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This paper is the continuation of our previous paper under the same
title [2], which we refer to as Part I. In Part I, we studied contact
structures on the generalized Brieskorn manifolds as a generalization of
the connection form of the Hopf fibration. Our objective in this paper
is to study complex structures on the products of generalized Brieskorn
manifolds. These complex structures may be considered as a generalization
of the Calabi-Eckmann complex structures [6]. Therefore, we are parti-
cularly interested in studying those aspects of the complex manifolds
which Calabi and Eckmann studied on the products of odd dimensional
spheres. In fact, we show that our complex manifolds possess properties
analogous to the Calabi-Eckmann manifolds.

Let Y, and XY, be generalized Brieskorn manifolds; see Part I for the
definition and examples. First we show that ¥, X ¥, admits a complex
structure which is intimately related to the normal contact structures
on Y, and X,. It is then shown that this complex structure admits no
Kahlerian structure and that X, X ¥, is the total space of a holomorphic
fibration on a complex analytic space B, X B,. This fibration, unlike the
Calabi-Eckmann case, is not necessarily a fiber bundle; however, the fibers
are elliptic curves. Our first main result is that any analytic subvariety
of ¥, x 3, has the induced fibration over a complex analytic space. In
particular, the fibers are the only irreducible analytic subvarieties of
dimension 1; hence, they have no singular point. Earlier, Calabi and
Eckmann have shown that their complex manifolds possess the same
property [6]. However, their proof does not apply to our case directly,
for X, X ¥, may have non-vanishing middle homology and B, X B, may
not admit a projective imbedding.

Next, we show that many of the 3, X 3,’s admit infinitely many
seemingly different complex structures. Indeed, many such examples are
constructed. After introducing a criterion to distinguish these complex
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structures, we show that ¥, x J, admits infinitely many distinet complex
structures if either X, or 2, is a Brieskorn sphere (exotic or standard) or
a generalized lens space. It is also shown that S'x S§? x ... x S#!
admits infinitely many distinct complex structures.

Some observations are made concerning the automorphisms of X, x 3,.
For instance, we show that the set of infinitesimal automorphisms of
Y, x 2, which keep the fiber fixed is isomorphic to C (over C). We also
mention the vanishing of the Chern numbers on X, X 3,.

In concluding this introduction, we point out that the above classifi-
cation of complex structures is still crude, and we hope that a more precise
classification can be made in the near future. It also seems quite reasonable
that some kind of classification can be made by means of deformation.
Fortunately, the fundamental machinery of deformation is available. In
fact, Morita [20] has recently given a classification of complex structures
on S' X ¥ in terms of the homotopy of the underlying almost complex
structures, where X is a Brieskorn sphere.

Finally, we thank J. Erbacher for our discussions with him during
his stay at Connecticut. We also thank Professor S. Sasaki for reading

this manuscript.

Complex structures on products of generalized Brieskorn manifolds.
In the proof of Theorem 2 in Part I, we showed that the contact structure
on a generalized Brieskorn manifold 2 is normal, i.e., the torsion tensor
of that contact structure [X, Y]+ ¢[¢X, Y] + ¢[X, ¢Y] — [¢X, Y] —
(X(Y) —Yn(X))e = 0 everywhere, where ¢ is the (1, 1) tensor of the
associated almost contact Riemannian structure. Making use of this fact,
we show the following theorem.

THEOREM 1. Let X, and X, be two generalized Brieskorn manifolds.
Then X, X ¥, admits a complex structure, and also ¥, X S' admits o
complex structure.

PrOOF. Here we assume that X, and 2, are the intersection of given
varieties and the unit sphere. We do not lose any generality by assuming
so by Theorem 3 in Part I. It is well known by a theorem of Newlander-
Nirenberg [22] that an almost complex structure J on a smooth manifold
is a complex structure if and only if its torsion TJ(X, Y) =[X, Y] +
JIJX, Y]+ J[X, JY] — [JX, JY] = 0. Now let », and 7, be the normal
contact structures on X, and J,, respectively. Let (¢, &, 7,) and (¢, &, 7,)
be the associated almost contact structures on X, and X,, respectively.
Let T, and T2, be the tangent bundles of 3, and J,, respectively. Then
the tangent bundle T(¥, x ¥,) of X, x ¥, can be naturally represented
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by the exterior direct sum of T2, and T2, which we will denote by
T3, TX,. Then any tangent vector X of ¥, X ¥, can be written uniquely
as X = X, P X, where X, and X, are the T2X, and T2Z3,components of

X, respectively. Now making use of ¢, and ¢,, we define an almost
complex structure J on 3, X %, as follows.

IX = (5, X, — (X&) B (3. X, + (X)) -
Then, we have

T X = J{(6,X, — (X)) B (3. X, + N(X)E}
= {¢'1(¢1X1 - 772(X2)E1) - nz(‘ﬁzXz + 7]1(X1)§2)51}

A

@ {¢2(¢2X2 + 771(X1352) =+ 771(¢1X1 - 7]2(X2)51)52}
= {¢3X1 —‘A721(X1)El} @ {¢§X2 i‘ 772(X2)E2}
=(-X)D(—X)=—-(X,PX)=—-X.

Hence, J? is an almost complex structure.
The rest of the proof follows from the argument of Morimoto [19].
g.e.d.

The theorem follows immediately from Theorem 2 in Part I and a
result of Morimoto [19]. Nevertheless, for the sake of later use, let us
describe how a complex structure is obtained from the normal (almost)
contact structure discussed in Part I along the line of Morimoto’s argu-
ments.

As was pointed out in Part I, Brieskorn [4] showed that an odd
dimensional homotopy sphere bounding a parallelizable manifold has
infinitely many Brieskorn manifold representations. Thus, we have

COROLLARY 1. Let 3, and X, be two Brieskorn spheres (exotic or
standard). Then 3, x ¥, admits infinitely many seemingly different
complex structures.

REMARK 1. As Brieskorn and van de Ven [5] pointed out, by a result
of R. de Sapio, products of two exotic spheres are usually diffeomorphic
to products of two standard spheres except for the case that one of the
factors is S' and the other is an exotic sphere.

COROLLARY 2. a) S" X S8"™' x S™ x 8™ (n, m = 2) admits infinitely
many seemingly different complex structures, where n and m are even.

b) S*x 8 X --- X S¥7' admits infinitely many seemingly different
complex structures.

Proor. a) follows from the result of Kauffman [15] as is mentioned
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in Corollary 2 in Part I. As for b), S® x S® x S* X --- x S*7! can be
decomposed into the product of (S* x S?), (S* x S%), ---, (S*72 x S*7), each
of which has representations as Brieskorn manifolds by [15]. Remove
one of those products, say S° x S**!, and combine it with S*, and match
up the rest of the products into pairs. Then by Theorem 1, each of
these pairs admits infinitely many seemingly different complex structures;
and therefore, the products of these pairs admit infinitely many seemingly
different complex structures in a natural way.

COROLLARY 3. Let L(p, q, *-, q.—1) and L(9',4q., -+, ¢n_) be two
generalized lens spaces. Then L(p, q,, +-+, o) X L(D', qi, <+, qu_,) admits
a complex structure.

ProoOF. This follows from Corollary 5 in Part I and Theorem 1.
q.e.d.

These complex structures are closely related to those of Hopf [13],
Calabi-Eckmann, and Brieskorn-van de Ven [5]. In fact, by mimicing
the method of Brieskorn-van de Ven [5], we can construct more complex
structures on X, X 3, as follows: Define an action f. of C on (V,), X (V,),
by

fr(tr Zoy *t Y Zm; @y (l),,)

— (p27Pot 27 Pyt . p2rqot 27q,t
- (6 o Zor cee, €7 Zmy e rwor M) e in ra)w) .

Here 7 is a complex number such that Imz = 0, (p,, +--, ».) and (g, ***, q.)
are positive integers. Then one can construct a diffeomorphism of C X
Y, x ¥, onto (V,), X (V,), by defining (¢, 2, ®) — f.(t; 2, ). It can be seen
that the action f. is a free, holomorphic, locally proper action; therefore,
by [12], the quotient space, say H(p, ***, Pm; o ***, ¢,) iS a complex
manifold. Our above diffeomorphism, then, induces a diffeomorphism
from X, x %, onto H(p, ***, Pn; qo ***, ¢,). Therefore, 3, X 3, admits a
complex structure.

Let S?*! and S**! be two odd dimensional standard spheres, and let
these spheres admit the normal contact structures which are induced
from the Hopf fibrations. Then it is, of course, well known that S*** x
S*** admits a complex structure which is naturally induced from these
normal contact structures. It is also evident that this complex structure
arises among the Calabi-Eckmann structures on S?#*' x S**! ag a very
special but typical example, which carries a lot of information. In a
way, our complex structures on X, X ¥, occupy the corresponding status
among the complex structures which are given by mimicking the Brieskorn-
van de Ven method; however, our complex structures make it possible
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to investigates the interrelations between them and contact structures
on the factors. On the other hand, such interrelations between the gen-
eralized Brieskorn-van de Ven complex structures and some differential
geometric structures on each factor space remain to be investigated. In
this sense, it seems to us that our structures are more accessible from
the differential geometric point of view.

The following is an immediate generalization of a theorem of Calabi-
Eckmann [6].

THEOREM 2. Let X, and X, be two generalized Brieskorn manifolds.
Then a) If 3, is simply commnected, then the complex structure on
Y, X S does not admit a Kahlerian structure; therefore, X, X S* 1is not
projective algebraic.

b) If X, and 2, are 2-conmnected, then the complex structure on 3,
and 3, does not admit @ Kahlerian structure; therefore, 3, X X, 18 mot
projective algebraic. In particular, most of the generalized Brieskorn
manifolds in Examples 1,2 and 38 given in Part I satisfy the above
conditions.

Proor. It is well known that if M is a compact Kdhlerian manifold,
then every odd Betti number is even, and every even Betti number is
positive.

Let M, and M, be two compact manifolds, and let B,(M,) and B,(M,)
be the p-th and g¢-th Betti numbers of M, and M,, respectively. Then
B.(M, X M,) = 3\p+4=- B,(M)) X B(M,). For a), by Hurewicz isomorphism
theorem we have B,(Y,) = 0. Therefore B,(3, x S = B,(3,) X B(S") +
B,(3) X B{(SY) =1x1=1. Thus, 3, X S* cannot be Kahlerian. For b),
B3, X %) = By(Z)) X By(3,) + Bi(3)) X By(2;) + By(Z)) X By(&,). Since 3,
and XY, are 2-connected, B,(Y,) = B,(2,) = B,(2,) = B,(Y,) = 0 by Hurewicz
isomorphism theorem; therefore, By(Y, X 3,) = 0. In order to show
that they are not projective algebraic, it suffices to point out that
any complex submanifold of complex projective space is automatically
Kahlerian with its induced metric from the Fubini-Study metric. As for
the last remark in Theorem 2, it has been shown that Examples 1, 2 and
3 in Part I give highly connected manifolds; for the details, see [4], [23],
[24]. q.e.d.

Concerning the proof of Theorem 2, it is known that there are many
3-dimensional manifolds which are associated with Brieskorn polynomials
and weighted homogeneous polynomials of three complex variables, and
which are not simply connected. In fact, by the work of Mumford [21]
a Brieskorn manifold Y associated with a polynomial P(Z)= Zy + Z + Z32
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is simply connected if and only if the origin is not a singular point.
This means that one of @, a, and @, must be 1. Consequently, ¥ must
be diffeomorphic to S®.. Now let 3 be any three dimensional Brieskorn
manifold whose fundamental group is abelian and contains a copy of Z,
then B,(Y) = even > 0. By Poincaré duality, B,(Y) = B,(2) = even > 0.
Thus ¥ x S* or ¥, X 3, (where X, and 2, satisfy the same conditions as
above) satisfies the above necessary conditions to be Kahlerian. Therefore,
it is still possible that these manifolds admit a Kahlerian structure. Also
it is clear that the same argument as given to show a) and b) works
when X, and X, have finite fundamental groups.

Next let us assume that the (» + 1)-tuple (g, ---, ¢,) defining the
C-action on the variety V consists of all rational numbers. As we men-
tioned previously, this action induces a complex torus T = C/I” action on
H =V,/I", where I" is the discrete subgroup of C generated by 1 and
V'=1d. We also mentioned that the quotient space H/T, say B, is a
normal complex space such that the natural quotient mapping is holo-
morphic in the sense of complex (or analytic) space [7], [12]. The orbit
space of ¥ with respect to the S!-action coincides with B, i.e., /S =
B=H|T. Let Y, B, and , (¢ =1, 2) be a generalized Brieskorn manifold,
its base space and the quotient map =x;: ¥, — B,, respectively. Denote
by 7 = 7, X 7, the Cartesian product of z, and =, i.e., 7: 3, X 3, > B, X B,
is defined by zn(x, ¥) = (7, (x), 7,(y)) for any (x, y)e X, X ¥,. It is obvious
that 7 is a continuous mapping. We will show that = is indeed a holo-
morphic mapping in the sense of complex (or analytic) space under the
following condition which we think superfluous. Let V; (1=1,2) be
the irreducible varieties defining ¥, (+ = 1, 2) as before. Let us denote
by H; (j =0, ---, n) the complex hyper linear subspace of C*'' given by
H;={Z, -+, Z,)eC""'. Z; = 0}. We say that V, is in general position
if V,\nH; (+=1,2,7=0, ---, n) is a complete intersection with the origin
as its only singular point. Note here that V, N H;—{the origin} is a complex
submanifold of H; of dimension k;, — 1, where k, is the complex dimension
of V,. As a matter of remark, we would like to point out that the class
of varieties in general position is quite broad and most of the interesting
examples lie in this class. For instance, all the varieties of Example 1
in Part I are in general position, and most of the varieties in Examples
2 and 8 in Part I are also in general position. Finally, we say 2, is in

general position if it is obtained from the variety V, in general position.
Then we have

LEMMA 1. Let (¥, 7w, B;) (¢ = 1, 2) be fibrations such that 3, (=1, 2)
are in general position. Then the mapping ©# = w, X ©,: 3, X 3,— B, X B,
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18 holomorphic in the sense of complex space. Here B, X B, has the
complex space structure of the Cartesian product of B, and B,.

Proor. First of all we point out that 7 '(%, %) is diffeomorphic to
a torus for all (z, ¥)e B, X B,. This can be seen as follows. #'(%) is
the S'-orbit on 3, through a point z in #7%Z) and #;'(¥) is the S'-orbit on
%, through a point y in 7;'(%). These orbits are diffeomorphic to S'. Thus
YT, ¥) = (z7(Z), 77 (Y)) = 77 Y(T) X 7 (%) is diffeomorphie to S*x S* which is
nothing but a torus. By the definition of the complex structure on ¥, X %,,
the tangent bundle of #7%(%, %) is invariant under the almost complex struc-
ture J; therefore, #7'(Z, %) is a complex submanifold of complex dimension
1. Thus z (%, %) is an elliptic curve and will be called a fiber of ¥, X2,
over (%, ¥). Next we show that the union of all fibers over pairs (¥, %)
such that one of # and ¥ is singular in the previous sense is contained
in a union of a finite number of thin subsets of 3, x J,. Denote this
union by W. For the definition of thin sets, see Gunning-Rossi [11].
Recall here that we say ¥ (or %) is singular in B, (or B,) if n7'(Z) (or
;' (%)) is a singular orbit. Now let V be a variety in general position,
and let t(Z,, ---, Z,) = (e¥"Z,, .., e"="Z ), t [0, d) be the induced S'-
action on V, where d is the least common multiple of the denominators
when ¢, (0< 1< mn) is expressed as a fraction of relatively prime positive
integers. As we know, the S'-action on 3 is the restriction of the S'-
action on C""'. Thus any point Z = (Z,, -+, Z,) which belongs to ¥
and to a principal orbit of the S*action on C*** must belong to a principal
orbit of the S!-action on Y. Since the S'-action on C"" is effective, a
point Z = (Z,, ---, Z,) € C*** belongs to a singular orbit only if at least
one of Z, vanishes. For more details, see Neumann [23] or Janich [14].
VNH; (j=0,---,n) is a subvariety of H, and it is invariant under the
C-action on C**’. Since V is in general position, V' N H; — {0} is a complex
submanifold of H; of complex dimension k¥ — 1, where &k is the complex
dimension of V. Let S be the unit sphere in C"*' and let S; be the
intersection S; = SNH; (=0, ---, n). Note that S; is the unit sphere
of H; (j =0, ---,n). Then applying the same argument as in Lemma 1
in Part I, SN(VNH; = S;n(VNH;) is a generalized Brieskorn manifold
of dimension 2k — 3. In fact, this manifold may not be a connected
manifold. To be more precise, one should apply the argument of Lemma
1 to each connected component of VN H; — {0} (=0, -+, n) (or each
irreducible branch of V' N H;). Thus SN (VN H;) is a disjoint union of
a finite number of generalized Brieskorn manifolds. It is clear that SN
(V N Hj) is a submanifold of 3 and each connected component admits a
normal contact structure as in Theorem 2 in Part I. Also it is not hard
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to see that the associated almost contact Riemannian structures on these
connected components are exactly the restriction of that on ¥ to these
components considered as naturally imbedded submanifolds of 3. Con-
sequently, applying the argument in Theorem 1 to each component, we
see that the Cartesian product of SN (VN H,) and any generalized
Brieskorn manifold admits a complex structure as given in Theorem 1.
It is evident that this Cartesian product is a complex submanifold of
the Cartesian product of Y and the above generalized Brieskorn manifold
with the complex structure given in Theorem 1. Now denote W, ; =
SJn(VlnHJ) (j = 07 Tt m) and Wz,l = Sln(Vanl) (l =0,--, n)y where
m and m are the complex dimensions of the ambient complex Euclidean
spaces containing V, and V,, respectively. Then by the above observation,
it is clear that W is contained in (UP,(W,; x ¥,)) U (Uwr. (X, X W,,1)).
Denote this set by W. Since each W,; x X, and 3, X W,, are a finite
union of complex submanifolds of ¥, x 3, of complex codimension =1,
and since a complex submanifold is a thin set, we have shown that W
is contained in a union of a finite number of thin sets. Next we show
that 7 = w, X 7, is holomorphic in the sense of complex space. Let (%, ¥) €
B, X B, be a point of B, X B, such that neither of them is singular.
Then by the same argument as given in the proof of Lemma 12 in Part
I, there are neighborhoods U, and U, of Z and %, respectively, such that
the complex structure of B, restricted to U, (4 = 1, 2) is non-singular. In
other words, U, (¢ =1, 2) is a complex manifold with respect to the quotient
complex structure. Since B, X B, has the Cartesian product complex
structure of B, and B,, the neighborhood U = U, x U, of (%, ¥) is a complex
manifold with respect to the complex structure of B, X B,. It is easy
to see that 7 restricted to n7(U) is a smooth mapping and that the
Jacobian mapping 7, of 7= in #7}(U) commutes with the complex structure
on 77 (U)c ¥, X ¥, and the complex structure on U. This can be seen
by recalling the definition of # and the argument in Lemma 1. Thus
w|z~}(U) is holomorphic. Since (%, %) is taken arbitrarily in such a way
that neither of them is singular, we have shown that w is holomorphic
outside W. Now let (%, ) be a point in (W), and let U be an open
neighborhood of (%, ¥). Let f: U— C be a continuous function which
represents a local section of the structure sheaf of B, X B, over U.
Now we want to show that fom in n % U) represents a local section
of the structure sheaf of X, x 3,. In other words, fox in =m %U) is
a holomorphic function in the usual sense. Clearly fox is continuous
in #77%(U) and it is holomorphic in 7 (U) — W since we showed that =
in 3, x 3, —W is holomorphic. W being a finite union of thin sets
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implies that W N7 %(U) is again a union of a finite number of thin
sets in 7#7%(U). Since form is continuous, it is locally bounded. Thus
applying the Riemann removable singularity theorem [11], we see that
fom is holomorphic in #7(U). Thus x is holomorphic in the sense of
complex (analytic) space. qg.e.d.

Now we have

THEOREM 3. Let 3, and 3, be two generalized Brieskorn manifolds
and assume that they are in general position. The triple (¥, X ¥, =,
B, X B,) 18 an analytic fibration with elliptic curves as its fibers. Here
7 18 & holomorphic mapping in the sense of complex space. This fibration
18 in gemeral mot a fiber bundle.

Proor. Obvious by virtue of Theorem 1 and Lemma 1. (&, X X,
7w, B, X B,) becomes a fiber bundle with a torus as its typical fiber if
and only if both (¥, x,, B,) and (2,, @,, B,) are S'-bundles. q.e.d.

Note here that this last theorem is also an extension of a result of
Calabi-Eckmann [6]. They have also shown the following. Let S*** and
S*7*t be two odd dimensional spheres and let CP? and CP? be complex
projective spaces of complex dimension p and ¢, respectively. We denote

by S+ x S0+ 5 CP? x CP? the Calabi-Eckmann fibration. Their result
states every compact complex subvariety is fibered by tori. The following
result is the analogue to their theorem; however, their method cannot

be applied directly to our case since X, and 3, can have non-vanishing
middle homologies.

THEOREM 4. Let 3, X 3,—> B, X B, be such an analytic fibration as
giwen tn Theorem 3. Let W be a compact complex subvariety of 3, X X,.
Then W is the total space of analytic fibration with tori as its fibers,
and the fibration is induced from that of X, X X,.

Proof. Without loss of generality, we can assume that W is irreduc-
ible. So from now on W is assumed to be irreducible. It is well known
that any such subvariety is a cycle in the sense of homology, and denote
the cycle by [W] and call it the carrying cycle of W. Since W is irre-
ducible, the set of all regular (or simple) points of W is connected, open
and dense in W. Denote it by R(W). It is also well known that R(W)
is a complex manifold of certain pure dimension k. In this case [W] is
an element of H*(JX, x ¥,; R) via de Rham theorem, where H*(X¥, X ¥,; R)
is the 2k-th cohomology group of X, x ¥, with real coefficient. The
following is also well known. Let M be in general a complex manifold
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and let W be an analytic subvariety of pure dimension %k, and let R(W)
be given as before. Let Di(M) denote the set of all real valued differential

j-forms on M with compact support. Then for all we D*(M), S )a) is

R(W
well defined and for any w e D¥* (M), S dw=0, where the integrations
R(W)

are always taken with respect to the natural orientations on M — R(W)
induced from the orientation on M. For the details, see [10] for the
first half; as for the 2nd half, this will be shown by the extended version
of Stokes’ theorem [25].

Let », and 7, be the normal contact structures on X, and 3, as in
Theorem 2 in Part I, respectively. As before, we denote by 6, and 6,
the kernel subbundles of 7, and %, respectively. Let & and & be the
velocity vector fields of the S'-orbits on Y, and JX,, respectively. Then
we know that & and O, (or & and 6,) span T3, (or T3,). Now define a
1-form @ on X, x 3, as follows.

oE)=16)=1 (=12
0®,)=70;,)=0 (1=1,2).
If we define 1-forms %, and 7, on X, X %, by
N(T2) =n(T%) (1=1,2)
N(T2) =0 (4,5=1,2 and 1+#j),

then
0 = 771 + 772 .
Clearly w is a smooth 1-form. Thus,
dw = dil + dii—z ’
and
(%) do) =do A« A do = (d7, + d7,)
e
l-times
= (dﬁ1 + d7—7—2) VANERERWAN (d771 + dﬁz)
l-times
v (1 . —
=3 ( . )(dw A @T)

Note here that d7, and d7, are 2-forms, so they commute with the wedge
product.

LEMMA 2. S (dw)* = 0.
R(W)
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PRrROOF. As we explained, this integral is well defined. Since 3, x 3,
is compact, any differential form on 3, X 3, can be considered as a form
with compact support. Now define a (26 — 1)-form ¢ on 3, X X, by ¢ =
o A (dw)*'. Then d¢ = dw A (dw)** = (dw)*. By the above generalized
Stokes’ theorem, S (dw)* = S dé = 0.

R(W) R(W)

q.e.d.

Let P: T(3,x2,) — 0, (1 =1, 2) be the natural projection defined by
P(T2) =0 (v J)
Pi(&i) =0
P(X)=X, Xe0, (t,7=12).

Now define a natural projection P: T(3, X %,) = TZ‘lGAB T, — @lé@z by
the exterior direct sum of P, and P, i.e., P= P, @B P,; therefore for any
X=X, G§ X, in T(Y, x %,), P(X) = P(X) é} Py(X,). We also denote by
T3, X 2,),,, the tangent space of X, x %, at (x, ¥).

LEMMA 3. Let 7, (t =1, 2) be given as before. Then we hawve,
i) d(X,Y)=04f XeT3, and YeT3,;, (j#1),47=1,2,
or X, YeT3; (5 #1).
i) dn,&;, X) =0 for all XeTZ, x 2,),4,5=1,2.
i) dp(X, Y)=dn (X, Y) of X and YeTZ, (1 =1, 2).
PROOF. As d7, is a tensor, we can assume that X is independent
of the points in ¥; and Y is independent of 3,. Then

aAn(X, Y) = X0(Y) = Y7(X) — 7[X, Y] =0 -Y9(X) - 0=0.
This proves i), and ii) can be shown in the same way. As for iii),
dﬁi(-X; Y) = Xﬁz( Y)— Yﬁi(X) - ﬁt[X; Y]
= Xn(Y) - Yn(X) — X, Y] = dn(X, Y). q.ed.

LEMMA 4. Let X, ---, X;, JX,, + -+, JX, be any 2l linearly independent
vectors in T(3, X 3y)w,, Where J is the complex structure of 3, X 3,.

Furthermore, assume that they are ordered im the above way. Then
we have,

_ 1 1 i 1 -1
do)(X, -+, X, JX,, ++-, JX}) = (—=1) 02 N(—— .
(doV(s ‘ )= 0 2 NC) )
N,(0<1£1) is a mon-negative constant which will be givem in the
Sfollowing proof, and w,; and & (i = 1, 2) are given as before.
PrOOF. Let us denote by Sp (X) the span of {X,, --+, X, JX, -+, JX}.
Sp (X) is a complex vector subspace of T(X, X X,),,, of complex dimension
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l, where a complex vector space of dimension [ means a real 2] dimensional
subspace of T(X, X ¥,).,,, which is invariant under the complex structure
J. Now for the sake of convention, denote X, = K, ---, X, = E;; E,,, =
JX,, -+, E,, = JX;. Then by the above (x), we have,

(x%)  (dOWMX,, -+, X3 JX,, ++-, JX))
l l . o
;1 <i )(dﬂm A @7) X, e Xy JX, - e, JXD)

Il

I

L (1 _ _
; < 'I,>[o§é (sgn 0)(dN,(Eyyyy Eowy) =+ A01(Eogimyyy Fowi)

X (dﬁz(Ea(2i+1)9 E0(2i+2)) et di]—Z(Ea(Zl—l)! Eo(zl))] .

Here © is the set of all the permutations of 2[ letters (1, ---, 2), and
sgn o is the sign of o. Denote by Sp (&, &) the span of & and &, and
assume that Sp(X) is not transversal to Sp (&, &). In other words,
Sp (&, &) Sp(X). Note here that Sp (&, &) is a complex line in T(Z, X 23) 4,1+
Then we can take a new ordered basis {Y, ---, ¥}; JY,, --+, JY;} for
Sp (X) such that Y, = &, and JY, = &,. Since {Y,, JY,}.., forms a basis,
we have for 1 <11,

Xi = a/u‘.Yl + e + a’lin + bUlJYl t et b”JYl
JX, = —=b,Y, + o+ + (=0, )+, JY, + -+ + a,JY, .

The coefficient matrix L is written as

-4 73
~\B 4/’
where A = (a,;) and B= (b;;),1 <1,7 <1. As is well known, the deter-
minant of L, say |L]|, is positive. By elementary exterior algebra, we
have

(do)(X,, -+, Xy IX, « -+, JX)) = | L|(d@)(Y,, -+, ¥}, JY,, -0, JY)) o

By the similar expression to (xx) for the second half, each summand of
that expression must contain a term of the form +d7,(&, *) or +=d7,(x, &).
By Lemma 3, these terms are zero; hence, (dw)'(X,, ---, X, JX,, ---, JX)) =
0. Therefore, we can automatically assume that Sp (X) is transversal
to Sp (&, &). In this case P restricted to Sp (X) is a complex isomorphism
of Sp(X) onto its image PSp(X) under P. PSp(X) is contained in
91@@2 and has complex dimension I. Let us denote by P; (2 =1, 2) the
restriction of P, to PSp(X) for the sake of convenience. Denote the
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kernel of P, by Ker P, (¢+ = 1, 2). Clearly, Ker P, (1« = 1, 2) is orthogonal
to each other with respect to the Riemannian metric g, where g is given
as the product metric of g, (¢ = 1, 2) which is the associated Riemannian
metric on X, (¢ = 1, 2). Now let PSp(X) be as before, and let W be the
orthogonal complement of (Ker P,) @ (Ker P,) in PSp (X). Then P Sp(X)
can be written as the orthogonal direct sum (Ker P,) W P (Ker P,).
Notice here that P, restricted to (Ker P,) @ W is an isomorphism, and
similarly P, restricted to W Ker P, is an isomorphism. Furthermore,
P,(Ker P,) and P,(W) are orthogonal to each other in ©,, and similarly
P,(Ker P,) and P, (W) are orthogonal to each other in ®,. Denote by p, q,
and 7 the complex dimensions of (Ker P,), W and (Ker P,), respectively.
Let{Z,,---Z,,JZ, -+, JZ,} be an ordered unitary basis for P,(Ker P,), and
SimilarIY{ZpH’ o0y Zpvgy Jpiay 0y Sy} and {Zyias ** ) Zprgir=nr JZp+q+17
«ooy JZ, 0=} be ordered unitary bases for P,(W) and P,(Ker P,), respec-
tively. Define 2l vectors in P Sp (X) denoted by {Y, ---, Y}, JY,, ---, JY}}
in such a way that P(Y,)= 2, «-+, P(Y,) = Z,, P(Y,.) = Zpp, *++,
P(Y,.,) = Zp+q’ Py Y:ﬂ+q+1) = Zp+q+u <o+, P(Y)) = Z,and P(JY,) = JP(Y,) =
JZ,y e, P1(JY11):JZ1M P(JY,)=dZp, -, P1(JYp+q):JZp+q’ PJY,yq0)=
IZ yigins + oy P(JY))=JZ,. Since P,|Ker P, W is a complex isomorphism,
{y, -, Y,JY, ---, JY;} forms an ordered complex basis for P Sp (X),
and the orientation induced by the order coincides with the induced
orientation from the natural orientation of the ambient space. Now let
(X, -+, X, JX,, -+-, JX;} be given as follows. P(X) =Y, -+, P(X,) =
Y, PJX)=JY, -+, P(JX,)=JY,. Since P:Sp(X)— PSp(X)is a complex
isomorphism, {X,, ---, X,, JX,, -+, JX;} in the given order forms an
ordered basis for Sp (X) with the natural induced orientation. Denote
it in the same order as follows: E, =X, ---, E, = X, E,,, = JX,, -+,
E, = JX,. In order to compute (dw) at (K, ---, E, E,,, +--, E,), we
make use of the expression (xx).

To be more precise, put E, = (a:£, @ P.P(E,) @ (b, ® P,P(E,), i =
1, ..-,2l. By Lemma 3, we have for 1 <14, j < 2I,

(xxx) AN (B, Ej) = d,(a:é, D PIP(Ei))A@ (b, @ PP(EY)) ,

(a;¢, D P.P(E;) D (bié, © P.P(E))

= dﬁ;(a’t& @ Pi-PEi, a’j& 69 PLPEj) + diy—l(aisl @ P1PE1: ’
bi&, ® P,PE))

+ dﬁ1(bi52 @ Pz-PEi; 0,551 69 P1PEj) + dﬁl(bifz @ P2PEi ’

b, @ P,PE))

= diﬂ(ai& (&) P.PE,, a;¢, © P,PE))

= dn,(P,PE,, P,PE)) .
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Similarly,
dﬁz(Ei; E;) = dy,(P,PE,, P,PE}) , 14,5521,
Therefore, for 1 £ 7 < 2I, each summand of the expression (x+) becomes

(%) (sgno0)d7,(Eow,s Bouw) *+ @7 (Eagions Bowi)8No(Boiiny Bogiin)
ttt dﬁz(Ea(zz—w E,on)
= (sgn 0)(d),(P,PE,,), P.PE,,) - -+ d)(P,PE,qs;_ ), P,PHE,s;,))
X (@0 PoPE g1y PoPEoiss) « + + A0o(PoyPEoyyyy PoPEyy))

Since P,PE, = 0 if PE, belongs to Ker P,, the term (#) vanishes unless
all E,,, -+, B,,, satisfy that PE,,, ---, PE,,, belong to Ker P, W.
Hence, we treat the case mentioned above. In other words, P,PE,,, ---,
P,PE,;;, belong to Ker P, @W. By the definition, {Z,, ---, Z,,,, JZ,, ---,
JZ,.,} forms an ordered unitary basis for Ker P, @W. Thus for a fixed
0 €®, the span of P ,PE,, through P, PE,,; is a subspace of Ker P, W.
Now recall b) in Lemma 5, then we have d7(X, Y) = (JX, Y)/w,(&,)
where ¢ ) is the induced metric on @, from the standard metric on C*.
This metric also coincides with the associated Riemannian metric on 6,,
since we consider X, as the intersection of the variety and the standard
hypersphere. As remarked before, P,PE,,, -+, P,PE,,, are among the
unitary basis {Z,, -+, Z,.,, JZ,, <+, JZ,,,} for Ker P,@QW. This means
that dﬂl(P,_PEa(zj_l), PIPEa(zj))ZO unleSS PlP.Eg(zj—l): iJPIPEg(zj)(j: 1, v, l).
In other words, (%) # 0 only when ¢(1) =0(2) *=1, -+, 0(2t — 1) = ¢(27) £+ I.
Now let o be the permutation for which () does not vanish. Denote ¢
by o = (i’(lz),, '.'.'.” ?;'(’2%;, _;_(211’: +1’)’2l’ a(2l))‘ Let ¢ be the permutation
of 2¢ ordered letters {a(1), ---, 0(27)} such that ¢ permutes {a(1), - - -, 6(21)}
into the ordered set {u(l), ---, #£(27)} with pQ) < p#(2) < --- < ©(23).
Similarly, let = be the permutation of 2(I — ¢) letters {¢(2¢ + 1), - - -, o(2])}
such that = permutes {¢(2¢ + 1), ---, 6(2l)} into {z(1), ---, T(2(l — 7))} with
(1) < 7(@) < -+ < 7(2(l — 7)). Let a be the number of pairs (¢(25 — 1),
o(27) (4 =1, ---, 1) such that ¢(25 — 1) = ¢(25) + I, and let B be a number
of transpositions to get z. Then after a lengthy but elementary obser-
vation of permutations involving reshuffling the indices, we obtain that

sgno = (_1)a+ﬁ+i(2!—i—1)/2 — (_1)a+i(2t—i-1)/2 sgn .

Next consider the set &, of permutations in & such that each member
of &, coincides with ¢ on the first 27 letters. Then we have,

@ 3 (gn T Euw, Enw) -+ AT Erie-vy Boso) 0B Bocero)
oo AN Eoii—1y Boen)
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= >, (—1)*rie=imn(gon ) (A7 (Eowy Eow) * * + A71(Eoginy Eoon))

pee,

X (di}-z(Ep(sz EP(2t+2)) b dﬁz(Ep(zz—m Ep(zz)))] .

Here 7 is the permutation of the last 2(l — ¢) letters ¢(2¢ + 1), -- -, o(20).
Taking into account that for any pe®, the first 2i-letters are always
given as o(l), ---, 6(21), we can identify any such element p €&, with
the permutation of the last 2(I — 7) letters (¢(2¢ + 1), ---, 0(2l)). There
are exactly the same number of permutations in &, as the set of all
permutations of 2(I — 1) letters. Denote the latter by ©&'. Here any
element of &' is identified with 7!, where ¢ is given such as before.
In other words, ¢ transforms the last 2(I — 7) letters of any permutation
0 in &, into (z(1), -, 7(2(l — %)) such that z(1) < 7(2) < -+ < 7(2(1 — 7)).
Also note here that sgnz = sgnz™'. With these in mind we have,

(##) =reZ§‘. (—1)=rie=i=0sgn 0)[dN (B Eow) ++ + A01(Bowi-1s Bown)
X:iﬁZ(Er_l(l)r E 1)« A0y(Bi100-0-1y Bi-100-i)]
= (=102 dn (P PE,, P,PE,y) -+ A)(P,PE,u 1), P,PEys)]
x[ g_‘,@(sgn T AN P PE 1), P,PE.~13) + + « d9y(PPE ~154-3)—y) »
P,PE -10-0)] -
By the definition of «, applying the same argument as in the proof of
Theorem 2 in Part I,
(—=1)*dn,(P,PE;y), P\PE,s) -+ d)\(P,PEyy;-.), P\PE,,,) = (1/®,(8))* .

Also the term inside the second bracket [-::] in the above (##) is equal
to (dn,)' " (P,PE.,++, P,PE.3_)). Recall that (PPE., -+, P,PE 4, ,))
forms an ordered complex basis for their span in P,(W @ Ker P,), since
P,|W @ Ker P, is a complex isomorphism and {PE.), - -+, PE.y_;)} forms
a complex basis for their span which has the natural induced orienta-
tion. Note here that JP,PE. = P,PE. .4, ***, JP,PE _y=P,PE, ;).
Now let (e, -+, €_;, Je, +++, Je;_,) be an ordered unitary basis for the
span of (P,PE.,, -+-, P,P,,u_;») With the induced orientation. Then there

is a non-singular 2(I — %) X 2(I — %) matrix of the form(‘g —§> relating

(P,PE. ., ++y P,PE i) to (&, +++, €_; Je, -+, Je,_;). By elementary
facts on exterior algebra, we have

A —B
B A
As in the beginning of this proof, we can easily compute that

(@12) ey + -, €1miy Ty <o+, Jor) = (—L)FTITVEK (1 @y(8,))

#8) = (=D (1w (&)

(dy]z)l—i(eu ty €y Jeu ) Jel-—i) .
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where K, is the number of non-vanishing terms which appear as the
summands of (dn,) (e, -+, e,_;, Je, -+, Je,_;). Thus we have

i(2l—i—1)+(1—4) (1—i—1)} /2 A —B i -1
(#%) = (—1rerimuramad=izy K")B A)a(l/wl(&)) (1/wy(&)

A
= (-1 1(1—1)/2Ka
(—1) B

—B . :

A (L@,(5)) (L/@y(8:))" "
Next let ¢ denote a member in & such that d7,(E,q), E.m) ** A0,(Eoui_n,
E,;,) #0. Then we have

6;; (sng o) (AN, (Eow)y Eow) =+ @0(Eogiony Eowi))

X (d772<E0(2i+1)! Ea(2¢+2)) cee dij—z(Ea(zt—m Ea(zl)))
a-1/2§ A —B : -3

=(—1) 2K, (1/@,(6))"(1/@y(E:)) " «

B A,

Here the symbol 5, means to sum over all the permutations in & given
as follows. Partition & in such a way that ¢ and ¢ belong to the same
class if and only if ¢(j) = z(j) ( = 1, ---, 27). Pick a representative from
each class and denote the set of all the representatives by ¥,. Then the

summation 3, must be taken over all the permutations in ¥,. Note here
that 2, does not depend on the choice of representative. Notice also

that in the last expression for (#%), only K,(>0) and \é a g‘ (>0) depend

on the choice of ¢ given as above. Therefore, the last expression can
be either positive or negative according to the value of I(l — 1)/2, depen-
dending only on I but not on ¢ (1<¢=1). Now by the similar expression
to (¥*) for X,, -+, X, JX,, -+, JX,, we have

(dw)l(Xu °t %y Xl, JXD ct %y JXI)
v (1 _ _
= é ( i )l:agé (sgn 0) (AN, (Ey), Bas) =« + A0(Fogi-ny Bown))

X (dﬁz(Eﬂsz Eo(2i+2)) °cc dﬁz(Ea(zt—m Ea(zt))):l

L ! -1/25 A —B i 1—3
A —B

B A

Here 5, means the summation given as above. Now since the given
vectors {X,, ---, X, JX,, ---, JX;}and {X,, ---, X}, JX,, - -+, JX,;} both form
ordered bases for Sp (X) with the natural induced orientation with respect

! 1\~ )
= (—1)nre ; [( ; )2 K, }(1/601(51))i(1/0)2(52))‘"' .



HOPF FIBRATION, II 193

to the complex structure J, there is as before a non-singular 21 x 2I-
matrix of the form (‘g‘ _§> with “é _ﬂ > 0 which connect between

them. Thus we have
(dw)l(Xv R Xl: JXv *t % J-Xl)

A —B _ _ _
= ‘B A|(d(¢))l(X1, M) Xl, JXI’ *t % JXZ)

A Bl I\ ~ A —B . ,
= (—1)-nre B 4 .gi [( i >2iKa B 4 a}(1/@(51))‘(1/602(52))'”‘ .
Now let N, be “é _i (2){5,1{, ‘é "g a}. Then we have the desired
result. g.e.d.

Going back to the proof of Theorem 4 consider R(W) as a complex
submanifold of ¥, x X, of complex dimension %, and consider it is imbedded
by h into 3, X ¥,. Then

|, @ey={ wdor={ aropy,

h(R(W)) R(W) R(W)
where h* is the pullback homomorphism induced from k. Let us assume
that R(W) has the induced orientation from that of 3, X X¥,. Now further
assume that there is a point (x, ) in 3, X X, at which the tangent space
TR(W),,, is transversal to the span of & and &. In other words,
h(TR(W),,) does not contain the span of & and &, at h(x, ¥). According
to the definition of integral on manifolds, let us choose a locally finite open
covering of R(W) in the following way. Let (U %oy * ) %ok Yorr ** s Yor)
be a local coordinate system about (x, ¥) such that the coordinate
functions satisfy the Cauchy-Riemann equations, i.e., 8/0y,; = J(d/dx,;) and
d/ox,; = —J(3/0Y,;), where J is the induced complex structure 01 =k,
0= j<k). Clearly, this coordinate system has the induced orientation.
Next let {(U,, (@4, + <<y Topy Yiry = > Yir)lizs be a locally finite collection of
open sets of R(W) such that Uz, U, covers R(W) — U, and such that these
coordinate functions satisfy the Cauchy-Riemann equations with respect
to the induced complex structure J. Note here that these neighborhoods
have the induced orientation in the natural way. Now let {¢,}3, be the
partition of unity subordinate to the covering {U,}7,. Then

SR(W)(h*(da))),c

= 2!) SU ¢ih*(dw)k(a/axju M) a/axjk’ a/ayh, e, a/ay,k)
i=0 Ju;
Xdxj o+ dwpdys c - AYi
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where the summand of the right hand side is the usual Riemannian inte-
gral. Since ¢;=0 (j=0,1, ---) on R(W) and since by Lemma 4, either

R*(A@)H(3)3%;, « ~ +, 0/3% 14, 0)3Ys1y +++, 3)0Y;) = 0 or =0,

SU_%'h* (dw)} (00, =+, 0/0%s1y 0[0Ysy * =+, 0/0Y3r) AWy +++ AT QY1 -+ AY 18

either =0 or £0 according to (I — 1)/2, for all j=0,1,---. In par-
ticular, again by Lemma 4, the above integral for j = 0 is either strictly
positive or strictly negative. This can be seen easily as follows.
h*(dw)k(a/axov "t a/axolu a/ayou % a/ayok) >0 (OI' <0) at (xi y) by the
assumption. By continuity, the value must be positive (or negative)
in a neighborhood of (x, ¥) which has positive measure with respect to

Az A+ Adgu AGYA -+ - A Aoy Thus S h*(d®)* >0 (or <0), and this
R(W)

is a contradiction to Lemma 2. Therefore, no tangent space of R(W)
can be transversal to the span of & and &, i.e., it always contains the
span of & and &. As for the points which belong to the singular locus
of W, let W=R(W)UW*'U---W'UW?° be the splitting of W by di-
mension [26, p. 98]. Each W™ (j =2, --.,k) can be considered as a
complex submanifold of complex dimension j — 1(>0), and it is exactly
the set of regular points of the subvariety W7y ... U W?°, i.e., Wit =
R(WitU---UW?°. Thus evaluating (dw)’™* on W’~! in the same way as
above, we can conclude that each tangent space of each point of W™
(j =2, +++, k) must contain the span of & and &. As for W, there are
only a finite number of points belonging to W, since W is compact.
Next we show that for each point of W there exists an elliptic curve
which is a fiber of (X, x ¥,, 7, B) such that it contains the given point
and it is completely contained in W. First of all, let us point out that
in each W’ (j =1, ---, k) the distribution defined by assigning to each
point in W’ the span of & and & at that point is integrable. This
can be seen by noticing that & and & are tangent to the fibers every-
where; therefore, the span of & and &, is tangent to the fiber. Thus
the distribution is involutive. The maximal integral submanifolds of
the distributions must be open submanifolds of some fibers. Let
W* be a 1-dimensional compact subvariety of X, x 3,. Then clearly
R(W*) must consist of these maximal integral submanifolds. Any
singular sets of W* which consist of a finite number of points are limit
points of R(W?*), so they belong to the closure of R(W*), say R(W).
Let CR(W?*) be a connected component of R(W*), and let CR(W?*) be the
closure of it in W*. Notice that CR(W*) — CR(W*) consists of a finite
number of points in the singular set of W*. Let us call CR(W*) an
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irreducible branch of W* according to Gunning-Rossi [11]. CR(W™) is a
subvariety of W* of dimension 1. It is also clear that CR(W*) is a
maximal integral submanifold of the above distribution. Therefore,
CR(W?*) is contained in a fiber F. Since F is closed, FOCR(W*). If
x is ap oint in CR(W*) Cc CR(W*), since CR(W*) is an open subset of F, x
is an interior point of CR(W?*) as a subset of F. Let 2 be a point in
CR(W*) — CR(W*). There are only a finite number of points in this
set, so each point is isolated in F, too. We want to show that there is
an open disk in F which has x as a center and which is entirely contained
in CR(W™). Note here that since 3, X 3, has the Rimannian metric ¢
and since F' and CR(W?*) are subsets of ¥, X J,, we can naturally assume
that these are metric spaces. For any = (positive integers), denote by
D, the open disk of radius 1/» in F which has « as its center. Suppose
that for any n > 0, there is always a point in F' — CR(W™*), say ¥,, in
D,. Since z is isolated in F, we can assume that there is no other point
of CR(W*) — CR(W*) in each D, except for . Since CR(W™*) is connected
and since x is a limit point of CR(W?*), there is a certain n, > 0 such
that D, — D,,;, contains a point in CR(W*) and at least a point Yy €
F — CR(W*). In fact (D,, — D,,,,) N CR(W*) is nonempty open subset
of F. Thus it must have at least a point in F — CR(W?*) as a limit
point of CR(W*). Since CR(W?*) is closed (compact), we have a contra-
diction. Hence there is an open disk D, (for some =, > 0) which is
entirely contained in CR(W*). Thus we have shown that « is an interior
point of CR(W?*), so CR(W*) is an open subset of F' as well as closed;
therefore, CR(W*) is F itself. In fact, it can be easily shown that
CR(W*) coincides with F' as an analytic subvariety by removing singularity
of the identity map between them. This process can be applied to any
irreducible branch of W* to show that W* is a disjoint union of some
fibers. Note here that this argument actually tells us that there is no
singular point in 1-dimension analytic subvariety of 3, x ¥,. Now applying
this observation to our W!, we have that W' is a disjoint union of some
fibers of 3, x %,. Let C(W?*) be a connected component of W? and let
C(W?) be its closure in W. Since W?U W' U W° is closed, C(W?) — C(W?)
is contained either in W* or W°. Let x be a point in C(W*) and let M
be the maximal integral submanifold of the above distribution passing
through . Then the closure M of M is contained in W?U W'U W".
Let us denote by F the fiber that contains M. If M contains a point
in W*, by the previous observation F' must be M. This is a contradiction,
because M contains a point in W? as an interior point. Note here that
Wi (j=0,---, k) are mutually disjoint. If M consists of points in W?
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and points in W°, there are basically following two cases. The first is
that 1 consists of only points in W2. Thus M is a compact surface
without boundary; hence M is open and closed in F. This implies M= F
(and M = F). In the second case, M — M contains at most a finite number
of points in W°. By the same method used previously, we can actually
show that F = M = M biholomorphically. Continue in like manner, we
can show the desired result in our theorem. Our argument automatically
gives us that there is no zero dimensional singular variety of W unless W
itself is of 0 dimension. It is well known [11] that if A: X —Y is a proper
holomorphic mapping from an analytic space X into an analytic space Y,
then the image h(X) of X under % is an analytic subvariety of Y.
Since 7: ¥, X ¥,— B, X B, is holomorphic by Lemma 1, and since W
is compact, 7(W) is a subvariety of B, X B,; and 7 restricted to W is
holomorphic. Thus (W, #|W, n(W)) is an analytic fibration. q.e.d.

REMARK 2. a) It is not necessary to assume that X, and 3, are in
general position in order to show that W is fibered by elliptic curves.
In this case, however, we do not know whether or not x is holomorphic.
b) Theorem 4 can be shown by making use of the fact that every
irreducible compact analytic subvariety can be triangulated in such a
way that each descending chain of singular loci can also be triangulated
simultaneously and that it forms a descending chain of simplicial sub-
complexes. For the details, see Giesecke [8].

The following is a little more precise result than Theorem 4.

THEOREM 5. Let M be a compact complex manifold of complex
dimension k and let h: M — 3, X X, be a proper mapping from M into
3, X 3,. Then f(M) is fibered by elliptic curves, and the fibration is
induced from that of X, X X,. In particular, if h is an immersion,
M s foliated by elliptic curves. h restricted to each leaf is a covering
projection. Furthermore, let B denote the quotient space by the foliation.
Then B has the natural structure of an analytic space, and there is a
holomorphic mapping h from B into B, X B, such that the following
diagram commutes.

M- s s,

ln’ ln‘l X 1y

B> B x B,

Here 7w is the natural projection, and (X, «,, B) and (3, 7, B,) are the
fibrations in gemeral position.
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PrROOF. The proof of Theorem 4 applies verbatim to the first half
of the statement because (M) becomes an analytic subvariety of X, x X,.
However, we do not have to use the generalized version of Stokes theorem
here as we will show. Let @ and ¢ be the same 1-form and (2k — 1)-
form as in the proof of the last theorem. Denote by h* the pullback
homomorphism and by h, the Jacobian mapping induced from k. Consider

the integral S h*(dw)t. Using the ordinary Stokes theorem on M, we
M
have,

SMh*(dcv)" = SM(dh*a))" - SMdh*gS - Smh*qs —0.

Note here that the boundary oM of M is empty. This tells us that at
each point « € M, there exists a complex vector subspace of TM, which
is mapped onto the span of & and & at h(x) by h,. Otherwise, we would
have a contradiction as in the proof of Theorem 4. However, the above
observation gives a little more information than just applying the argument
in Theorem 4 directly. Now let h: M — X, X X, be a holomorphic immer-
sion. Then by the above observation, for each x e M, there exists a
unique complex line in TM, which is mapped isomorphically onto the
span of & and &, at h(x) under h,. Assign to each xe M that complex
line, say D,. Then since h is a holomorphic immersion the assignment
D(x) = D, gives rise to a smooth distribution on M. Again since h is
an immersion and since the span of & and &, defines an integrable distri-
bution on ¥, x %,, D is integrable on M. Clearly each leaf of D is a
compact Riemann surface. This can be seen as follows. Let g be the
Riemannian metric on ¥, X 3,. Then it is easy to see that each fiber in
Y, x 3, is a totally geodesic submanifold of 3, X X, with respect to the
metric g. Let M have the induced Riemannian metric from g. By the
definition of D, we can readily see that D is a totally geodesic distribution
on M with respect to the induced metric. Since M is complete with
respect to the metric, each leaf must be complete with respect to the
induced metric, too. For the details, see Abe [1]. Since M is compact,
all the leaves are compact, too. Let L be a leaf of the distribution D.
Then h restricted to L is an immersion and A(L) is contained in a compact
fiber F of X, X ¥,. Since L and F have the same dimension, h|L is a
covering mapping. For this part, see Kobayashi-Nomizu [17, Vol. 1, p.
176]. Now since F' is diffeomorphic to the torus S' x S!, we can put a
flat Riemannian metric on F. Since h|L is a covering projection, we can
lift the metric on F to L, and L becomes a flat manifold with respect
to the metric. Then by Gauss-Bonnet theorem, the genus of L must
be 1; therefore, L is an elliptic curve.



198 K. ABE

Next let B = M/D be the quotient space of M with respect to D.
Since h is a local diffeomorphism which maps the leaves of D into the
fibers of X, x 3, the quotient topology of B is locally the same as that
of the image of (M) under «, X w,. Note here that 7, X 7, being proper
and holomorphic implies that (7, X 7,)(h(M)) is an analytic subvariety of
the analytic space (complex space) 3, X ¥,. (See [11].) Thus we have
naturally induced continuous mapping %: B— B, X B, which is a local
homeomorphism. Now let (B, X B,) denote the structure sheaf of the
analytic space, then the induced sheaf A*~(B, X B,) gives rise to an
analytic structure sheaf of B where 2* is the morphism induced by the
mapping k. It is also easy to see that B and B, X B, are locally isomorphic
to each other as analytic spaces. To show that z: M — B is holomorphic,
let f be a local section of #*~?(B, X B,). Then there is a local section
g of (B, x B,) such that 2*(g) = f, i.e., f = Goh, where o denotes the
composition of § and k. Therefore, 7*(f) = 7*h*(g) = gohor. Since the
above diagram clearly commutes by the definition of &, gohomw =
go(m, X m)oh. Since (m, X w,) and k are holomorphic, the composition
of them is holomorphic. This means that 7*(f) = 7*(A*(§)) = gohomw =
go(m, X m,)oh is in the structure sheaf of M, showing that z is holomorphic
in the sense of analytic space. This completes the proof of Theorem 5.

q.e.d.

The following lemma may be convenient to clarify the situation.

LEMMA 5. Let (2, X X, @, X @,y B, X B,) be the analytic fibration as
before, and let Y be any analytic space. Let h be a holomorphic mapping
from X, X X, into Y such that each fiber of X, X X, is mapped into a
point. Then h induces a holomorphic mapping k from B, X B, into Y
such that the following diagram commutes.

2, X X,
I\

A
L‘chzg\
BIX Bz—:_—>Y

h

PrROOF. Let us denote by s .5, 5,x5, and ¢ the structure sheaves
of 3, X 3, B, X B, and Y, respectively. It is clear that % is naturally
defined as a continuous mapping in such a way that the above diagram
commutes. Therefore, it is sufficient to show that % is holomorphic.
Here recall that B, X B, has the natural Cartesian product structure as
its complex structure. As is observed in the previous section, the complex
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structure of B; (¢ = 1, 2) is the quotient structure of the Seifert fibration
(HY, m;,, H|T = B;,). We wish to show that for any (x, 2,)€ B, X B, and
y €Y such that h(x, x,) = ¥, h*(:7,) C 5,55, s,,0p-  Let (U, g, W, C*) be a
local coordinate system of Y at y, and let (U, ¢,, W,, C*) be a local
coordinate system of B; at x;, (+ = 1, 2). - This means that for instance,
U is a neighborhood of y, and W is a local analytic subvariety of C* such
that there exists a homeomorphism ¢ between U and W such that ¢*
gives an isomorphism between the structure sheaves 2 and ¢ of U
and W, respectively. By the definition of Cartesian product of two
subvarieties [11], the local coordinate system of B, x B, at (x,, x,) is given
by the product (U,x U, ¢, X ¢y, W, X W,, C**2 = C* x C*), Thus it is
sufficient to show that for any local section f of ;&% fok is a local section
of ;.r, Equivalently, fogoho(g, X ¢,)™* is a local section of .,
where f is a holomorphic function on W such that fog = f. Now restrict
foh to U, (=1, 2), and denote it by v, (:=1,2). Since B; has the quotient
complex structure of H,/T,, it is sufficient to show that y-,o7, is holomorphic
in order to show that 4 is holomorphic. It is quite easy to show that
H, is diffeomorphic to S' x 3,, or more precisely via this diffeomorphism
the complex structure of S*' x ¥, is identified with that of H,. In other
words, H, is biholomorphic to S' x ¥,. Note here that the complex
structure J, restricted to ©, is always the same as the induced complex
structure from the ambient complex Euclidean space as was observed
earlier. Let (a,b)e X, X 3, be a point such that =, X 7,(a, b) = (x, x,),
and let S" be the orbit of the S'-action on J, through b€ ¥,. Then ¥, x St
is a naturally imbedded complex submanifold of ¥, x ¥,. Since this S'-
action has a finite cyclic group as the isotropy group, we have the natural
immersion j from X, X S* onto X, x S'c ¥, x ¥, in such a way that
jlm, n) = (m, t(n)), where t:n — t(n) is the S'-action for any (m, n)e
Y, x St By this immersion the complex structure J, restricted to 6, is
mapped precisely onto the complex structure J of 3, X 3, restricted to
©,. (Note here this immersion may not be holomorphic.) It is also clear
that hoj = ho(m, X m,)oj = hom, as mappings on any sufficiently small open
subsets of #7'(U,). Let v be a point in z;'(x,), and let (V, 7, V', C') be
a local coordinate system of X, x S*' about v such that V is so small that
the above equalities hold. Then fogohom,o7 ™ = fogohojovr™* is a smooth
function in the usual sense, since f: ogoh is a holomorphic function in the
usual sense in the open subset (V) = jovy (V') of X, X X,, and since
joY™' is a smooth mapping from V’ onto j(V). Since 2, X S'is a complex
manifold, the coordinate system (V, v, V', C') is the usual local coordinate
system of ¥, x S* about v. Thus, in order to show that fogohojov™* is
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holomorphie, it is sufficient to show that the Jacobian map (Fogohojor™),
of fogohojoy™ is a complex linear mapping in the sense that it commutes
with the complex structures on 3, X S* and C. This can be seen easily
as follows. First of all, we know that the Jacobian map (fogoh), of
fogoh is a complex linear map, since fogoh is holomorphic in j(V). Next
let {e, +++, e;} be a 2k-frame on V' such that 7;'(e), 73'(e.) span the
tangent space to the fibers on X, X S' and the rest span 6,. By the
definition of j, the Jacobian map (jov™), of jov™' maps {e, e,} into the
tangent space of the fibers. Again by the definition of j, the Jacobian
map of j restricted to O, commutes with the complex structures J,
restricted to 6, and J restricted to ©,. Note that J,|®, and J|6, are
nothing but the same structure by the definition of the complex structure
of 3, x %,. Since fogoh maps a fiber into a point, the Jacobian map
(fogohojor), of fogohojoy™ maps the span of e, and e, into the zero
vector. For any e; (2 < i < 2k), (Fogohojoy ) e, = (Fogoh)J(Go7 ™) e =
Jy(fogohojor e, where J, is the standard complex structure of C. Thus
(fogohojor™) is a complex linear mapping. Thus we have shown that
r, 07, is holomorphic, i.e., 4 is holomorphic. Applying the same argument,
we can show that +r, is holomorphic. This tells us for any (x,, x,) € B, X
B, h restricted to (x, B, and (B, x, are holomorphic. Then by the
generalized version of Hartogs’ theorem [9], % is holomorphic in B, X B,.

q.e.d.

COROLLARY 4. Let (2, X2, T, X7, B,XB,) and (Z;X 2, TyX 7w, ByXB,)
be two fibrations as given in Theorem 3. Let h:X¥ XX,— Y, X3, be any
holomorphic mapping from 2, X3, into 3,x53,. Then h maps any fiber
of 3, x X, into a fiber of X,%x3,; therefore, h induces a holomorphic map-
ping h from B,X B, into B,X B, such that following diagram commutes.

lezz hazale

1n1 X J'Tl‘a X my

B, X B,.— B; X B, .
h

In particuler, if h is one to one, then each fiber of X, X 3, is mapped
biholomorphically onto a fiber of X, X X,.

Proor. It is sufficient to point out that each fiber of X, X 3, is
mapped onto a subvariety of complex dimension 1; therefore, it must be
contained in a torus by Theorem 5. If h is one to one, & restricted to
a fiber of 3, X J, must map the fiber onto a fiber of 3, X 3,; therefore,
it is biholomorphic on the fiber. q.e.d.
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The following corollaries are essentially due to Calabi-Eckmann [6].

COROLLARY 5. Let (3, X X, , X 7,, B, X B,) be a fibration as before.
Let W be a subvariety of X, X X,(W can be X, X 3, itself). Then there
exists a 2-cycle in H* W, R) which is represented by & compact complex
analytic submanifold of W. In particular, if H (W, R) = 0, W cannot
be Kahlerian.

Proor. Take the fibers of the induced fibration of W. These are
topologically tori, thus represent 2-cycles. If H*( W, R) = 0, these cycles
are homologous to 0. Since no 2-cycle represented by a compact complex
submanifold in a Kahlerian manifold can be homologous to 0, W cannot
be Kahlerian. q.e.d.

This also shows that many X, X 3, cannot be Kahlerian since many
of 3, and %, are highly connected.

COROLLARY 7. Let (X, X 3,, @, X @,, B, X B,) be a fibration as above.
Let h: X, X ¥, — S* be any holomorphic mapping into the Riemannian
sphere. This means that h 1s a meromorphic function on 3, X 3,. Then
h is constant on each fiber; therefore, it induces a holomorphic mapping
h from B, X B, into S? such that the following diagram commutes.

2, X X,
I\
7y X nzl \h
N
B, x B, — §*.
Indeed, the same result holds for any holomorphic mapping h: 3, X 3, — X,
where X is an analytic space.

PrROOF. Let y be a point in S®. Then A7 *(y) is a closed analytic
subvariety of 3, X 3,. By the previous theorem, h~'(y) is fibered by
elliptic curves induced from the fibration on ¥, X 3,. This means that
if # is a point such that h(x) = y, then the fiber that contains « is
entirely contained in k7 (y). Therefore, h restricted to the fiber is
constant. By Lemma 5, there is a unique holomorphic mapping # which
satisfies the above condition. q.e.d.

COROLLARY 8. Let (X, X X,, m, X @, B, X B,) be given as before, and
let {a, ++-, a,} be a finite subset of 2, X X,. Then 3, X 3, — {a,, +++, a,}
s am open complex manifold which contains 2-cycles represented by
elliptic curves. Thus most of %, X 3, — {a, -+, @,} cannot admit a
Kahlerian structure. Now let h be a holomorphic function defined on
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2 x 3, —{a, -+, a,). Then h is constant.

PrOOF. Notice that X, x ¥, — {a, ---, a,} are fibered by elliptic
curves and possibly elliptic curves with finite points removed. Those
elliptic curves are dense everywhere on the set, and they represent 2-
cycles. Next by using the homology exact sequence of the pair (2, X 3,
3 x 3, —{a, -+, a,}) and the excision theorem, we can readily show
that Hy(X, X 3,; R) is isomorphic to H,Z, X X, — {a, +-+, &,}; R). Since
most of 3, X 3, are more than 2-connected as mentioned before, H,(2, X
Sy R)ZHy(3, X 3y —{ay, «++, a,}; B) = Hy(3, X 335 Z) @z R = wy(3, X 3y) X
®: R =0. The last equality comes from Hurewicz isomorphism theorem.
Finally, h restricted to any elliptic fiber is constant by the maximum
principle. Since such elliptic fibers are dense in ¥, X X,, f restricted to
any type of fiber must be constant along the fiber. Thus by the similar
argument to Lemma 1, % induces a holomorphic mapping % from B, X B,
into C such that the following diagram commutes.

X X 2%,
RN
ﬂIanl \h
PN
B xB,—C

Since B, X B, are compact and connected, % is constant by the maximum
principle for analytic spaces. For the details, see Gunning-Rossi [11].

COROLLARY 9. Let (X, &, B) and (3, w, B,) be the triples such that
2, and X, are Brieskorn spheres, and let (¥, X 2, @, X W, B, X B,) be
the fibration. Denote by 3, — {a} (or 3, — {b}) the open subset of X, (or
%,) obtained by removing a point {a} (or {b}) from X, (or 2,). It isthen
easy to see that (X, — {a}) X (Z, — {b}) ts homeomorphic to a complex
Euclidean space. It contains infinitely many 2-cycles homologous to
zero. It meither can admit ¢ Kahlerian structure, mor be covered by a
single complex coordinate system, nor admit any non-constant holomorphic
Sfunction.

PROOF. As Dbefore, notice that (X, — {a}) x (¥, — {b}) is fibered by
elliptic curves, C and cylinders S' x R. Of course, each of these fibers
is contained in a fiber of 3, x 3,. Again the elliptic fibers are everywhere
dense in the set. Next it is easy to see that this complex manifold is
homeomorphic to some complex Euclidean space. (Actually, it is diffeo-
morphic to a complex Eucidean space, because the latter admits the unique
differentiable structure.) Therefore, it is contractible. This implies
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H¥((2, — {a}) x (Z, — {8}); R) = 0. So it cannot be Kahlerian. The last
assertion can be shown in the same way as before. Now suppose that
(2, — {a} X (F; — {b}) admits a single complex coordinate system. Then
every coordinate function gives rise to a holomorphic function on it;
therefore, constant. This is a contradiction. This completes the proof.

q.e.d.

Let us denote by M an analytic space, and by Aut (M) the set of
all the automorphisms of M, i.e., the set of all biholomorphic mappings
of M onto itself. It is well known that if M is a compact complex
manifold, Aut M is a complex Lie group and its Lie algebra aut M is
identified with the set of all the holomorphic vector fields on M. To be
more precise, let X be a vector field on M. X generates a local 1-
parameter group of local transformations. Denote by J the complex
structure on M. A vector field X on M is said to be an infinitesimal
automorphism of J on M if LyJ = 0, where L, is the Lie differentiation
in X direction. This condition is the same as [X, JY] = J[X, Y] for all
vector fields Y on M. It is easy to see that this condition is also equivalent
to the one that the local transformations generated by X are holomorphie.
Since M is compact, all the vector fields generate a global l-parameter
group of holomorphic transformations (or automorphisms). Thus via the
exponential map, aut M can be identified with the set of all the infinitesimal
automorphisms of J on M, each of which is identified with a holomorphiec
vector field Z on M by X— (X — JX)/2 = Z. TFor more details, see
[16] or [17].

Now we state a result related to the last corollary.

COROLLARY 10. Let (3, X 23, ®, X7, B, X B,) be an analytic fibration.
Then there exists a homomorphism h: Aut (2, X %,) — Aut (B, X B,). The
set of infinitesimal automorphisms induced by the kernel of h, say ker h,
18 1somorphic to C. Here C 1is considered to be the vector space over C.

PrROOF. Let ¢ be an element of Aut(2,x2,). By Theorem 4 each fiber
is mapped onto a fiber biholomorphically. By Lemma 5 ¢ induces a holo-
morphic mapping ¢: B, X B, — B, X B, such thah 7, X 7,06 =¢om, X m,. Clearly
& belongs to Aut (B, X B,). Define the homomorphism %: Aut (¥, X %,) —
Aut (B, X B,) by h(g) = ¢. It is easy to see that h is a homomorphism,
and the proof is left to the reader. Next since an element ¢ of Kerh
leaves all the fibers fixed, ¢ induces an automorphism on each fiber. Let
L denote a fiber. Then ¢|L is an automorphism of L. Since L is an
elliptic curve, the associated infinitesimal automorphism to ¢|L on L is
a constant vector field. In other words, it is a vector field represented



204 K. ABE

by a constant vector in the universal covering space C. Going back to
¢ itself, let X be the infinitesimal automorphism associated to ¢ on 3, X
Y,. Note that we can identify ¢ and X, since 3, X ¥, is compact. Then
X satisfies the identity [X, JY] = J[X, Y] for any vector field Y on 3, X
Y,. Let E be the subbundle of T(X, x X,) generated by &, and &. Then
by the above observation X is a smooth section of K, and (X — iJX)/2
is a holomorphic vector field on X, x 3, which is constant on each fiber.
Next we show that E is a trivial bundle generated by two infinitesimal
automorphisms. Clearly & (¢ = 1, 2) generates E. Then by the same
argument as in the proof of Lemma 4, Part I, we can show that L, J=10
(t=1,2). Thus (&;—1J¢;)/2 (=1,2) are holomorphic vector fields, and these
are linearly dependent over C. If a vector field X is an infinitesimal
automorphism of J and a linear combination of £, and &, then (X — ¢JX)/2
is a holomorphic vector field and linearly dependent of (&, — 4J%,)/2, over C.
Thus, (X — 4JX)/2 is a holomorphic section of the trivial holomorphic
bundle (3, x ¥,) X C generated by (& — J¢,)/2. Let P be the natural
projection of (3, X ¥,) X C onto C. Then P is a holomorphic mapping;
and therefore, PoZ is a holomorphic function in X, x X, for any holo-
morphic vector field Z. Since X, X ¥, is compact, Po-Z must be a constant
function. This gives us the identification of Z with a complex number
which is the value of P-Z. Conversely, any such a constant gives rise to
a holomorphic vector field, and consequently an infinitesimal automorphism
in the kernel of h. Thus, ker & is isomorphic to C over C. q.e.d.

As a special case we have,

COROLLARY 11. Let (3, X 3, @, X T, B, X B;) be a fibration as before.
If Aut (B, X B,) is a finite group, the Lie algebra of Aut (X, X 3,) is
equal to the Lie algebra of Ker h, where h: Aut (¥, X ¥,) — Aut (B, X B,)
18 the above homomorphism. Thus, Aut (¥, x 3,) = C.

REMARK. It is of some interest to notice that there are quite a few
complex manifolds which have a finite automorphism group. As for the
base space B, X B,, some sufficient conditions for B, (¢ =1, 2) to be a
complex manifold have been obtained in the case of Examples 1, 2 and
3; see [4], [23], [24]. Thus it makes sense to speak of some sufficient
-conditions for a compact complex manifold to have a finite automorphism
group. The following are those conditions. a) B, X B, is a complex
manifold and has negative first Chern class. b) B, X B, is hyperbolic
manifold in the sense of Kobayashi. c¢) B, X B, is a projective algebraic
manifold of general type and finally, d) B, X B, is a compact Riemann
surface of genus =2. For the details, see Kobayashi [16]. In particular,
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d) is of greatest interest because of the following reasons. As we pointed
out earlier, our induced S'-action on X gives only principal orbits and
exceptional orbits without fixed point if dimension of X = 8; therefore,
the orbit space 3/S'= B is always a manifold. In fact, it has been
pointed out [23] [24] that B is a topological manifold if and only if B
is a complex manifold with the induced complex structure and the quotient
map is holomorphic. Combining these, we see that if dim 3 = 8, the fibra-
tion (S'x 2, @, B) is an analytic fibration with a compact Riemann surface
B. For instance, if Y is an original Brieskorn 3-manifold, Neumann’s
characterization gives us that there are plenty of compact Riemann
surfaces of genus =2 which arise as an orbit space B = ¥/S'. As for
the Chern classes of X, x Y,, the highest Chern class of ¥, X ¥, always
vanishes. This can be seen as follows. The tangent bundle T(Z, x X,)
can be expressed Sp (&, &) D (O, P 0,) as a complex vector bundle, where
Sp (&, &) denotes the span of & and &. Sp(&, &) is a trivial complex
line bundle over X, x X, and has the trivial Chern classes. By the
Whitney sum axiom, we have the desired result. In particular we have,

COROLLARY 12. Let 3, X X, be a complex manifold given as before.
Then its Chern mumbers vanish.

PrOOF. By the theorem of Bott [3], we know that if 3, X ¥, admit a
non-vanishing holomorphic vector field, then all the characteristic numbers
(complex case) vanish. Since & (¢ =1, 2) is such a holomorphic vector
field, in particular, the Chern numbers vanish. q.e.d.

We have seen that X, X ¥, as a differentiable manifold can admit
a infinitely many seemingly different complex structures as described in
Theorem 1. We have also discussed some properties of these complex
manifolds. In what follows, we attempt to distinguish these complex
structures. Perhaps, it should be mentioned here that there are two
generally accepted criteria to classify complex structures on a complex
manifold. One is the classification with respect to biholomorphic mappings,
and the other is with respect to the notion of complex deformation in
the sense of Kodaira-Spencer. We use the former criterion. Note also
that Morita [20] recently obtained a classification of complex structures
on Stx X' up to the homotopy of the underlying almost complex
structures, where X**' is a Brieskorn homotopy sphere of dimension
2n — 1. Going back to the first case, let M and N be two complex
manifolds. We say that M and N are equivalent as complex manifolds
if there exists a biholomorphic map from M onto N.

Let X, x X, be the complex manifold and let 3, (¢ = 1, 2) have the
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St-action as before. Introduce a smooth torus 7' = S' X S'-action on
3, X 3, as follows. Let (s,t)e T = S' X S* be an element of T, and let
(¢, y)e X, X 3, be a point of X, X 3,. Define the T-action on 3, X X, by
(s, t)(, y) = (sz, ty), where sx and ¢y denote the S'-actions on ¥, and %,
respectively. Let g be the Riemannian metric on 3, X %, induced naturally
from the associated Riemannian structures with », and 7, on ¥, and Y,
respectively. Then the torus action on ¥, X 3, can be considered as an
isometric action with respect to g. Now let [Z,, 0, --- Do, Doyl
and let [Z,, 0, --- Do, Do,] be the slice types of S'-actions on 3,
and X, at « and y, respectively. Here
= (c.os 27 p;t sin 27rpit> 0<i<m
sin 2z p,t cos 2 p;t
as the representation of C = R* and 0,, is the identity representation of
a linear subspace. o, (j=1,:--,n) and g,, should be interpreted similarly.
Now it is easy to show that the isotropy group of the T-action at (z, ¥)
is precisely Z, x Z,cS' x S'. From the above observations, the slice
representation of Z, X Z, on the normal space to the orbit through (x, ¥)
with respect to g is given by
(Z, % Z;G, DD, BG,, DGy, -+ DG, DG, -
Here 4,, is the representation of the torus T' = S* X §* given by 4, (s, t) =
o,(8)(1=1,+--,m,0), and G, is given by 7,,(8, t) = 0,,() ¢ =1, - -+, m, 0).
Next let us regard the orbits of the S*-action and the T-action as the
leaves of foliations on %, ¥, and Y, X X,. Let (U, x,, ---, x) and (U,, ¥,
-++,,) be the cubical Frobenius coordinate systems at  and y, respectively,
such that the slices for the leaves are given by the first coordinates.
By the definition of the T-action on 3, X J3,, it is clear that (U, x U, =,
e, Lpy Yyy ¢ v, Yy) £ives us a cubical Frobenius coordinate of foliation on
2, x XY, at (x, ¥y). In this case the slices for the leaves are given by =,
and ¥, coordinates. Suppose that a leaf L, on X, passing through a
point in U, meets U, in « slices, and suppose that a leaf L, on 3, passing
through a point in U, meets U, in B slices. Then it is clear that the
leaf L, X L, on ¥, X ¥, meets U, X U, in aB slices which are all distinct.
Thus we have shown that,

LEMMA 6. a) The slice diagram of the above torus action on X, X 3,
18 precisely the set of all the slice types described as above.

b) Let (x,y) be a point in 3, X 3,. Assume that the S-orbits of
Y, and X, through x and y, respectively, meet cubical Frobenius coordinate
netghborhoods of X, and X, in a and B different slices. Then the product
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orbit of X, X X, meets the product Frobenius coordinate meighborhood
m af different slices.

Let G be a compact Lie group acting on a smooth manifold M, and
let 4(G, M) be its slice diagram. Let [H, o] be the slice type of an orbit.
We define the intersection number of [H, ] to be the number of slices
given as follows in a sufficiently small cubical Frobenius neighborhood
of a point in the orbit. Let U be such a Frobenius coordinate neighbor-
hood. Then take a leaf through U which is at the same time a principal
orbit of the G-action. The intersection number is defined to be the
number of slices in which the leaf intersects U. Note here that this
number neither depends on the choice of points where U is taken, nor
the choice of principal orbits. It also does not depend on the size of U
as long as U is taken sufficiently small. Finally, this number is constant
in the orbit bundle; however, two different orbit bundles can have the
same intersection number. Let us denote by I(G, M) the set of ordered
pairs (I, k) of integers [ and % such that [ runs over all the possible
intersection numbers associated with each slice type of 4(G, M), and %
is the total number of connected components of orbit bundles which are
associated with the slice types of intersection number I. Then we have,

THEOREM 6. Let 3, X 3, and X, X 3, be two products of generalized
Brieskorn manifolds. Assume that there is a diffeomorphism f:3, X3, —
Zyx3,. Then f cannot be a biholomorphic mapping between them, unless
(T, 3, x %, and I(T, 3, X 2,) are identically the same.

PROOF. Assume that f is biholomorphic. By Theorem 5, each fiber
of 3, X X, must be mapped onto a fiber of ¥, X ¥, biholomorphically. Let
L, be a fiber of X, X 3, considered as an orbit of the T-action, and the
slice type of L, has intersection number [. If we denote by L, the image
fiber of L, under f, then the slice type of L, must have the same in-
tersection number [. This can be seen easily as follows. Let U be a
sufficiently small cubical neighborhood at a point « in L,. Since f is a
diffeomorphism which preserves the leaves, f(U) is a cubical Frobenius
neighborhood at f(x). Let L be a principal orbit passing through U.
Then f(L) meets f(U) in as many different slices as L meets U. Since
any principal orbit passing through f(U) meets f(U) at least as many
times as f(L) meets f(U), the intersection number of f(L,) = L, is =I.
Applying the same argument to f~, we have that the intersection number
of L,=1, too. Thus IT, 3, x ¥, must be identically the same as
I(T, >, x %). q.e.d.

Note here that f may not be an equivariant mapping; therefore, we
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cannot conclude that the slice diagrams are the same. Next we give
some concrete examples for Theorem 6.

COROLLARY 13. Let S**! be the (2n — 1)-dimensional standard sphere,
and let us assume that S**~' has the normal contact structures given in
Example 7 in Part I. Then S*' x S*' admits infinitely many distinct
complex structures. In fact, the complex structures are all distinct.

ProoF. Let S' x S¥' and S' x S¥* be the complex manifold cor-
responding to the polynomials P,(Z)= Z,+ Z, + Z; + -+ + Z; and
P(Z)=Z,+ Z, + Z + --- + Z}, respectively. Then I(T, S*'x S;*™) =
{(p, 1), @, 1)} and I(T, S* x S*) = {(q, 1), 1, 1)}. Thus if p # ¢, they are
not the same complex structures. q.e.d.

It is clear that we can indeed give more precise criterion than that
in Theorem 6. For instance, even if I(T, ¥, x ¥,) and I(T, X, X X,) agree,
there cannot exist a biholomorphic mapping between them unless the
dimensions of corresponding orbit bundles agree (as submanifolds). From
this point of view, we immediately see that the complex structures on
Stx S*~' corresponding to the polynomials P(Z) = Z,++--+ Z, + Z%2., +
e+ Z2(t=1, ---,n) are all distinct, since the orbit bundle associated
with the intersection number p has 2¢—1 as its real dimension (1=1, ---, n).
Thus they are distinet complex structures on S*x S**~!. In general, the
complex structures corresponding to P, (Z)=Z,+ -+ Z;+ Zi+ -+ Z}
(t=1 +-e,mq=1,2, .--.) are all distinct. It is also clear that we can
make many more distinet complex structures on S*' x S**°%,

COROLLARY 14. There are infinitely many Brieskorn exotic spheres
whose product with S' admits infinitely many distinct complex structures.

Proor. Use Example 9 in Part I and Theorem 6. q.e.d.

These corollaries are particularly interesting in the following context.
As is pointed out earlier, Morita showed that if » = 1 (mod4) or n =38
(mod 4), S* X X¥**! (n = 2) admits a finite number of complex structures
up to almost complex deformation, where X**! is a Brieskorn sphere.
We know practically nothing as to which of the above complex structures
are distinet up to deformation.

COROLLARY 15. Let P(Z) = Z, + Zi + Zb(1 = 1, 2) be as in Theorem
6 tn Part I. Then the complex structures on S' X S* associated with
P, (v=1, 2) are distinct 1f the powers of P(Z) satisfy the same conditions
as in Theorem 6 in Part 1.

Proor. Under the given conditions, the I(T, S'x S°*)’s associated with
P,(Z) (+ =1, 2) are different. Now use Theorem 6. q.e.d.
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Note here that these surfaces (complex surfaces) must be equivalent to
one of so called Hopf type surfaces by the result of Kodaira [20]. Finally,
let M be a compact complex manifold of dimension n, and let K(M) be the
set of all meromorphic functions on M. It is well known that K(M) is
a field and it is finitely generated over C. Also its degree of transcendency
d is <n. Now let S' X Y be a complex surface given as generalized
Brieskorn complex manifold. It is known that if d =2, S' x ¥ is pro-
jective algebraic; therefore, for most of 3’s, d = 0 or 1. It is also known
that if d = 1, there are a compact Riemann surface N and a holomorphic
mapping ¢ from M into N such that ¢*: K(N) — K(M) gives rise to an
isomorphism, and such that ¢ %(x) for x except for a finite number of
points, is an elliptic curve. These facts and our observations concerning
fibration (S* x ¥, 7, B) seem to agree. It seems natural to think that
even in the general case, K(J, X 3,) has the degree of transcendency
which is strictly less than its complex dimension.
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