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All algebraic varieties etc. considered in this paper are over the field
C of complex numbers.

1. Introduction. On the complex manifold C* x C*f one can put the
structure of an algebraic variety which is not rational: if Γ = C m o d
(Z + Zτ) is any complex 1-torus, then the map z ι-» (exp z, exp (z/τ)) is
an embedding of the additive group C in C* x C* such that the quotient
group is isomorphic to T, and by GAGA the algebraic structure of T
induces one on C*'xC* ([5], p. 108, Remark). Let us call such an alge-
braic structure on C* x C* a Serve structure.

Clearly a Serre structure is not rational. This paper is motivated
by the conjecture that the converse is also true:

CONJECTURE 1.1.* Every non-rational structure of an algebraic
variety on C* x C* is a Serre structure.

Our result in this direction (Theorem 4.1 below) is: if a nonsingular
algebraic surface is biholomorphic to C* x C* and is the complement
of an irreducible curve in a complete nonsingular surface, then it is a
Serre variety.

The Serre varieties also have the interesting property that the only
regular functions on them are the constants (see e.g. [2], pp. 232-234, for
a discussion). We note in particular that they answer a question of
Goodman ([1], p. 162) in the negative: being Stein manifolds, they are
of pure codimension one in any nontrivial open embedding in a variety,
but are clearly not proper over any affine variety. In §3 below, we
give easy examples of affine nonsingular surfaces which are holomor-
phically isomorphic but not algebraically, after showing in §2 that, for
reduced algebraic curves, holomorphic isomorphism implies algebraic iso-
morphism.

I thank S. Ramanan and M. V. Nori for helpful discussions. I am

* This conjecture is true; some recent results of T. Ueda of Kyoto University reduce
the generel case of (1,1) to the special case dealt with here. See (4.10).
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also grateful to Professor T. Oda for pointing out a mistake in an
earlier version of the paper, and for other useful comments.

2. Holomorphic maps between algebraic curves.

PROPOSITION 2.1. Any proper holomorphic map between reduced
algebraic curves is algebraic.

COROLLARY 2.2. Holomorphically isomorphic reduced algebraic
curves are algebraically isomorphic.

2.3 PROOF OF 2.1. Let f:X-+Y be a proper holomorphic map of
reduced algebraic curves. Suppose first that X and Y are nonsingular,
and let X, Ϋ be their nonsingular compactifications. It is enough to
show that / extends to a holomorphic map /: X -> Ϋ, for then / and
hence / is algebraic. Now let Wlf W2, , be disjoint disc-like neigh-
bourhoods of the finitely many points of Ϋ — Y, and W = \JWi. Then
the properness of / implies that K = f~\Y — W ) c J ί s compact. Now
let U be a connected neighbourhood of any p e X — X with U Π K = 0 .
Then U — p is also connected, and /(U — p) c W. Hence /(U — p) c Wt

for some i. Hence / is holomorphic at p by Riemann's theorem.
The general case can be reduced to the above case by using normali-

zations and the fact that a holomorphic map between reduced algebraic
varieties is algebraic iff its graph is algebraic ([4], Proposition 8).

REMARK 2.4 (M. V. Nori). Corollary 2.2, hence Proposition 2.1, is
false for nonreduced noncomplete curves. For example, let X be the
complement of one point in a generic complete nonsingular curve of genus
^ 3 and L the total space of a nontrivial algebraic line bundle on X. Let
F b e the first infinitesimal neighbourhood in L of the zero-section of L.
Then, since X has no nontrivial automorphisms, it is easy to see that
Y is not algebraically isomorphic to X x SpecC[Γ]/(Γ2). However, since
all line boundles on an open Riemann surface are holomorphically trivial,
Y is holomorphically isomorphic to X x SpecC[jΓ]/(Γ2).

3. Surfaces. Let X be a nonsingular affine curve. By the genus
of X, we shall mean the genus of its nonsingular compactification. X
is of genus zero iff all algebraic line bundles on it are algebraically
trivial.

PROPOSITION 3.1. Let X be a nonsingular affine curve, and L the
total space of an algebraic line bundle £έ* over X. Then £? is algebrai-
cally trivial if and only if L is isomorphic as a variety to X x C.

PROOF. We may assume that the genus of X is at least one. Let
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/: L —> X x C be an isomorphism of varieties, and g the composite of /
with the natural projection X x C-^> X. If p:L-*X is the natural
bundle projection, then g is constant on the fibres of p by Lϋroth's
theorem, hence induces a map h:X-+X such that g = h p. Clearly h
is an isomorphism. By changing / suitably, we may thus assume that
h is the identity. This means that £f becomes trivial, when its structure
group is extended to Aut (C). But then £f itself must be trivial, since
Aut(C) is a semi-direct product of C* and the normal subgroup C. q.e.d.

REMARK 3.2. The above proposition is valid for complete curves X
as well. Indeed, the above proof applies if the genus of X is at least
one. Here is a proof (due to M. V. Nori) applicable to all complete X:
any isomorphism of L with X x C must carry the zero-section of L to
X x (a point), hence £f, which is isomorphic to the normal bundle of
the zero-section of L, must be trivial.

A similar argument proves the following proposition which we shall
need later.

PROPOSITION 3.3. A line bundle £f on a compact Riemann surface
X is topologically trivial if (and only if) the total space of «Sf is
homeomorphic to X x C.

PROOF. If the total space L of £f is homeomorphic to X x C, then
the intersection form on H2(L, Z) vanishes identically, so that the self-
intersection of the zero-section of L must be zero. q.e.d.

PROPOSITION 3.4. Let X be a nonsingular affine curve of genus at
least one, and L the total space of a nontrivial algebraic line bundle
Jzf over X. Then L is a nonsingular affine surface which is holomor-
phically but not algebraically isomorphic to X x C.

PROOF. AS is well known, L is affine (since i f is a quotient of a
trivial bundle). Also, £f is holomorphically trivial, since X is an open
Riemann surface; hence L is biholomorphic with X x C. Finally X is
not algebraically isomorphic with X x C, on account of 3.1. q.e.d.

4. The main result.

THEOREM 4.1. Let X be a complete nonsingular algebraic surface,
and CdX an irreducible curve such that V = X — C is biholomorphic
with C* x C*. Then:

( i ) q(X) = dimH\X,0>) = l;
(ii) C is nonsingular and of genus one;
(iii) the Albanese map a: X—>T maps C isomorphically onto T, and

makes X a Pι-bundle over T;
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(iv) a: V = X — C—> T is the non-trivial principal C-bundle over Γ.

PROOF. Consider the exact cohomology sequence

( * ) > H\{V) -> H\Σ) -> mC) - Hi+\V) ->

(with coefficients C say), H* being cohomology with compact support.
We know that &3(X) has to be even, while 62(C) = 1 (&*(•) denotes the
i-th Betti number) and dim H3

C( V) = 2. Hence we see from (*) that
H3

C(V)~>H\X); in particular, b,(X) = b,(X) = 2. Hence q(X) = 1, and
(i) is proved.

4.2. PROOF OF (ii). Since &X(X) = 2, iϊc

2(F) = C, and 2^(7) - 0, (*)
implies that 2 ^ ^(C) ^ 3. Let C be the normalization of C. Then
^(C) = 0 or 2, since it must be even and 5^3.

We claim that b^C) = 2. First note that, if α : X ^ Γ is the
Albanese map, then T is a 1-torus (g(-3Γ) = 1), and a is surjective. Now
if 6X(C) — 0, a is constant (Liiroth), so that X — ar^a^C)) is a nonempty
open subset of V. But this is impossible, since by assumption V contains
no compact analytic sets.

Thus 6i(C) = 2, and a{C) = Γ as shown above. We now assert that
b^C) = 2. Indeed suppose b^C) = 3. Then the exact sequence (*) implies
that H\X) —> £Γ2(C) is an isomorphism, i.e., 6a(-X") = 1. But we know that
b2(X) ^ 2, since C and a fibre F of a define independent elements of
JΪ2(X, Z) ((F ί7) = 0 and (F-C) Φ 0, where (•) denotes the intersection
number).

Hence b^C) = 2 = &X(C). It follows easily that the normalization
map p: C —> C is a homeomorphism. But then C must be nonsingular,
since the composite map a p\ C —> T, being a nonconstant map of smooth
curves of genus one, is smooth. This proves (ii).

4.3. THE FIBRES OF a ARE CONNECTED. This is a known property of
the Albanese map when its image is a curve ([6], Ch. IV, §2, Theorem 4).
In our case, the argument simplifies slightly. Namely, let X -> f —> T
be the Stein factorisation of a. Then T is a normal curve, hence
smooth. Now we know that the map C—> T is nonconstant, hence T is
also of genus one. By the universal property of the Albanese, T -> T
is therefore an isomorphism. q.e.d.

4.4. a IS SMOOTH. Let E be the set of points at which a is not
smooth. Then E has no one-dimensional components: such a component
would have to meet C (since X — C contains no compact analytic sets),
whereas a \ C is smooth.

Thus JE7 is a finite set. Hence every fibre of a is reduced, i.e., is of
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the form Σ A> with the Dt distinct reduced irreducible curves in X.
Now let F be a generic (nonsingular) fibre of a and Fo = Σ A a

(possibly) singular fibre. Then:
4.5. χ(F0) ^ χCF7). (% denotes the topological Euler-Poincare charac-

teristic).

PROOF. Since Fo is connected, we have ([6], Ch., IV, Lemma 4)

χ(F0) ^ ~(F0.(F0 + X)),

where i£ denotes the canonical divisor of X. But (F0 F0) = 0, and
(Fo-K) = (F lf), hence

where the last equality again follows from the lemma of [6] quoted above,
since F is nonsingular and (F F) = 0.

4.6. It follows from (*) of 4.1 that b2(X) = 2, so that χ(X) = 0.
Now, if the Ft are all the possible (finitely many) singular fibres of a,
we have ([6], Ch. IV, Theorem 6)

χ(X) = χ(jP) χ(Γ) + Σ (χ(F<) - χ(F)).

Since χ(Γ) = χ(X) = 0, it follows by 4.5 that χ(Ft) = χ(F) for all i. Hence
χ(Ft) = -(FrK)= -(Fi-(Ft + JK")) for all i, so that the Ft must be
nonsingular irreducible curves ([6], Ch. IV, Lemma 4). Thus we have
proved that a is smooth.

4.7. PROOF OF (iii). Since a is smooth, X-*Tis differentiably locally
trivial with fibre F a compact connected oriented surface. Also a\C is
smooth; let n be the degree of a: C? —> T. Then it is easy to see that
a: V = X — C - > Γ i s also locally differentiably trivial, with fibre F' =
F — n points. But now, since πa(T) = 0, and π^V) = Z2 = πx(Γ), it
follows from the homotopy sequence of the fibration V—> T that ί7' is
simply connected. But then F must also be simply connected, i.e., X-* T
is a P^bundle, and n must be 1, i.e., C—> Γ is an isomorphism, q.e.d.

Thus, to conclude the proof of theorem 4.1, it is enough to prove

4.8. Let a: X->T be a Px-bundle over the 1-torus Γ, and suppose
CaX gives a section of a such that F = X — C is biholomorphic to
C* x C*. Then V is the nontrivial principal C-bundle over T.

PROOF. V—> T is a priori an Aut(C)-bundle. There is a vector
bundle W of rank two over Γ, and an exact sequence.

(••) 0->l-*TP->Zr->0

such that X = P(W)t 1 is the trivial line bundle on T, C is the section
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of P( W) = X defined by 1<=+ W, and L is a line bundle on T which can
be identified as follows. Regard V as an element of Hι(T9 Aut(C)) and
let p* be the map H\T, Aut (C))-> H\T, d7*) induced by the exact
sequence 0 -> C -* Aut (C) -> C* -• 1. Then L = p#( F)

We now claim that deg (L) = 0. Indeed, using a topological splitting
of (**), it is easy to see that the total space of L is homeomorphic to
V9 which by assumption is homeomorphic to T x C. Hence deg (L) = 0
by 3.3.

Now the obstruction to the splitting of (**) lies in H\T, L*)'**
H\T, L) (since T is of genus one). Thus if L Φ 1, (**) would split, i.e.
a would have another section disjoint from C, contradicting the assump-
tion that V contains no compact analytic sets. Hence L = p*(V) = 1.
But this means precisely (cf. the definition of p*) that V comes from
H\X, έ?), i.e., is a principal C-bundle. Clearly this bundle cannot be
trivial since V contains no compact analytic sets. This proves 4.8.

REMARK 4.9. We have only used the fact that V is homeomorphic
to C* x C* and contains no compact analytic sets. Also X need only be
assumed Kahler. Thus Theorem 4.1 is valid under these weaker assump-
tions.

4.10. The referee has kindly informed me that T. Ueda of Kyoto
University has proved the following theorem:

Let S be a possibly non-Kahler compactification of C* x C* such that
C = S — C* x C* is minimal, i.e., contains no exceptional curves of the
first kind. Then there are only three possibilities:

( i ) S is rational, and the irreducible components of C are all
rational; the graph of C contains a loop;

(ii) S is a primary Hopf surface and C is irreducible nonsingular
elliptic;

(iii) S is a ruled surface, and C is irreducible nonsingular elliptic.
(It is well-known that each of these cases actually occurs.)
Clearly, Ueda's theorem together with our main theorem implies

that Conjecture 1.1 is true. We note finally that any (algebraic) isomor-
phism of Serre surfaces clearly induces one of the associated elliptic
curves, so that the isomorphism classes of non-rational algebraic struc-
tures on C* x C* are in bijection with isomorphism classes of nonsingular
elliptic curves.
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