (.Ktf = 2 + Σ u (Λ -̂)2. Since Λ}, = Λ«, = h{t = 0
unless i = i = 1 by (5.4), we have

(5.5) Σ (Aί )1 = 2 + WO2.
a,b

If If is minimal, the second fundamental form of M satisfies Σ* &« = 0>
which implies that feu = 0. Consequently we must have n + 1 = 2, that
is, Λ = 1. Moreover, Proposition 3.2 shows that M is flat.

From the theorem of Chern-Do Carmo-Kobayashi [3] and Theorem
5.1, we have

THEOREM 5.2. Let M be an (n + l)-dimensional compact orientable
anti-invariant minimal submanifold of S2n+1 with fiat normal connec-
tion. If S = n + 1, then

6. Anti-invariant submanifolds with parallel mean curvature vector.
First of all, we consider the following example.

EXAMPLE 2. Let J = (ats) (t, s = 1, , 2n + 2) be the almost com-
plex structure of Cn+1 such that a2if2i_x — 0, a2i_U2i = — 1 (i = 1, , n + 1)
the other components being zero. Let S 1 ^) = foeC: | ^ | 2 = r2j, i =
1, •-., ft + 1. We consider Λf =S 1 (r 1 ) x Sx(r2) x . . . x S ^ + O in CΛ+1

such that r\ + . + r2

Λ+1 = 1. Then M is a flat submanifold of S2n+1 with
parallel mean curvature vector and with flat normal connection (see [13]).
The position vector X of M in Cn+1 has components given by

X = (γx cos u\ r1 sin u\ , rM+1 cos w%+1, rn+1 sin uw+1) ,

r2 + + r2

n+ί = 1 .

Then X is an outward unit normal vector of S2n+ί in Cn+1. Putting
χ. = dtX = dX/du*, we have

Xx = r^ —sin w1, cos ̂ , 0 , , 0) ,

Xn+i = ^+i(0, , 0, - s i n u w + 1 , cos un+1).

The vector field ξ on S2%+1 is given by its components

ξ = JX — ( — rι sin u\ rx cos u1, , — rn+1 sin ̂ w+1, rΛ + 1 cos un+1).

Therefore we see that ξ = X1 H h -X»+i, which means that the vector
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field £ is tangent to M. And the structure tensors (φ, ξ, rj) of S2n+1

satisfy

φXt = JXt + η(Xt)X , i = l , . . . ,w + l .

Thus φXi is normal to Λf for all i. Therefore M is an anti-invariant
submanifold of S2n+1.

LEMMA 6.1 ([13]). Let M be an (n + ϊ)-dimensional submanifold of
S2n+1 with parallel mean curvature vector and with flat normal connec-
tion and we let λί, 1 ^ a ^ n + 1, be the eigenvalues of Aa corresponding
to eigenvectors Ea {recall that the fiat normal connection of M implies
the Aa's are simultaneously diagonalizable). Then we have

(6.1) Σ K,Δhlh = Σ Σ W - λ?)2#αδ ,
a,a,b a a>b

where Kab denotes the sectional curvature of M determined by {Ea, Eb}.

THEOREM 6.1. Let M be an (n + lydimensional compact orientable
anti-invariant submanifold of S2n+1 with parallel mean curvature vector
and with fiat normal connection. Then

M = SXn) x S\rJ x x Sι(r#+1) , rj + • + r2

n+1 = 1 .

PROOF. Since the normal connection of M is flat, by Proposition 3.2,
M is flat. Moreover, the square of the length of the second funda-
mental form of M is constant since the mean curvature vector of M is
parallel. Thus we have Σα,o,6 h

a

ab4ha

ab = - Σ*,α,δ,c (ha

abcf. Since Kab = 0,
(6.1) implies ha

abc = 0, that is, the second fundamental form of M is
parallel. Consequently, Theorem 4.1 of Yano-Ishihara [13] implies our
assertion.
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