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1. Introduction. Recently, we [4] have extended an existence theo-
rem of Nagumo for boundary value problems in second order ordinary
differential equations (cf. [3], [4]). This paper is a further extension
of our result to functional differential equations, and the proof given in
this paper is simpler than that in [4].

As the phase space for retarded functional differential equations, Hale
[1] first considered a Banach space of functions which satisfies some axioms.
Recently, Hale and Kato [2] have improved the axioms for the phase
space. We shall discuss the theory of functional differential equations
in a semi-normed linear space as a phase space, and we shall assume
some axioms which are essentially equivalent to those in [2]. Under
these axioms, our results contain not only the theory for infinite delay
but also the theory for finite delay and ordinary differential equations.

First we shall introduce the axioms for the phase space in Section
2, but our notations are somewhat different from those in [2], and we
shall prove Kneser’s property in Section 3 and apply this to a boundary
value problem for some functional differential equation in Section 4. For
a contingent functional differential equation, where the phase space is
the class of all bounded and continuous functions, Kikuchi [5] proved
the Kneser’s property on R".

2. Preliminaries. Let B be a linear real vector space of functions
mapping (— oo, 0] into R™ with the semi-norm |-|. For any elements ¢
and + in B, ¢ = 4 means ¢(f) = () for all § € (— =, 0]. The quotient
space of B by the semi-norm |-|, which is denoted by < = B/|-|, is a
normed linear space with the norm || which is induced naturally by the
semi-norm and for which we shall use the same notation. We do not
assume <Z is a Banach space. The topology for B is naturally defined
by the semi-norm, that is, the family {U(p, ¢): o € B, ¢ > 0} is the open
base, where U(gp, )={y € B: |p—r|<e}. Generally, B is a pseudo-metric
space for this topology, and hence it may not be a Hausdorff space. The
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natural projection #: B— <# is a continuous, isometrie, closed and open
mapping.

For an R"-valued function x defined on an interval (— o, ¢) and for
a te(—oo,0), let x, be a function defined on (— o, 0] such that

x(0) =t +6), 0Oe(—e,0].

Given an 4,0 < A< o, and a @ in B, let (@) be the set of all R"
valued functions « defined on (— o, A) such that z, = @ and « is continuous
on [0, A), and denote

Fa=U{Fup):peB}.
For a =0 and a ¢ in B, let ¢* be the restriction of @ to the interval

(—eo, —B] and let B’ be the space of such functions @’. We can define
a semi-norm |-|;, 8 =0, in B? by

17l = inf {|y[: e B, 4" =7}, 7eB.

This semi-norm is also a semi-norm in B by the relation ||, = |¢*|s @ € B,
that is,

|@ls = inf {|y|: 4 € B, ¥ = ¢f} .
We shall assume the following axioms on B.
(Al) If zxisin ¥, 0< A< = and te[0, A), then x,€ B and =z, is
continuous in t€[0, 4).

(A2) There is a positive and continuous function K(8) of 8 = 0 such
that

lpl = K(8) sup |9(0)] + |@ls

for any @€ B and any 8 = 0, where |p(d)| is any norm of ¢(f) in R".

(A3) For any @ in B and 8= 0, |p| = 0 implies |T?p|, = 0, where
T? is a linear operator from B into B’ defined by T%¢(0) = (B + 6), €
(— oo, —B]. Here notice that axiom (Al) assures T%p ¢ B’.

(A4) If pe B and |@| =0, then ¢(0) = 0.

The following two axioms which are stronger than (A3) and (A4) will
be assumed.

(A3*) There is a positive and continuous function M(B) of 8=0
such that

| T*p |, = M(B)| |

for any o€ B and B8 = 0.
(A4*) There is a positive number K, such that

lp(0)| = Ki|lpl, @eB.
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ExaMPLE 2.1. Let B be the set of all R*-valued functions which are
continuous on a compact interval [—7, 0], and let

lp| = sup{lp@d)|: —r=6=<0}, o@eB.

Then || is a semi-norm in B and <# is the Banach space C([—7, 0]; R")
of all continuous functions from [—7, 0] into B" with uniform convergence
topology, and in particular, <& = R" if » = 0. This space B satisfies all
axioms in the above.

For other examples, see [2].
It is not difficult to prove the following two lemmas.

LeMMA 2.1. If both spaces B, and B, satisfy one of the above axioms,
then a semi-normed linear space B = B, X B, also satisfies the same axiom
and & = B X B,

LEMMA 2.2. Let X and Y be any topological spaces. If F is a
continuous mapping from a subset & of X x <& into Y, then F can
be naturally regarded as a continuwous mapping from a subset D =
(1x X 7)) (D) of X X Binto Y, where 13: X — X is the identity mapping
on X. Conversely, if Y is a Hausdorff space and F is a continuous
mapping from a subset D of X X B into Y, then F can be naturally
regarded as a continuous mapping from a subset Z = (1x X w)(D) of
X X & into Y.

By Lemma 2.2, if D is a subset of R x B and F: D— R" is a con-
tinuous function, then F' can be regarded as a continuous function from
a subset & of R x <& into R", and vice versa, and so we consider the
following functional differential equation;

(E) ®'(t) = F(t, x,) (= d/dt),
where F' is a continuous function defined on a subset D of R X B.

DEFINITION 2.1. The function z is a solution of (E) on an interval
JCR if x is a mapping from U{(— o, t]: t € J} into R" such that (¢, ,) € D
for teJ and x is continuously differentiable on J and satisfies (E) on J.
For a given (0, p)e D, we say a = x(g, @) is a solution of (E) through
(0, @) if there is an A > ¢ such that z is a solution of (E) on [g, A) and
x, = @.

THEOREM 2.1 (Existence). Suppose (Al) and (A2). Let 2 be an open
subset of R X B and F: Q2 — R* be continuous. Then for any (o, )€ 2,
there exists a solution of (E) through (o, p).

REMARK. This theorem can be proved by the same method as in
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the proof of Theorem 2.1 in [2], though they further assumed (A3) and
(A4*) (which correspond to (a,) and (e,) in [2], respectively) since their
initial function is an element of <& Under axioms (Al) through (A4),
we have the following assertion: If x and y are solutions of (E) on [o, 4)
such that |2, — y,| = 0, then the function z:(— o, A) — R" defined by
2, = 2, and 2(t) = y(¢) for te[o, A) is also a solution of (E). This means
that the initial value problems are determined by the elements of <Z.

3. Kneser’s property. Throughout this section, let I be a compact
interval [0, T], 0 < T, and let C = C(I; R*) be the Banach space of all
continuous functions from I into R™ with the norm ||-|| defined by

€]l = sup{[é@)|:tel}, £eC.

For an R"valued function u defined on (— o, T, let |, be the restriction
of w to the interval I. If |, is continuous on I, then we write ||u|,||
simply by [|u]l.

Clearly, if F: I x B— R"is bounded and continuous, then all solutions
of (E) through (o, @) are continuable to the whole interval I for any
@ € B under axioms (Al) and (A2).

THEOREM 3.1. Suppose (Al) and (A2). If F: I x B— R" is a bounded
and continuous function, then the set

S = S(p) = {x|;: x is a solution of (E) through (o, o)}
18 a continuum (i.e., compact and connected) in C for any @€ B.

PrROOF. Let @€ B be fixed and M >0 be a bound for F, that is,

|F(t, )| = M for (¢, y)el X B.
Let L be the set of all functions u: (— o, T'] — R" such that u, = ¢
and w is (M + 1)-Lipschitzian on I, that is,

lu(t) —u@)| =M+ 1)t —¢t| for t,t'el,
and let
E={u:uekL, tel}.
Then we can regard L as a subset of C, and in this sense, L is clearly
compact in C. Therefore, by (A2), it is not difficult to show that E is
a compact subset of B, and hence F is uniformly continuous on I X E.

This implies that for any ¢, 0 < ¢ < 1, there exists a 6, = d,(¢) > 0 such
that for any ¢, sel and 4, 7€ E,

3.1) |F@t, ) — F(s,n)| =e if [t —8|=0yly—7[=0d.
Now let ¢, 0 < e <1, be fixed and K be a positive number such that
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K= max{K(B):0=8=<T-—o0}. For the above 4, = d,(¢) > 0, we can
find a number 4, 0 < é < min {d,, 0,/2K(M + 1), ¢/(M + 1)}, such that for
any t,sel and u, we L,

3.2) |, — w,[ < 0,/2 if [t —s8[=¢,|lu—w|=0d.
Let

4:0=0,<0, < - <0oy=T
be any division of I such that max, <y (0, — 0,_,) < 6, and let v, v,, -~ -,
Vy_, be any vectors in R" such that |v,| <6, 0=<71< N—1. For this 4
and v = (v, vy, ***, Vy-y), We construct the function @*(v)(+): (— o, T]— R"
in the following way. First, define ¢% (—, ¢,] — R"* and b, € R* by

P, =@ and b, = ¢(0).
For k=0,1, ---, N — 1, we define @**': (o4, 04,,] — R", by, € R* and op**:
(— 0, 0441] — R™ inductively in the following way:
PE) = b + ¢ — o ){F (o4, @;,) + vi} for te(oy, 0ii],
bit = P H04sy)

and
PHt),  te(—o0, 0]
L), te(ow O4y] .

Thus we finally obtain a function @”. We denote this function ¥ by
@*(v) or simply @°. Since 0 < ¢ < 1, »* belongs to L.
Next we shall show the following inequality concerning ¢°;

¢k+1(t) —_— {

8.3) @ (®) — 9(0) — | (s, g)ds| < 26t — @), tel.

For t e (o, g,], it follows from (3.1) and (3.2) that

#(t) = p(0) — | Fs, p)ds| < | (¢ — 0)F(n 22 + v = || Fls, gids|

= || 1F(ow #2) — Fs, 90)lds + nn](¢ — o)
= et — a,) + &t — 0,) = 2t — a,) ,

because |g, — §| < 0 <0, and |} — @i| £ 0/2< 0, for o, =s=t=o. If
(8.3) holds for te (o, 0,],1 <k < N — 1, then for te (o}, 0., it follows
from (3.1) and (3.2) that

) — 90 — | Fs, pi)ds| =

#(t) — 90 — | Fs, o)ds|
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+| @00 — 90 - [ "Fes, piras|

< |t = o0(Fon 22) + 0 — | F(s, 9ds| + 260, —0)

IA

[, 1F@w 94) = Fls, @0)|ds + ||t — 0.) + 2e(0, — 0)
< &t — ogy) + &t — 0,) + 2¢(0, — 0) = 2¢(t — 0) ,

because |g;, — 8] <0 < 9, and |@;, — @i| = 0/2 < 0, for 0, = 8=t < Oppae
Therefore (3.3) holds for te I.
Let

K(4) = {p(0)r:v = (0 vy o+, Vy-0), [0:] =6,0=1 =< N—1}.
Then K¢(4) is a continuum in C, because the mapping vt @*(v)|; is
continuous by (A2) and the set {v = (v, vy, ==+, Vy_): |¥;| <6, 0= 1< N-1}
is a continuum.

For this set K*(4), we shall show that if « is a solution of (E) through
(0, ), then

(3.4) dist (x|, K(4) < e,

where dist (x|;, K¢(4)) = inf {||x|; — &||: £ € K*(4)}. Let x be fixed and let
Y: (—o, T]— R" be the function satisfying y, = ¢ and combining the
points (a,, x(a,)), (0., x(G,)), + -, (0, x(oy)) linearly on I. Obviously xze L
and yeL. If we show y|;c K‘(4), then (8.4) holds since ||z — y|| <
(M + 1) <e. Let

v = —2—"F(5, 2) — Flo, p)lds .
g, — 0, Jog

Then by (3.1) and (3.2),
y(0,) = x(0)) = 2(0,) + (0, — O)NF(0, @) + v}

and

glo, —0,) =€,

1 0

1 (=
nl S = |17, %) — Flo, 9)1ds <

because |s — g,| < 0 < d, and |z, — p| = |2, — x,, | = 0,/2 <, for 0, < s < 0,.
Therefore we have

Y@t) = y(0,) + (& — o) F(00, Yo) + v},  tE(0y, 0,].

Assume that there exist vectors v, v, «--, v,_, such that |v;,| =6, 01
kE—1,1<kE<N-1, and
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Y(@&) = Y(0,y) + (¢ — 0. NF(0iy Yo,_,) + via)
for te(o,_, 0], 1=1,--, k.
If we put

Ok+1
Vi = 1 S

Oky1 — Op
then by (3.1) and (3.2),
Y(Orir) = #(0xyr) = 2(0%) + (O — ONEF (04, Ys,) + Vi)

{F(s, @,) — F(os, y,,)}ds ,

%

and

Ok+1
ol = —L— "1 FGs, 2) — Flow wlds = —L <l — 00 =,
k+1 — Op J°

k1 — O

because |s — 0,| < ¢ < 9, and

d
(%0 = Yo | = |00 = @ | + [ 30, = Yo | = 2> + K(0.—0) 8UD_|0,(0) = 9o, (0)]

< ﬂ-{h Ksup |xt) —y@)| = %
2 tel 2

FRM 15 <O 4 5
2 2
Thus we have
Y(t) = y(ow) + (& — o ){F(oy, Yo) + i}

for t € (o, 0,4.), and hence y can be written as ¢*(v) for the above v =
(Vg ¥y, **+, Vy_,). This implies y|; € K*(4).

Finally, we shall show the set S is a continuum in C. Clearly, S is
compact in C. Assume that S is not connected. Then there exist two
nonempty compact sets S, and S, such that S,NS; = @ and S,US, = S.
Let dist (S, S,) = inf {||&, — &||: &, € S, &€ S;} =29 >0, and let U =
U(S,, 7) be the open 7-neighborhood of S, in C. For this 7 > 0, we may
assume 0 < e < 7. It follows from (3.4) that both U N K*(4) and U° N K*
(4) are nonempty, where U° is the complement of U in C. Since K¢(4)
is connected, there exists a v* = (v, vy, *++, Vy_), |0:;| <6, 01N -1,
such that

P'(v) €U N K1) ,

where oU is the boundary of U in C.

Now replace ¢ by ¢; > 0 and ¢*i(v'i) by ¢?, j =1, 2, -+, where ¢; —0
as j — . Since ¢’e€ L and L is compact, we may assume that there
exists a z€ L such that {¢’} converges to z uniformly on I as j— o,
and hence |p] —2,| >0 as j— o« for any sel by (A2). On the other
hand, it follows from (3.3) that ¢’ satisfies
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#(t) — p(0) — | Flo, pds| <26t —0),  tel.
Therefore we have
2(t) — p(0) — S'F(s, 2)ls=0 for tel,

and hence z is a solution of (E) through (o, ¢). Since oU is closed and
@’|,€0U, we have z|;€0U N S. This is a contradiction. q.e.d.

COROLLARY 3.1. Under the same assumptions as in Theorem 3.1,
for any @€ B, the sets

3 = (@) = {x(T): x is a solution of (E) through (g, )}
and

& = F(p) = {x:x is a solution of (BE) through (o, @)}
are continua in R" and in B, respectively.

PROOF. The mappings on S(p) defined by x|,+— 2(T) and z|;— 2z,
are continuous onto X and &4 respectively. Since S(@) is a continuum,
Y and & are also continua. q.e.d.

COROLLARY 3.2. In addition to the assumptions as in Theorem 3.1,
suppose (A3*) and (A4*). Then for any continuum Q in B, the sets

S@) = U{S(p):pe@},

2@ =U{2(p:pec}
and

ZL@) = U{&L(p):pe}
are continua in C, in R™ and in B, respectively.

PrROOF. We shall prove this only for the set S = S(Q), since the
arguments for the other sets are similar, in particular, 3(Q) is a con-
tinuous image of S.

First we shall show that S is compact in C. Let {#*} be any sequence
in S. Then for each u*, there exists a solution z* of (E) such that z*|, =
u* and z¥e€ Q. Since @ is compact and the mapping z*+— 2%(0) = u*(o) is
continuous by (A4*), the family {u*} is uniformly bounded and equicon-
tinuous. By taking a subsequence if necessary, we may assume that
x2f— @' in B and u* — «° uniformly on I as & — -« for some @°c€@ and
u'e€C. Clearly, u'(o) = ¢%0).

Define 2% (— o, T]— R" by «°%t) = u°(t) on I and z)= ¢°. Since x*
is a solution of (E), it satisfies
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(3.5) wH(t) = oHo) + | Fls, ab)ds,  tel.
For any se I, by (A2) and (A3*),
o — ai] = K(s — 0) sup |2}(6) — xi(0)| + | T "(@5 — @")ss
= K(s — o)||u* — w|| + M(s — 0)|2; — 9°| ,

and hence |2¥ — 2| — 0 as k— . It follows from this and (3.5) that
2(t) = a'(0) + S’F(s, ayds, tel.

Thus 2° is a solution of (E) and 2} = ¢°€ @, and hence «#° = «°|;€S. This
means S is compact in C.

Now we prove the connectedness of S. Assume that S is not con-
nected. Then there exist two nonempty compact sets S, and S, such that
S;NS,= @ and S, US, = 8. Define

Q, = {pe@:S(p)N S, is nonempty}, 1=12.

Clearly, Q. is nonempty, 4 = 1,2, and Q = Q, U Q,. The compactness of
S, and the same arguments as in the proof of the compactness of S =
S(Q) imply that @, is compact in B, 7 =1, 2. If there is a ¢ in @, N Q,,
then S(p) N S; = X, ¢ = 1, 2, are nonempty compact sets, and X, U X, =
S(p) while X, N X, = @. This contradicts the connectedness of S(o).
Therefore @, N Q, = @. This contradicts the connectedness of . Thus
S is connected. q.e.d.

4. Boundary value problems. In this section we assume that the
elements of B are R-valued functions defined on (— <, 0]. For any ¢ and
or in B, the notation @ < 4 means that @(0) < () for all e (-, 0],
and define a nonnegative real valued function \e) by

M@)O) = |p®)|  for 6e(—oo,0],

where |p(6)| is the absolute value of @(6).
Now we assume the following hypothesis for B.
(AB) A is a continuous mapping fromB into B.
From this hypothesis, we obtain the following lemma.

LEMMA 4.1. Let ¢ and + be in B. If we assume (A5), then the
Sunctions @ V ¥ and @ A  defined by (¢ V ¥)(0) = max {p(8), ¥(0)} and
(@ A ¥)(0) = min {p(0), y(0)} for 6 c(— oo, 0] are elements in B, and fur-
thermore @ \V ¥ and @ A  are continuous in (p, ) € B X B.

PrOOF. The equalities o V4 ={p + ¥+ Mp —4)}/2 and ¢ A ¢ =
{ + ¥ — M@ — ¥)}/2 complete the proof.
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We consider the following boundary value problem for the second
order scalar functional differential equation

(E1) a’(t) = f@t, z, 2'(T)) ,

(4.1) 2,=+ and a(T)=A,

where f is continuous on a certain subset of I x BX R, I = [0, T], and
Jr€ B, Ac R. Equation (El) is equivalent to the system

(E2) (@) = y@&), Y') =S¢ 2, y@) .

As was seen in Example 2.1, R can be written as <7, for some space
B, which satisfies all axioms (Al), (A2), (A3*) and (A4*). If the space B
satisfies one of these axioms, then the product space B X B, satisfies the
same axiom by Lemma 2.1. By Lemma 2.2, we can assume that the
domain of f is a subset of I x B X B,. Therefore the results obtained
in Sections 2 and 3 are applicable to equations (E2) and (E3) which will
appear in Lemma 4.2.

LEMMA 4.2. Suppose (Al) and (A2). Let f be a bounded and con-
tinuous function on I X B X R. For any fixed & and 7 in B such that
=, let ¢=4q(& 1) be a mapping from Z = {o} X {reR:¢(0)=r =
7(0)} X R into B X R such that

q(o, 7, y) = (), ¥) »
where
70) —7r £+ r — &(0) it £0) < 7(0)
() = 170 —&0)° " 70 — &0 7
" if  £0) = 7(0)
for any fixed € B such that E <y <7. Then for any continuum H in
Z, the set Q@ = Q(¢, ; H) defined by q(H) is a continuum in Y = {p € B:
ES p =7} X R, and the set
G H; f) = {(x(T), y(T)): (x, y) s a solution of (E2)
such that (x,, y(0)) € Q}

18 a continuum in R:. Here notice that any solution of (E2) is continuable
to t = T by the boundedness of f.

PROOF. Since we have

S i _ :
(4.2) p(ry) — () = 700) — £0) 5(0)(77 & if &0) < 7(0),

¢ is continuous from Z into Y. Therefore the first part is obvious.
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We now prove X = (& n; H; f) is a continuum in R:. Since f is
bounded and H is compact, X can be written as {(x(T), y(T)): (x, ¥) is a
solution of (E3) such that (x,, y(0)) € @} for a system

(E3) a'(t) = Py(yt) ,  y') = F& =, y(@),
where P,: R— R is a continuous function such that
M for y>M
Py(y) = {y for |yl=M

—-M for y<-—-M

and M > 0 is so large that any solution (x, ¥) of (E3) satisfying (x,, ¥(0)) €
@ becomes a solution of (E2) and wvice versa. The right hand sides in
(E8) are bounded.

First we show that Y is compact. Let {s*} be any sequence in 3.
Then there exists a solution (z*, y*) of (E3) and h*e H such that s* =
(2T, y¥(T)) and (xk, y*(0)) = q(h*). Here, notice that h* = (g, 1, y*(0))
and p(r*) = x* for some r*e[&(0), 7(0)]. By the compactness of H, we
can assume that there exists an h° = (g, 7, ¥°) € H such that h* — A°, that
is, 7* — r° and y*(o) — ¥’ as k — co. Since the family of solutions {(x*, ¥*)}
is uniformly bounded and equicontinuous on I, we can assume that there
exist two continuous functions # and % defined on I such that z* and y*
converge to & and % unifomly on I, respectively. Notice that p(+°)(0) =
lim,_... #(7*)(0) = lim,._... *(0) = #(o) and (o) = ¥".

Let x and y be the functions defined on (— o, T] and I, respectively,
such that x, = p(#°) and x(t) = Z(t) for t € I and y(t) = %(t) for t € I. Then
(1, Y(0)) = ((r°), §(0)) = q(h°) € Q. Since («*, y*) is a solution of (E3), we
obtain

oME) = 250) + StPM(y"(s))ds for tel,

YW = y%0) + | f(s, oh ye)ds  for tel.
On the other hand, for any sel, by (42),
@i — @,| = K(s — 0) sup [wi(0) — ,0)] + [T (w5 — )|,
= K(s — o) sup [@*(t) — w®)] + | T*7(p(r*) — pr"N oo -

It then follows from this, (4.2) and the linearity of T that |xf — x,| —
0 as k— oo for any se I. Therefore we obtain

o(t) = 2(0) + StPM(y(s))ds for tel,
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v®) = v0) + | f(s, 3, ye)ds  for tel,

that is, (x, ¥) is a solution of (E3). Since (., ¥(0)) € @, we obtain (x(T),
y(T))e 2. Obviously, s* = (¥ T), y*(T)) — (x(T), y(T)) as k — oo, which
implies that 3 is compact.

The connectedness of ¥ can be proved by using the same arguments
as in the proof of the connectedness of S in Corollary 3.2 and by the
results in Corollary 3.1. g.e.d.

THEOREM 4.1. Suppose (Al), (A2), (A4*) and (Ab). Let « and B
be R-valued fumnctions defined on (—co, T] and twice continuously
differentiable on I = [0, T] such that a(s) < B(s) for se€(—oo, T] and
@, B,€B. LetV and W be R-valued continuously differentiable functions
on the domain {(t, x):tel, a(t) < x < B(t)} such that V(t, x) < W(t, ) on
this domain. Furthermore, assume that f is a bounded and continuous
Sfunction on the domain D = {(t, p, y):tel, pe B, a, < ¢ < B,, V(t, p(0)) <
y < W, 9(0)} and that the following inequalities hold;

43 a'(t) = V(t, a(t)) for tel

*.3) {ﬁ'(w =W, Bt)  for tel,

w4 {a"(t) = ft, a, @t) if at) SW(E ) for tel
) B'(t) < f(t, By BR) if B =VE BR)  for tel,

4.5) {f (t, @, V(t, 9(0)) — V¢, p(0)) — V.(¢, p(0)) V(, tp(0)) = 0
| ft, ¢, W, 9(0))) — W2, 9(0)) — W.(¢, 9(0)) W(¢, ¢(0)) = 0
for tel,peB,a, = p =48,

and
(4.6) }(f(t, P, @(t) = f(t, a, &'(?) if at) = p(0) and a'(t) = W(t, a(t))
| £, @, B'#) = (&, By B'() of BE) = @(0) and B'(t) = V(¢, B(t))
for tel,peB,a,<p=4p,.

Then for any number A such that a(T) < A < B(T), there exists a ¢
B, a, < & < B,, for which (E1) has at least one solution satisfying (4.1).
In particular, if a(o) = B(o), we can arbitrarily choose + such that
A =P = B

PrROOF. We consider an equivalent system (E2) instead of (E1).

In order to extend f to I X B X R, first we construct an extension
g of f on the domain tel, @, < p < B, ye R so that the following
inequalities hold;
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4.7) a'"(t) z 9@, a,, a'(t)) for tel,

(4.8) B't) = 9, B,y B'(t))  for tel,

4.9) 9, @, ¥) = F(t, @, W(t, (0)) for tel, a, < p < B, y =W(t, (0)),
(4.10) 9(t, @, ¥) = @, @, V¢, p(0)) for tel,a, = ¢ < B, y =V(, 9(0)),
(4.11) ¢, @, @'(t)) = 9(¢, @, a'(t)) for tel, @, < @ < B, @(0) = a(t)

and

(4.12) g, @, B'(t)) = g(t, By, B'(2) for tel, @, < @ < B, 9(0) = LX) .

Set g = f on D.

Fortel, o, < p < B, and y > W(t, (0)), gis constructed in the following
way. If tel,={tel:a'(t) >W({, a)},p =ca, and y = a'(t), then we
define g by

9@, @, y) = min{a"(), f¢, a, W, a))} .

Then clearly (4.7) holds. For te I, ¢ = , and W(¢, a(t)) < y < a'(t), define
g by joining f(t, a,, W(t, a(t))) and g¢(t, a,, a’(t)) linearly in y, that is,

_ (@) — pft, @, W, a®) + (y — W(t, at)g(t, e, a'(t)
9@, @, ¥) = @) — W, @)

For tel, p = @, and y > max {&'(t), W(t, a(t))} = ¥(t), let

g(tr P, y) = g(ty &, ’Y(t)) .
For tel,a, £ ¢ < B, and y > W(t, (0)), let

9@, @, 9) = f(&, @, W, 9(0) — f(E, a, W(2, a(t)))
+ 9(¢, @, W, a@t)) + y — W(t, 9(0))) .

Then it is easy to verify that (4.9) and (4.11) hold. Similarly, we can
construct g for tel,a, <o < B, and y < V(¢ 9(0)) so that (4.8), (4.10)
and (4.12) hold. Obviously, ¢ is bounded and continuous under (Al) and
(A4%).

For any teI and @€ B, if we define a function I',p by I'ip = @, V
(B: N\ @), that is,

(I'p)(0) = max {@,(0), min {8,(6), p(0)}} for 6fe(—e<e, 0],

then I, is a continuous mapping from B into {peB:a, = o < B} by
Lemma 4.1.
Now we define an extension 2 of g on I X B X R by
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2(0) — B()
1+ 9(0) — B(t)
ht, @, 9) = 9, I'ip, ) if a(t) = 9(0) = B()

__at)—p0) .
9@, I, y) T+ ) — 90) if @(0) < a(t) .

By (A4*), h is continuous. Thus we obtain a bounded and continuous
extension h of f.
Instead of (E1) or (E2), we now consider the equation

9(t, I'p, y) + it @o(0) > B(*)

(E4) z"(t) = h(t, x,, «'(t))
or an equivalent system
(E5) z'(t) = yt) , Y'(t) = h(t, x, y(t)) .

Let D, D,, «---, D, be the sets of points (¢, z, ¥) such that
DiteLat)Sw<Bt), Vi, o) <y=W¢ 0,

D:tel at) <x < B), y > Wi, x),

D:tel, z<alt), yzal),

Dg:tel, r<ealt)y, y=di),

D:tel, at) <z < B(1), y <V, x),

D;:tel, x> B, y =B
and

Dytel, x>BE), y=p1).

We denote the intersection of D, and the hyperplane ¢ = T by D}, i =
0,1,---,86.
Consider a solution « of (E4) with initial value (x,, 2'(6))e B x R. If

x(t,) < a(t,) and a'(t,) = a'(ty)
for some t,€ I, then
x”(to) = h(to; Ly x'(to))

_ , . a(t,) — 2(to)
= g(t, Ftomto’ (o) 1+ a(t,) — =(t,)

< g(t,, Ftoxtoy a'(ty))
= g(to, (249 a'(ty)) (by (4.11))
= a’(ty) (by 4.7)) .

This means that if (¢, x(¢), «’(¢)) is in D, at ¢t = ¢, then it is in D, for
o <t<t, and that if (¢, x(t), «'(t)) is in D, at t=t,, then it is in D, for
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t,=t < T. In other words, D, is negatively invariant and D, is positively
invariant. Similarly, we can show that D; is negatively invariant and D,
is positively invariant.

Let H be any continuum in the intersection of D, and the hyperplane
t = o containing two points (o, (o), ¥') and (g, B(0), ¥*), where %' and ¥*
are any numbers such that
(4.13) Vio,a(0) =y =a'(0), Wi(g, B(0) =y = B(0).

For this set H and the functions «, and B, we consider the sets
Q= Qa,, B,; H) and ¥ = 3(a,, B,; H; h) defined in Lemma 4.2 for system
(E5). By Lemma 4.2, ¥* = {T} x ¥ is a continuum.

In order to see that X* is contained in Dy U Dy U Dj, we now consider
a solution 2 of (E4) with initial value (z, 2'(0)) € Q. By negative
invariance of D, and D, (¢, x2(t), ’(t)) cannot enter D, U D,. Next we
shall show that (¢, z(¢), 2’'(t)) cannot enter D,. If it did, then there is
a t,e I such that (¢, x(t,), 2'(t,)) € D,, that is,

aft,) = «(t,) = B(E,) and  «'() > W(E, () -
Then, by the above arguments and a(o) < z(o) < B(s), we have
at)=zl) =Bt for o0=t=t.

Along this solution, set
t
w(t) = [&'®) — W, x(t)] exp || Weis, w(e))ds .
0
Then, as long as z'(t) > W(¢, x(t)) and ¢ <t < ¢,

@'(t) exp (— SZOW“(S’ x(s))ds)

= 2"(t) — W(¢, x(t)) — W,(t, 2@t)) W, «(t))

= g(t, x, ¥'(t)) — W&, x()) — W (¢, 2(t)) W(E, (t))

= f(, @, W(E, 2,(0))) — W(¢, 2.0)) — W,(¢, .(0)) W(E, x,(0)) (by (4.9))

=0 (by (4.5)).
From this and w(t,) > 0, we obtain w(t) > 0, that is, «'(¢) > W(t, x2(¢)) for
o0 <t <t. This contradicts the assumption (x, z'(0))€Q or 2'(0) <
W(o, x(0)), which shows that (¢, x(t), ’(t)) cannot enter D,. Similarly,
we can show also that (¢, (t), #’(¢)) cannot enter D,. Therefore X* is
contained in D} U D U D¥.

Now we shall show that both 3* N D} and 3* N Df are nonempty,

where D} is the closure of D¥, ¢ = 8,6. Let xz* be one of the solution
of (E4) such that
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z¥=a, and (o) = y' — 1/k

for k=1,2, ---. Then (¢, z*t), 2¥(t))e D, for 0 <t < T by (4.13) and
positive invariance of D,, We may assume that there is a solution z°
of (E4) such that 2 = a,, 2”(0) = ' and (a* 2*) converges to (x° x%)
uniformly on I as k— - by taking a subsequence if necessary. This
solution a° satisfies (x2, 2”(0)) e Q and (T, x°(T), 2°(T)) € Df, and hence
3* N Df is nonempty. Similarly, ¥* N D is also nonempty.

For an arbitrary A such that a(T) < A < B(T), let N be the set of
points (T, A, y) such that V(T, 4A) < y < W(T, A). Since X* is continuum,
it must intersect with the set N, and hence there exists a solution x of
(E4) satisfying (x,, '(0)) € @ and 2(T) = A. Clearly, this solution x satisfies
(¢, x(t), '(t)) € D, for te I, and hence (¢, z,, '(t)) € D for tel. Therefore
2 is a solution of (El). This completes the proof.
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