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Introduction. In previous papers [14, 15] the present authors have
studied totally real submanifolds of Kaehler manifolds, especially those
of complex space forms.

Let M be a real 2m-dimensional Kaehler manifold with almost com-
plex structure J. An n-dimensional Riemannian manifold M isometrically
immersed in M is said to be totally real or anti-invariant in M if
T.(M)LJT (M) for each xe M, where T,(M) denotes the tangent space
to M at x. Here we have identified T, (M) with its image under the
differential of the immersion. Since, if X is a vector tangent to M
at 2 then JX is normal to M, we see that, the rank of J being 2m,
n < 2m — n, that is, n < m.

In [14] we have studied n-dimensional totally real submanifold of a
real 2n-dimensional complex space form M satisfying certain conditions
on the second fundamental forms, and in [15] we have studied n-dimen-
sional totally real submanifolds of a real 2m-dimensional complex space
form.

The purpose of the present paper is to study similar problems for
submanifolds of almost contact metric manifolds, especially for those of
Sasakian space forms (cf. [1], [6], [8], [11] and [12]).

Let M be a (2m + 1)-dimensional almost contact metric manifold
whose (1, 1)-type structure tensor field is ¢. An (n + 1)-dimensional
Riemannian manifold M isometrically immersed in M is said to be anti-
invariant if T,(M)L¢T, (M) for each x€ M. Then we have n <m. In
the present paper, we study the case n = m.

1. Sasakian manifolds. In this section we would like to recall de-
finitions and some fundamental properties of a Sasakian manifold.

Let M be a (2m + 1)-dimensional differentiable manifold of class C*

and ¢, & 7 be a tensor field of type (1, 1), a vector field, a 1-form on
M respectively such that

#=—-I+7QE&, ¢6=0, 7(sX)=0, 7 =1
for any vector field X on M, where I denotes the identity tensor. Then
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M is said to have an almost contact structure (g, £, 7) and is called an
almost contact manifold. The almost contact structure is said to be
normal if

N+dn®é=0,

where N denotes the Nijenhuis tensor formed with ¢ and d7 the dif-
ferential o_f the 1-form 7. When a Riemannian metric tensor field g is
given on M and § satisfies the equations

99X, ¢Y) = (X, Y) — np(X)(Y), 7(X)=a(X,¢)

for any vector fields X and Y, (4, &, 9, §)-structure is called an almost
contact metric structure and M an almost contact metric manifold. If

for any vector fields X and Y, then an almost contact metric structure
is called a contact metric structure. If moreover the structure is normal,
then a contact metric structure is called a Sasakian structure and a
manifold with Sasakian structure is called a Sasakian manifold. It is
well known that in a Sasakian manifold with structure (g, &, 7, §) we
have

Pie=¢X, (Fx9)Y = — (X, Y)§ + (Y)X

for any vector fields X and Y, where 7 denotes the operator of covariant
differentiation with respect to g.

A plane section in the tangent space T.(M) at x of a Sasakian
manifold M is called a g-section if it is spanned by a vector X orthogonal
to € and ¢X. The sectional curvature K(X, ¢X) with respect to a ¢-
section determined by a vector X is called a g-sectional curvature. It
is easily verified that if a Sasakian manifold has a ¢-sectional curvature
k which does not depend on the ¢-section at each point, then k& is a con-
stant in the manifold. A Sasakian manifold is called a Sasakian space
form and is denoted by M(k) if it has the constant g-sectional curvature k.

A typical example of Sasakian manifolds is an odd-dimensional sphere
St (ef. [7]).

2. Anti-invariant submanifolds. Let M be an almost contact metric
manifold of dimension 2m + 1 with structure tensors (¢, & 7, g). An
(n + 1)-dimensional Riemannian manifold M isometrically immersed in
M is called an anti-invariant submanifold if T.(M)1¢7T.(M) for each
x € M where T,(M) denotes the tangent space to M at xc M. Here we
have identified T,(M) with its image under the differential of the im-
mersion because our computation is local. By the definition, if X e T,(M),
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then ¢X is a normal vector to M. Since the rank of ¢ is 2m, we have
n=02m+1)— (n+ 1), from which n <m. In the sequel, we shall
study the case m = n.

Let g be the induced metric tensor field of M. We denote by 7
(resp. V) the operator of covariant differentiation with respect to g (resp.
9). Then the Gauss and Weingarten formulas are respectively given by

7Y =0yY+B(X,Y) and PxN= — A,X + DN

for any tangent vector fields X, Y and a normal vector field N on M,
where D is the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle. Both A and B are called
the second fundamental forms of M and satisfy

g(B(X, Y), N) = g(4,X, Y) .

A vector field N normal to M is said to be parallel if D,N = 0 for any
tangent vector field X on M. The mean curvature vector m of M is
defined to be m = (Tr B)/(n + 1) where Tr B = 3, B(e,, ¢;) for an ortho-
normal frame {¢;}. If m = 0, then M is said to be minimal and if the
second fundamental form of M is of the form B(X, Y) = ¢g(X, Y)m, then
M is said to be totally umbilical. If the second fundamental form of
M vanishes identically, i.e., B = 0, then M is said to be totally geodesiec.

Let T,(M)* be the normal space to M at xe€ M. Since m = n, we
see that ¢T. (M) = T, (M)* at each point x€ M. Since, for any tangent
vector field X on M, we have g(§ ¢X) = —g(¢&, X) = 0, we see that ¢&
is tangent to M. Thus we have '

LEMMA 2.1. Let M be an almost contact metric manifold of dimen-
ston 2n + 1 and let M be an anti-invariant submanifold of M of di-
mension n + 1. Then the vector field & is tangent to M.

In the sequel, we assume that the ambient manifold M is a Sasakian
manifold.

We choose a local field of orthonormal framese, = &, ¢, «++, ¢,; €. =
g, +++, €, = g6, in M in such a way that, restricted to M, e,e, ---, e,
are tangent to M. With respect to this frame field of M, let ©° =
N, @, +-., " @, ---, © be the field of dual frames. Unless otherwise
stated we use the conventions that the ranges of indices are respectively:

AerCyD:()’]-’ "'9”91*’ "';n*y
t,s97:9j;k,l:1y"°,n’
a,b,c,d=0,1,+-,m,

and that when an index appears twice in any term as a subscript and
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a superscript, it is understood that this index is summed over its range.
Then the structure equations of M are given by

(2.1) do*=ws N w®, wi+wi=0,

(2.2) dwt = — i A @S+ OF, Of = %ngwo N
Restriction of these forms to M gives

(2.3) o =0,

(2.4) do*= —; N, o+ w=0,

(2.5) 0= wL, of=0;, o'=of,

(2.6) dof = —w* N\ 0 + 2%, 2= %R‘;cdw‘ A o,
Since 0 = dw®” = —wi A w°*, by Cartan’s lemma, we have
(2'7) wctz* = h'ntzbwb ’ hzb = hia ]

where we use k., instead of A%, to simplify the notation. From (2.5)
and (2.7) we have

(2.8) fo=hi,=hY, Re=0, hi=2ai.

Moreover we see that g(A.e,, ¢,) = hi, where A, = A,,,. The Gauss equa-
tion is given by

(2-9) bed = K:cd + tZ (hfu ‘id - hzdhic) o
We also have

(2.10) dof = — of A 0% + 25, 05 = % .07 A @

and consequently the Ricei equation is given by
(2‘11) j*cd - Kl:ad + E (h' t;d - thhic) .

We define the covariant derivative &%,, of hl, by putting

(2.12) hiv® = dhly — hig@; — ho07 + hi,ofk .
The Laplacian 4hi, of ki, is defined to be
(2.13) ab = E habcc ]

where we have put
(2'14) Zbcda)d = dhfnbc - hfibca)g - fzdcwb hfwdw + habc
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The Riemannian connection of M is defined by (w;). The form (i) de-
fines a connection induced in the normal bundle of M from that of M.
The second fundamental form of M is represented by h%,w’w’,. and is
sometimes denoted by its components h%,. If h,, = 0 for all ¢, ¢, b and
¢, the second fundamental form of M is said to be parallel. If 3, ht, =0
for all ¢, then M is a minimal submanifold of I71.

If a Sasakian manifold M is of constant g¢-sectional curvature %,
then we have

(2.15) Koo = - + 3)0uc50 — duodac) + 20k — D0sedar = Dalodac

+7]A7]D6B0 - vAnCBBD =+ ¢AC¢BD - ¢AD¢BC + 2¢AB¢0D) ’

where d,, denotes the Kronecker delta. This is a Sasakian space form
and is denoted by M(k). If a Riemannian manifold M is of constant
curvature ¢, then we call such a manifold a real space form and denote
it by M(c).

3. Fundamental properties. Let M be a Sasakian manifold of di-
mension 2n + 1 with structure tensors (¢,&, 7, 9) and M be an anti-
invariant submanifold of M of dimension # + 1. For any tangent vector
field X to M we have '

¢X:7XE=VXE+B(X’E)'

Consequently, comparing the tangential part and the normal part, we
have /3 =0 and ¢X = B(X, £). Putting X = £ in the second equation,
we obtain B(§, &) = 0. Thus we have

LEMMA 3.1. Let M be a Sasakian manifold of dimension 2n + 1
and M be an anti-invariant submanifold of M of dimension = + 1.
Then the vector field & restricted to M is parallel.

PROPOSITION 3.1. Let M be a Sasakian manifold of dimension 2n + 1
and M be an anti-invariant submanifold of M of dimension n + 1.
Then M 1is not totally umbilical when n = 1.

PrROOF. Let us assume that M is totally umbilical. Then B(X, Y) =
g(X, Y)m for any tangent vectors X, Y to M, where m denotes the
mean curvature vector. Since B(¢, &) = 0, we have g(&, &)ym = 0, which
shows that M is minimal. Therefore M is totally geodesic. Then we
have ¢X = B(X, &) = 0 for any tangent vector X to M. But this is a
contradiction, and Proposition 3.1 is proved.

Next we shall study the second fundamental form of an anti-in-
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variant submanifold. For each ¢ (=1, .-+, n) the second fundamental
form A, is represented by the symmetric (n + 1, » + 1)-matrix A4, = (k).
Equations (2.8) show that

t
0/0:-.010---0
0
(3.1) 4= |
1 R
0
L0 )

Hereafter we put H, = (h}), which is a symmetric (n, »)-matrix. Let
S denote the square of the length of the second fundamental form of
M, i.e.,
S=3>Tr A = }:‘,b(h,f,,,)2 .

Putting T = >, Tr H; = 3. ; (hi;)’, we obtain
3.2) S=T+2n.
On the other hand, we see from (2.8) that

TrA,=>hie=2hii=TrH,.

Thus M is minimal if and only if Tr H, = 0 for all ¢.

PROPOSITION 3.2. Let M be a Sasakian manifold of dimension 2n+1
and M be an anti-invariant submanifold of M of dimension n + 1.
Then M is flat +f and only if the normal connection of M is flat, i.e.,

i* J—
J*ed —

PROOF. Since I is a Sasakian manifold and M is anti-invariant, we
have

(3.3) B = Kig — (0,054 — 0:405,) -

On the other hand, from Lemma 3.1, we have

(3.4) R.=R;:=0.

From (2.8), (2.11) and (3.3) we obtain

(3.5) rea = Kiveg + ; (Rihis — Rhidhi)
= Ko + 3 (ihis — L5 .
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Equations (2.9) and (3.5) imply that R, = R, This combined with
(3.4) proves our assertion.

Next we assume that the ambient manifold M is of constant ¢-sec-
tional curvature k. Since M is anti-invariant, (2.15) implies that

(3.6) fo = %(k + 8)(Pudsa — Ouaden) + %(k — 1)0.0.a

—Na0ac + NaNaOse — NaNe0sa) -
If 4,4, = A,A, for all ¢ and s, then the second fundamental form of M
is said to be commutative, which is equivalent to >, ht,h}, = >, A%kt
If we assume that the second fundamental form of M is commutative,
then by a direct computation and (2.8), we have

(3‘7) ; (h;c id - htadhic) = _(Bucabd - 6adaba) .

From the Gauss equation (2.9) and (3.7) we obtain
(3-8) bea = Kgcd - (5a05bd - aadabc) .

When M is of constant ¢-sectional curvature k, substituting (8.6) into
(3.8), we find

(3.9) fo = %(k — 1)(Pudes — Pasdsn + TiTPas — Dilidue

+ 04040 — 7a70sa) -
From this we have

ProposSITION 3.3. Let M be an (n + 1l)-dimensional (n = 2) anti-
invariant submanifold of a Sasakian space form M™ (k) with com-
mutative second fundamental form. Then M is flat if and only if M
18 of comstant curvature 1, t.e., k = 1.

By Lemma 3.1, & is parallel with respect to the induced connection
on M. Therefore, by (3.9) and a theorem in [9; p. 274], we have

THEOREM 3.1. Let M be an (n + 1)-dimensional anti-invariant sub-
manifold of a Sasakian space form M*+ (k). If the second fundamental
form of M is commutative, then M is locally o Riemannian direct
product M™ x R, where M" is a hypersurface of M"™™ of constant
curvature (1/4)(k — 1) and s totally geodesic im M™*'.

4, Anti-invariant submanifolds of a sphere. In this section we
shall study the Laplacian for the square of the length of the second
fundamental form of anti-invariant submanifolds. In the first place, we
prove the following
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LEMMA 4.1. Let M be an (n + 1)-dimensional anti-invariant sub-
manifold of a Sasakian space form M (k). Then we have

(A1) 3 Badhls = 3 Bt + 3k + 3)n + 1) 3 Tr H?
t,a, »@5b,¢ t

— %(k +3) 5 (Tr H)Y + 5 (Tr (H.H, — HHY
— [Tr(H.H,)} + Tr H, Tr (H.H,H,)} .

Proor. By the assumption, the second fundamental form of M
satisfies the Codazzi equation, i.e., h,, = ht,;. Therefore, by a straight-
forward computation, we have

tglb h;bdhctzb =t gc(hflthcub - ::ac ?)cth + Kgachéthb
+ bic ttichzb) _t . Zb P [(hctw ;c - gch;c)(hftdh;d - hzdh;d)
+ hishiahishia — hoshichihia -

Substituting (2.15) into this equation, we have
(42) 3 hisdhis = 3} bahiees + 30k + 8)n + 1) 5 Tr 43
t,a, »@yb,e

_ %(k TS (TrA)y - —;—(k — Dn(n + 1)
+ STr (A4, — AAY — [Tr(AA)} + Tr 4, Tr (A4,4)).

On the other hand, by (2.8) and (3.1), we have
(4.3) S Tr(4A, — AA) = —23, 3 (hijhihiahi;

t#8 i,5,k,

— hihhiahi — 2 3 {1 + 3 (2hiche, — 2hihs.))
t+£8 T
= 3\ Tr(H,H, — HH) + 43 [Tr H: — (Tr H)}Y] — 2n(n — 1),

t+s8 t

4.4) S [Tr(4.A) =>(TrA = (TrH})+ 4> TrH: + 4n,

4.5) > TrA,Tr(AAA)=>TrH Tr(HHH)+ 3> (Tr H).
Substituting (3.2), (4.3), (4.4) and (4.5) into (4.2), we have (4.1), and
Lemma 4.1 is proved.

LEMMA 4.2. Let M be an (n+1)-dimensional anti-invariant minimal
submanifold of a Sasakian space form M*** (k). Then we have
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(4.6) 3 htudhly = %(k +9)n + ) Tr B

+ cz:‘ Tr(H.H, — H.H) — [Tr (H,H,)I*.
In the sequel, we need the following lemma proved in [3].
LeEmMMA 4.3 ([3]). Let A and B be symmetric (n, n)-matrices. Then
— Tr(AB — BAy} < 2Tr A*Tr B*,

and the equality holds for mon-zero matrices A and B if and only if
A and B can be transformed si_multaneously by .an orthogonal matrix
into scalar multiples of A and B respectively, where

01 1 0

0 0
A=| 1 0 B=|0 -1

0 0 0 0
Moreover, +f A, A, A, are symmetric (n, n)-matrices such that
—Tr(4,4, — A,A)=2Tr A’TrA}, 1<a,b<8, a+#b,

then at least one of the matrices A, must be zero.

In the following, we put T, = >, ;hih}; and T, = T,. Then we
have =3, T..

THEOREM 4.1. Let M be an (n + 1)-dimensional compact orientable
anti-invariant minimal submanifold of a Sasakian space form M*+(1).
Then we have

1
an [ perrs|[E-Hr-eole
PrROOF. We can write (4.6) as
(4.8) thf,bAhz,, =n+ 1T + t}: Tr(H.H, — H,H,) — ;‘, T:.
t,a, »8
Applying Lemma 4.3, we obtain
(4.9) - tZ Tr(H.H, — H,H,) + Z, T: —(n+1)T
thZ‘,T,T,+Zt‘,T§—(n+1)T
+8
= [(2 - l)T — (1 + 1)]T _Llsr,—T).
) n n ts

Since M is compact orientable, we have
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TS T I W IW IR

M t,a,b,c
Therefore (4.8) and (4.9) imply (4.7) and Theorem 4.1 is proved.

COROLLARY 4.1. Let M be an (n + 1)-dimensional compact orientable
anti-invariant minimal submanifold of a Sasakian space form M**(1).
Then either T =0, or T =n(n + 1)/(2n — 1) or at some point x <M,
T(x) > n(n + 1)/(2n — 1).

Next we shall study the case in which T = n(n + 1)/(2n — 1), that
is, the square of the length of the second fundamental form of M
satisfies S = n(5n — 1)/(2n — 1).

THEOREM 4.2. Let M be an (n + l)-dimensional anti-invariant
minimal submanifold of a Sasakian space form M>»+'(1). If S =
n(dn — 1)/(2n — 1), then n=2 and M is flat. With respect to an
adapted dual orthonormal frame field o, @', @?, w'*, w**, the connection
form (w$) of M), restricted to M, is given by

0 0 0 — ! —w?
0 0 0 ° + \o? AW!
1
0 0 0 A@! @ — @ |, A= e
V2
o' o 4+ \o? AWt 0 0
| @? OR @ — A@® 0 0

ProoF. From the assumption we have T = n(n + 1)/(2n — 1). Then
the second fundamental form of M is parallel by (4.8) because
Stas htsdhty, = — Siian.e (BL.) in this case. From Lemma 4.3 and (4.9)

we have
(4.10) tZ (r,—-1)=0,
>8
(4.11) —Tr(H,H,— HH)Y=2TrH;Tr H:,

and hence T, = T, for all ¢, s and we may assume that H, =0 for ¢ =
8, .-+, n. Therefore we must have n = 2 and we obtain

01 1 0
(4.12) H1=x[1 0}, H2=7\.l:0 _1]
by putting hl, = A = k%. From (3.1) and (4.12) we have
010 | 00 1
(4.13) A4,=10 x|, 4=|0x 0
0 » 0 1 0 —)
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On the other hand, by (2.12), we have
(4.14) dhiy = hi,@% + b0l — b0t .

Putting t =1, a =1 and b = 0, we see that d» = w? =0, which shows
that A is a constant. Since T = 2, we get 4\* = 2. Thus we may assume
that » = 1/vV 2. Moreover (4.13) and (4.14) imply the equations:
W=0"=0, wi=0"=0, 0.=—-—0', 0.=—-0",

(415) : . ’

0¥ =\, O'=0"+ N0, OF=0"— A0, 0*=0.

From the Gauss equation (2.9) and (4.13) we see easily that M is flat.
From these considerations we obtain our assertion.

ExaMPLE 1. We give an example of an anti-invariant submanifold
in S°%. Let J=(as) (t,s=1, -+, 6) be the almost complex structure of
C® such that a,,_, =1, @y_,,, = —1 (¢ =1, 2,3) the other components
being zero. Let S'(1/1/3) = {z€C:|z[* = 1/3}, a plane circle of radius
1/V"3. We consider S'(1/v3) x S'(1/v/3) x S'A/v/3) in S® in C3,
which is obviously flat. The position vector X of S* x S* x S*in S® in
C® has components given by

1 . . .
= ﬁ(cos u', sin u', cos u?, sin u? cos u’, sin %°) ,

u!, u* and u® being parameters on each S(1/v3). Putting X, =4,.X =
0X/ou*, we have

1 .
X, = —==(—sinu', cosu', 0,0,0,0),
v )
X, = 171?(0, 0, —sin 4% cos 4% 0, 0) ,
X, = _1:.3_(0, 0,0, 0, —sin u’, cos %’) .

ey
The vector field £ on S° is given by

E=JX = 1/1—»_3_(—sin u', cos u', —sin u? cos u?, —sin u®, cos u®) .
Since £ = X, + X, + X,, ¢ is tangent to S* X S* x §*. On the other hand,
the structure tensors (g, &, 1) of S°® satisfy
o X, = JX, + (X)X, 1=1,2,3,

which shows that ¢X; is normal to S*' x S*' x S* for all 4. Therefore
S! x S* x 8! is an anti-invariant submanifold of S°® Moreover 8' X
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St x S! is a minimal submanifold of S® with S = 6 and the normal con-
nection of this is flat (see [3, 5]).

THEOREM 4.3. Let M be an (n + 1)-dimensional anti-invariant mini-
mal submanifold of S*™*. If M 1is compact orientable and if S =
(5n* — n)/(2n — 1), then

M= S‘(V3>><S1<1/3)><Sl(l/3> in S,

5. Flat normal connection. Let S'(1/1/2) be a plane circle of
radius 1V2. By a similar method as that in Example 1, we see that
SY(1/v2) x S(1/v/2) is an anti-invariant submanifold of S° which is
flat and minimal. Moreover this has flat normal connection and S = 2.

In this section, we characterize S'(1/v/2) x S'(1/v/2) of S% First
we have the following

LEMMA 5.1 ([3]). Let M be an (n + 1l)-dimensional minimal sub-
manifold of S**. Then

(5.1) tz‘,bh ydhly = (n + 1) 2 Tr A + tZ {Tr (4.4, — A,A) — [Tr(A.A,)]%} .
THEOREM 5.1. Let M be an (n+1)-dimensional anti-invariant mini-

mal submanifold of S** with flat normal connection. If S=mn+1,
then M is flat and n = 1.

PrROOF. From the assumption and (2.11) we see that the second
fundamental form of M is commutative, i.e., 4,4, = 4,4,. Putting

Sts‘*_“ az;:h;bh;b ’ Stt = St ’ S= Z;St ’

we obtain, from (5.1),
(5.2) ;th sdhty = (n + 1)S — Z St

=(n+1)S - (tZ S, + Zﬂ S.S,

Since S = constant, we have
E h bAhab - (h‘abc)2 .

t,a,b t,a,b c
From this and (5.2) we have
(6.3) 0= Z (o) = S[S — (» + 1)] — ;S:S, =S[S—(»+1)].
If S=n+1, we have &%, = 0 and 3., S.S, = 0. Thus we may assume

that S,=n+1and S,=0 for t =2, --.,n. Thus we obtain the fol-
lowing
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2;,(h;,,)2 =n+1,
hi, =0 for all £ > 1 and for all a, b.

Using (3.1) we see that 3., (ki) = 2 + 33, ;(hi;)’. Since ki, = hi; = hi, =
unless ¢ = j =1 by (5.4), we have
(5.5) Sy (hL) =2 + (hy)*.

a,b

If M is minimal, the second fundamental form of M satisfies 3 ;h} = 0,
which implies that k!, = 0. Consequently we must have n + 1 = 2, that
is, n» = 1. Moreover, Proposition 3.2 shows that M is flat.

(5.4)

From the theorem of Chern-Do Carmo-Kobayashi [3] and Theorem
5.1, we have

THEOREM 5.2. Let M be an (n + 1)-dimensional compact orientable
anti-invariant minimal submanifold of S*™ with flat normal connec-
tton. If S=mn + 1, then

1 1 .
M= s(—_) x s(_=) n S°.
V2 V2
6. Anti-invariant submanifolds with parallel mean curvature vector.
First of all, we consider the following example.

EXAMPLE 2. Let J=(a;,) (t,s =1, -+, 2n + 2) be the almost com-
plex structure of C"*' such that ay,_,=0,0y_,,=-1(G@=1,---,n+1)
the other components being zero. Let S'(r;,) ={z,€C:|z*=17}, 1=
1,.-.,m+1. We consider M = S'(r,) X S*(r;) X -++ x S(r,,,) in C**"
such that #24+..-+ 72, = 1. Then M is a flat submanifold of S**** with
parallel mean curvature vector and with flat normal connection (see [13]).
The position vector X of M in C**' has components given by

X = (r,cosu', r;sinu', + -+, r,,, cO8 4", r,,, sin u**) ,
At ria=1.
Then X is an outward unit normal vector of S***! in C**!, Putting
X, = 0,X = 0X/ou?, we have

X, = r(—sinu', cosu', 0, -+, 0),

Xopp1 = 7250, +++, 0, —sin ™", cos u*') .
The vector field £ on S**! is given by its components
E=JX =(—r,sinu!, r,cosu', -+, —7,,, sinu**, r,,, cos u"*) .

Therefore we see that ¢ = X, +--+-+ X,,,, which means that the vector
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field & is tangent to M. And the structure temsors (g, &, 7) of S*™*
satisfy

X, =JX, + (X)X, 1=1---,n+1.

Thus ¢X, is normal to M for all v. Therefore M is an anti-invariant
submanifold of S+,

LEMMA 6.1 ([13]). Let M be an (n + l)-dimensional submanifold of
S¥ with parallel mean curvature vector and with flat normal connec-
tion and we let A2, 1 < a =n + 1, be the eigenvalues of A, corresponding
to eigenvectors K, (recall that the flat mormal connection of M implies
the A.)s are simultaneously diagonalizable). Then we have
(6-1) Z h3y4h3y, = Z E (?\.f,' - Mf)zKab ’

a,a,b a a>b

where K,, denotes the sectional curvature of M determined by {E,, E,}.

THEOREM 6.1. Let M be an (n + 1)-dimensional compact orientable
anti-invariant submanifold of S**' with parallel mean curvature vector
and with flat normal connection. Then

M= 8Y(r) X S'(r)) X+ X S8 (rpp), T2+ +7ri,=1.

PrOOF. Since the normal connection of M is flat, by Proposition 3.2,
M is flat. Moreover, the square of the length of the second funda-
mental form of M is constant since the mean curvature vector of M is
parallel. Thus we have 3. .,h%4h% = — Seas. (%) Since K,, = 0,
(6.1) implies A%, = 0, that is, the second fundamental form of M is
parallel. Consequently, Theorem 4.1 of Yano-Ishihara [13] implies our
assertion.
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