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INJECTIVE ENVELOPES OF BANACH MODULES
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1. Introduction. As in homology theory, the notion of injectivity
was introduced in the category whose objects are Banach spaces and
whose morphisms are contractive (i.e., of norm ^ 1) linear maps, and the
existence and uniqueness of the injective envelope of a Banach space
was proved by H. B. Cohen [1] (cf. also [6]).

In the present paper we show that the corresponding statements are
valid in the category whose objects are Banach modules over a Banach
algebra and whose morphisms are contractive module homomorphisms,
and that a flow (i.e., a compact Hausdorff space with a discrete group
acting on it as onto homeomorphisms) has a projective cover. The latter,
which seems to be, in a certain sense, a natural generalization of a result
of A. M. Gleason [3; Theorem 3.2] (cf. 1° and Lemma 5 (i), (ii) below),
is used to give a characterization of injective Banach modules over a
discrete group algebra (Theorem 2 below). In the last section we are
concerned with self-injective C*-algebras (i.e., C*-algebras which, con-
sidered as Banach modules over themselves, are injective).

Let A be a fixed Banach algebra with unit 1. We shall always as-
sume that ||11| = 1. A unital left A-module X is called a left Banach
A-module if its underlying vector space is a Banach space with the
norm satisfying the condition:

||α α?|| ^ | |α | | | |g| | for aeA and xeX.

Similarly a right or two-sided Banach A-module is defined. But through-
out this paper we shall exclusively treat left Banach A-modules unless
otherwise specified, and abbreviate them to Banach A-modules. The
letter X will denote a fixed but arbitrary Banach A-module.

DEFINITIONS. An extension of X is a pair (F, K) of a Banach A-
module Y and an isometric module homomorphism tc:X-+ Y. A Banach
A-module X is injective if for each Banach A-module Y and each exten-
sion (Z, it) of Y, any continuous module homomorphism a: Y—>X extends
to a continuous module homomorphism ά: Z —*X, i.e., άoκ = a, with
| | α | | = | | α | | . An extension (Y, tc) of X is injective if Y is an injective
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Banach A-module, and it is essential if for each Banach A-module Z
and each contractive module homomorphism a: Y —» Z, a is an isometry
whenever α°A: is so. If the pair (Y, tc) is both injective and essential,
we call it an injective envelope of X. (See Theorem 1 below for the
existence and uniqueness of the injective envelope.) This definition is
also equivalent to the following: An extension (Y, /c) of X is an injective
envelope of X if and only if Y itself is the only injective submodule of
Y containing Im K = κ(X). (See Remark 2 below for this equivalence.)

We recall a few known results on Banach spaces. An injective
Banach space ( = an injective Banach C- or iί-module, according as the
coefficient field is complex or real) is usually called a P1 space and com-
pletely characterized as follows:

1°. (L. Nachbin, D. B. Goodner, J. L. Kelley, M. Hasumi) A Banach
space is a P1 space if and only if it is linearly isometric to a Banach
space of continuous functions C(P) with P some stonean (i.e., extremally
disconnected compact Hausdorff) space.

The above-mentioned result of H. B. Cohen is stated as follows:
2°. Every Banach space X has a unique (up to a linear isometry)

injective envelope (Y, ic), i.e., /c:X—> Y is a linear isometry into and Y
itself is the only injective linear subspace of Y which contains Im tc.
In particular the injective envelope of a Banach space C(K) with K a
compact Hausdorff space is of the form (C(P), φ°), where 9 is a
minimal continuous map of a stonean space P onto K (i.e., φ(P) — K
but for each closed subset f ξ P , φ(F) g K) and φ°: C(K) -> C(P) is
defined by φ°(f){p) = f(φ(p)) for feC(K) and peP. Moreover P and φ
are uniquely determined by the properties that P is stonean and that φ
is minimal.

2. Construction of the envelope. The construction of the injective
envelope of a Banach A-module which we present here is more or less
analogous to the one given in homological algebra (cf. e.g., S. MacLane
[8; pp. 92-94]).

The following lemma assures the existence of sufficiently may injec-
tives in our category.

LEMMA 1. Every Banach A-module X is a closed submodule of an
injective Banach A-module.

PROOF. AS is well-known, X is, as a Banach space, a closed linear
subspace of a Pt space Y. [E.g., take a subset Γ of JBX* (the closed unit
ball of X*) such that the weak* closed convex circled hull of Γ is Bx*.
Then x H* «SC, x*))x*er is an isometric embedding of X into a Px space



BANACH MODULES 441

l°°(Γ), the Banach space of all bounded functions on the (discrete) set Γ.]
Let Z = L(A, Y) be the Banach space of all continuous linear maps of
A into Y, which is made into a Banach A-module by setting

(α z)(b) — z{ba) for α, b e A and z e Z .

The map /c:X-+ Z given by ιc(x)(a) = a-x, aeA, xeX is an isometric
module homomorphism. By identifying X with Im /r, we need only prove
that Z is injective. Let V be a Banach A-module, (W, λ) an extension
of V and α: F-> Z a continuous module homomorphism. Define a con-
tinuous linear map β: V-* Y by /3(v) = α(i;)(l), v e 7 . Since Y is a P x

space, there exists a continuous linear map β: W—> Y such that β°λ = β
and | | $ | | = | |/3| | . Then if we note that A has a unit 1 with | | 1 | | = 1, it
is readily checked that the map a: W —> Z defined by

ά(w)(a) = y§(α - w) , a e A, w e W

is the desired module homomorphism extending a and such that | |ά| | = | |α| | .
q.e.d.

REMARK 1. In the above proof if we take l°°(Γ) as Y, then we see
that Z = L(A, l°°(Γ)) = l°°(Γ, A*), the ί°°-sum of Γ copies of the Banach
A-module A* with the module operation given by

<ί>, a-f} = <δα, /> , a, b e A, / e A* ,

is an injective Banach A-module and contains X as a closed submodule.
This fact will be used in § 3.

To state the following lemma, we give a definition: Let (Y, it) be an
extension of X. A seminorm p on Y is admissible (relative to X) if it
satisfies the conditions:

P(a-y) ^ \\a\\p(y) and

p(fc(x)) = 11 a? 11 for a e A, x e X and i / e F ,

Clearly the original norm on Y is an admissible seminorm.

LEMMA 2. With notations as above, (Y, tc) is essential if and only
if there exists no admissible seminorm on Y except for the original
norm on Y.

PROOF. Necessity: Let p be an admissible seminorm on Y, Z the
completion of Y/p~\0) in the norm induced by p, which is a Banach
A-module with the natural module operation, and π: Y—> Y/p~\0) c Z
the canonical projection. Then π is a contractive module homomorphism
with πoκ an isometry. Hence by assumption π is an isometry, so that
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p is the norm on Y.
Sufficiency: Let Z be a Banach A-module and a: Y —> Z a contractive

module homomorphism such that a o tz is an isometry. Then the seminorm
ί ) o n 7 d e f i n e d b y p(y) = \\a(y)\\, yeY is a d m i s s i b l e , s o t h a t \\a(y)\\ = \\y\\,
i.e., a is an isometry. q.e.d.

We introduce a relation (resp. an equivalence relation) in the family
of all extensions of a Banach A-module X by the rule

(Y, *) £ (Yί9 JO [resp. (Γ, *) s (Γ l f /cj]

if and only if there exists an isometric module homomorphism (resp.
isomorphism) c: Y —> Yx such that t°κ — κγ. We remark that the condi-
tions (Y, K) <; (Yj, ΛΓJL) and (Y, K) ^ (Yx, icj need not imply (Y, /c) = (Yw /cj.
With these relations essential extensions and injective extensions are
related as follows:

LEMMA 3. ( i ) For an essential extension (Y, ιc) of X and an in-
jective extension (Z, λ) of X, we have

(ii) Let (Y, K) be an extension of X and (Z, λ) an extension of Y.
Then (Z, λ°Λ;) is an essential extention of X if and only if (Y, tc) and
{Zy λ) are both essential.

(iii) In the family of all essential extensions of X, each increasing
net has an upper bound.

(iv) A Banach A-module Y is injective if and only if it has no
proper essential extension [i.e., if {Z, re) is an essential extension of Y,
then tc is an isomorphism].

PROOF, (i), (ii) and necessity of (iv) follow immediately from the
definitions.

(iii) Let {(Yr, /cr)}reΓ be an increasing net of essential extentions of
X and ιVtΊ\ Yr —> Yr the isometric module homomorphism such that
tVιl°κΊ — KV(Ί < τ') Then (Y^, tc^) is an upper bound of the increasing
net, where Y^ — lim* r, r(F r), the inductive limit of the Banach spaces Yr,

is naturally equipped with the module structure and /c^.X-^Y^ is the
canonical embedding.

Sufficiency of (iv): Noting Lemma 1 we need only prove that any
extension (Z, K) of Y splits, i.e., there exists a contractive module homo-
morphism σ: Z -> Y with σo/c = idF (the identity map on Y). Let ^
be the family of all admissible seminorms on Z relative to Y. Obviously

is partially and inductively ordered under the relation p <̂  q defined
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by p(z) ^ q(z) for all zeZ. Hence by Zorn's lemma &~ has a minimal
element p0. As in the proof of Lemma 2, let Zx be the completion, with
the natural Banach module structure, of Z/pϊ\0) in the norm induced
by p0 and let /cx = πoκ:Y-+Zι be the isometric embedding, where π:
Z —> Z/poKO) c Zλ is the canonical projection. By minimality of p0 the
norm on Zt is a unique admissible seminorm on Zt relative to F, so that
the extension (Zi9 ιcλ) of Y is essential (Lemma 2). Hence, κx being onto
by assumption, the map

is the desired splitting. q.e.d.

THEOREM 1. Every Banach A-module X has a unique {up to the
equivalence relation =) injective envelope (F, /c).

PROOF. By Lemma 3 (iii) and Zorn's lemma, there exists a maximal
essential extension (F, ιc) of X. Then Lemma 3 (ii) and (iv) imply that
Y is injective, so by definition (F, K) is an injective envelope of X.

To show the uniqueness let (Yl9 ιc^) be another injective envelope of
X. Then (F, ιc) <; (Yίf icj by Lemma 3 (i), i.e., there exists an isometric
module homomorphism c: Y-*YX such that c ° K — κx. Since Y is injec-
tive and the extension (Ylf e) of Y is essential (Lemma 3 (ii)), we obtain
Im i = Yx. Thus (Γ, yc) ̂  (Y19 κ±). q.e.d.

REMARK 2. Let (Y9 ic) be an injective extension of X. Then (F, /c)
is essential (i.e., it is an injective envelope of X) if and only if Y itself
is the only injective submodule of F containing Im ic. Indeed necessity
follows from Lemma 3 (ii), (iv). Sufficiency: By Theorem 1 and Lemma
3 (i) there exists an injective submodule Yx of F such that Im tc c Y1

and (Fx, ic) is an injective envelope of X, so that if F is the only injec-
tive submodule of F containing Im ic, we have Yx= F, i.e., (Y9 ic) is
essential.

3. Injective Banach G-modules and projective flows. Let G be a
discrete group. A Banach space X is said to be a Banach G-module if
there exists a group homomorphism Θ of G into A u t X ( = the group of
all linear isometries of X onto itself). For simplicity we write g-x
instead of θ(g)x (geG, xe X). Any Banach G-module can be viewed as
a Banach module over the discrete group algebra l\G) with the module
operation defined by

a x = Σ a(g)g *% > <*>e lι(G), xeX 9
G

Σ
geG

and vice versa. So injectivity of a Banach G-module can be defined (or
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more directly) as that of the corresponding Banach ί1(G)-module.
As seen in § 1, to each Pγ space X there corresponds a stonean space

P so that X is linearly isometric to C{P). On the other hand, A. M.
Gleason [3] characterized stonean spaces as 'projective' objects in the
category of compact Hausdorff spaces and continuous maps between them.
We shall show results analogous to these: To each injective Banach G-
module X there correspond a flow (P, (?) and a 1 cocycle u on it so that
X is isomorphic (as a Banach G-module) to the Banach G-module con-
structed from the flow and the 1 cocycle. Further, such a flow is char-
acterized in the category of flows with the discrete group G acting on
them and homomorphisms between them (Theorem 2 below). The existence
and uniqueness of the injective envelope of a Banach module established
in § 2 is used to show an analogue of [3; Theorem 3.2] (Theorem 3 below).

The precise definitions of the terminologies in the preceding paragraph
and next theorems will be given later.

THEOREM 2. Given an injective Banach G-module X, there exist a
unique projective flow (P, G) and a 1 cocycle u (unique except for a 1
coboundary) on it such that X is, as a Banach G-module, isomorphic to
the Banach G-module (C(P), u) associated with the flow (P, G) and the 1
cocycle u.

Conversely if (P, G) is a projective flow and u is any 1 cocycle on
it, the Banach G-module (C(P), u) is injective.

THEOREM 3. A flow (S, G) has a unique projective cover (P, G; φ),
and the injective envelope of the Banach G-module (C(S), 1) associated
with the flow (S, G) and the trivial 1 cocycle 1 is of the form ((C(P), 1), <p°).

Before going into the proofs, we prepare some notations and defini-
tions. A Banach G-module l°°(Γ x G) (Γ, an index set) with the module
operation:

(g X)(Ύ, h) = x(7, hg) , g,heG,xe l°°(Γ x G), 7 6 Γ

is a typical example of an injective Banach G-module; moreover each
Banach G-module is a closed submodule of an injective Banach G-module
of this type (cf. Remark 1). This observation and the fact that l°°(Γ x G)
is a Pι space as a Banach space imply that each injective Banach G-
module is a Px space, hence linearly isometric to the space C(P) with P
a stonean space (§ 1, 1°).

DEFINITIONS. A pair (S, G) of a compact Hausdorff space S and the
discrete group G is called a flow if there exists a group homomorphism
;r:G—>AutS ( = the group of all homeomorphisms of S onto itself),
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which will be denoted simply by π(g)(s) = s g (seS, g eG). Let a con-
tinuous function u: S x G—• 7" = {λeC: |λ | = 1} satisfy the condition:

seS, glf g2eG .

We call such a function u a 1 cocycle on the flow (S, G). If the func-
tion u is trivial, i.e., u(s, g) = 1 for all s e S and #eG, we denote it by
1. A 1 cocycle u of the form u(s, g) — v(s)~ιv(s-g) for some unitary
element v in the commutative C*-algebra C(S) is called a 1 coboundary
on (S, G). Given a flow (S, G) and a 1 cocycle u, we can make the
Banach space C(S) into a Banach G-module by setting

(g a?)(s) = v>(s, g)x(s g) , geG,xeX.

We refer to it as the Banach G-module associated with the flow (S, G)
and the 1 cocycle u and denote it by (C(S), u).

Conversely, it is immediate to see that given a Banach G-module X
which is linearly isometric to a space C(T) with T a compact Hausdorff
space, the dual action of G on X* induces an action of G on T to define
a flow (T, G) and a 1 cocycle u on it so that X is isomorphic to the
Banach G-module (C(T), u) constructed above. In fact, identifying X
with C{T), the dual action of G on X* = C(Γ)*: z* ι->α* #, <a, £* #> =
<gr a?, α?*> induces onto homeomorphisms of the set {Xdt: λ 6 T, te T} of
extreme points of the unit ball of C(Γ)*, where δt is the point mass at
t and T = {λ G C: |λ | = 1}. Then denote (<5t).0 by w(ί, g)δt.g with %(t, flr) 6 T
and t- geT.

REMARK 3. It is easily shown that given flows (S, G) and (Γ, G)
and 1 cocycles u and v on them, respectively, the Banach G-modules
(C(S), u) and (C(Γ), v) are isomorphic
<=> there exists an isomorphism of flows φ\ (S, G)-^(Γ, G) (i.e., homeomor-

phism of S onto Γ with φ(s gr) = ^(s) g) and a unitary element
weC(S) such that

s , g ) ~ ι v ( φ ( s \ g) = ^ ( s ) ~ 1 w ( s ^ ) , seS, geG

<=* identifying S and T hy φ, u and v are cohomologous.
By the above argument an injective Banach G-module X is of the

form (C(P), u), where (P, G) is a flow and u is a 1 cocycle on it. Thus
Remark 3 implies uniqueness of (P, G) up to an isomorphism and of u
except for a 1 coboundary. We shall show that injectivity of X depends
only on the flow (P, G) but not on the 1 cocycle u (Lemma 4 below),
and characterize, in the category of flows and homomorphisms, a flow
(S, G) such that the Banach G-module (C(S), u) associated with the flow
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(S, G) and any 1 cocycle u on it is injective (Lemma 5 (ii) below).

LEMMA 4. Let X = (C(S), u) [resp. X, = (C(S), 1)] δe α BαnαcΛ G-
module associated with a flow (S, G) and a 1 cocycle u (resp. a trivial
1 cocycle 1). Tfcew X is injective if and only if Xι is so.

PROOF. Let Y = l°°(S x G) be the injective Banach G-module con-
sidered above. Define an isometric module homomorphism K (resp. κt)
of X (resp. XJ into Y by

*(&)(*, flO = (0 «)(«) = ̂ (β, flr)a?(s fir) , x 6 X
(resp. /c1(a?)(s, g) = (g- x)(s) = χ(s g) , xe Xx) .

We note that Im κx is a C*-subalgebra of the commutative C*-algebra Y
with the same unit as Y and that u Im^ = Im yc, where u is the unitary
element of Y such that u(s, g) = t̂ (s, ^). Since F is injective, X (resp. XJ
is injective if and only if there exists a contractive idempotent module
homomorphism π (resp. πt) of F onto Im tc (resp. Im /Cj).

Suppose that X is injective, hence that such a π exists. Then the
map πt: Y —> Y defined by

πι(y) = u - ι π ( u y ) , y e Y

is clearly a contractive idempotent linear map of Y onto its C*-subalgebra
Imκγ. Since ug eC(S) — Xί9 where ug(s) = u(s, g), and u/c^Ug) = g u, we
get by [11; Theorem 1]

nag v) = ̂ {ugY^π^^g »)

= (^. uY'πίuic.iu^g y)

«)(βr y))

for all sr e G and yeY ,

so that TΓi is a module homomorphism. Thus Xx is injective. The con-
verse implication is shown similarly. q.e.d.

Let (S, G) be a flow and E(C(S)) the set of all JMGC(S)* such that
| |μ | | = 1 and μ(l) = 1. Then the set E(C(S)) equipped with the weak
topology is made into a flow by setting

*

0" g)(x) = μ(g-x), μe E(C(S)), geG,xe C(S) .

The set of point masses on S is a subflow (i.e., a closed G-invariant
subset) of the flow E(C(S)), which can be identified with the flow (S, G).

DEFINITIONS. Given two flows (S, G) and (Γ, G), continuous map
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φ\ T —> S is said to be a homomorphism if

φ(t g) = 9>(t) g for ί e Γ and # e G .

(Of course φ is an isomorphism if it is one-to-one and onto.) The homo-
morphism φ induces a continuous module homomorphism between Banach
G-modules

<po{x)(t) = &($>(«)) , a? e C(S), t e T

and a homomorphism of flows

Ψ = (9>°)

which extends φ. With this duality between flows and Banach G-modules
in mind, we define an (essential) extension of a flow as follows: The
triple (Γ, G; φ) is an (essential) extension of a flow (S, G) if φ is a homo-
morphism of a flow (Γ, G) onto (S, G) [and moreover 9 is minimal in the
sense that φ{E{C(T))) = E(C(S))> but for each weak* closed G-invariant
convex subset K^E(C(T))9 Φ(K) g E(C(S))]. We note that an extension
(T,G\φ) of a flow (S, G) induces an extension ((C(Γ), 1), φ°) of the
Banach G-module (C(S), 1). A flow (P, G) is called projective if it has
no proper essential extension (i.e., if (Q, G; φ) is an essential extension
of (P, G), then φ is an isomorphism). Given a flow (S, G), an extension
(P, G; 9>) is a projective cover of (S, G) if it is both projective and essential.

The next lemma, combined with the preceding argument and Lemma
4, will complete the proofs of Theorems 2 and 3.

LEMMA 5. Let (S, G) be a flow.
( i ) There exists a unique projective cover (P, G; φ) of the flow

(S, G), and the injective envelope of the Banach G-module (C(S), 1) as-
sociated with the flow and the trivial 1 cocycle 1 is of the form
((C(P), 1), φ°).

(ii) The flow (S, G) is projective if and only if the Banach G-
module (C(S), 1) is injective.

(iii) (T,G;<p) is an essential extension of (S, G) if and only if
the extension ((C(Γ), 1), φ°) of the Banach G-module (C(S), 1) is essential.

PROOF, (i) Let (Y, it) be an injective envelope of the Banach G-
module X = (C(S), 1) (Theorem 1). We construct the projective cover
(P, G; φ) from this (Γ, ic). As noted above, Y = C(Γ) as a Banach space,
where T is a stonean space. Define the dual action of G on Y* by

<», y*-g> = <9- v, y*> , 2/ e Γ, #* e Y*, 0 e G .
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Then the set E = {y* e Γ*: « 1 ) , y*} = 1, \\y* || ^ 1} is weak* compact
convex and G-invariant, where 1 e X (resp. κ(ί) e Y) is the constant func-
tion on S (resp. Γ). We have by the Hahn-Banach theorem κ*(E) =
E(C(S)). Lemma 2 and essentiality of the extension (F, tc) imply that
the weak* closed convex circled hull of E = Bγ* (the unit ball of Y*)
and (*) for each weak* closed convex G-invariant subset F g E,/c*(F) S=
E(C(S)). In fact, suppose that FaE is weak* closed convex G-invariant
and κ*(F) = E(C(S)). Then the seminorm p on Γ defined by p(y) =
sup{|<#, j/*>|: ?/* eF} is admissible, so (Lemma 2) p(y) = | |^ | | for all
yeY, i.e., the weak* closed convex circled hull of F = Bγ*. (In particular
the weak* closed convex circled hull of E = Bτ*.) From this and the
Krein-Milman theorem, we have {Xy*\ X 6 T, y* e F} => {λ<5t: XeT,teT}.
Hence for each ί e T, δt = Xy* for some λ e T and y* e JP7, so ιc(l)(t) =
</c(l), λ̂ /*> = λ e Γ . Thus Λ:(1) is a unitary element of the commutative
C*-algebra Γ = C(Γ) and ^ ( l ) " 1 - ^ = < A:(1)-1, δf> = Λr(iχί)"1^ 6 F for all
ί e Γ . The former assertion implies that E = ιc(l)~ι - E(C(T)) and the
latter implies that Λ (I)- 1 E(C(T)) aF; hence F = E.

It follows from (*) and the Krein-Milman theorem that Λ:*(ext£r) =
ext E(C(S)) = {δs: seS}, and from E = Λ (I )- 1 E(C(T)) that ext E =
yc(l)"1 ext E{C(T)) = /r(l)"1 - {δ,: t e T}, where ext { } (resp. Π ) means the
set of extreme points (resp. weak* closure) of { }. Thus ext E is weak*
closed and G-invariant; so putting P = extE and φ = Λ:*|P: P->{<58: seS}
and identifying {Ss:seS} with S, we get an extension (P,G;φ) of the
flow (S, G). Then it is immediate to see that Y = (C(P), 1) and K = φ°.
Moreover, essentiality of the extension (P, G; φ) follows from (*) if we
note that E = E(C(P)).

We show that (JP, G) is projective, i.e., it has no proper essential
extension. In fact let (Q, G; χ) be an essential extension of (P, G). This
induces an extension of Banach G-modules

Since (C(P), 1) = IT is injective, there exists a contractive module homo-
morphism

σ: (C(P), 1) - (C(Q), 1)

such that σχ° = id(σ(P)fl). Hence χ(σ*(E(C(P))) = E(C(P)) and σ*(S(C(P)))e
E(C(Q)) is weak* closed convex G-invariant. Thus by essentiality of the
extension (Q, G; χ), σ*(E(C(P))) = E(C(Q)), so it follows that χ is an iso-
morphism; i.e., (P, G) is projective.

Uniqueness of a projective cover of (S, G) will be shown after the
proofs of (ii) and (iii).



BANACH MODULES 449

Sufficiencies of (ii) and (iii) follow from the argument in the proof
of (i) (with (Y, ic) replaced by ((C(T), 1), φ°) for the case (iii)).

Necessity of (ii): For a protective flow (S, G) let (P, G) and φ be
taken as in the proof of (i). Then by essentiality of (P, G; φ), φ is an
isomorphism. So (C(S), 1), which is isomorphic to its injective envelope,
is injective.

Necessity of (iii): Let p be an admissible seminorm on (C(Γ), 1) rela-
tive to (C(S), 1). Then K = {μ e E(C(T)): \μ(y) | ^ p(y), y e C(T)} is weak*
closed convex G-invariant, and by the Hahn-Banach theorem ψ(K) —
E(C(S)); hence essentiality of the extension (T,G;ψ) implies that K —
E(C(T)). Thus p(y) = \\y\\ for all yeY, which shows by Lemma 2 es-
sentiality of the extension ((C(T), 1), ψ°).

Uniqueness of the projective cover of (S, G): Let (P, G) be as in (i)
and let (Q, G; χ) be another projective cover of (S, G). Then (ii) and
(iii) show that the extension ((C(Q), 1), χ°) is an injective envelope of
(C(S), 1), so by uniqueness of the injective envelope of a Banach module,
there exists an isomorphism ιc of (C(P), 1) onto (C(Q), 1) such that
κφ° = χ°, which induces an isomorphism c of (Q, G) onto (P, G) such that
φ = χ. q.e.d.

4. The projective cover of the trivial flow. Let G be, as in § 3, a
discrete group. By a trivial flow we mean a flow ({s0}, G), consisting of
a one point set {s0} and the group G, with the trivial action: β0 g = s0,
geG. In this section we examine the projective cover of the trivial
flow in some detail.

The Banach G-module X associated with the flow ({sQ}, G) and the
trivial 1 cocycle 1 is no other than the scalar field C with the trivial
action of G, and it is embedded in the injective Banach G-module l°°(G)
as constant functions on G. If we note that a splitting of this embedding
(i.e., a contractive linear map σ: l°°(G)-+X with σ(g y) = g σ(y) — σ(y)
and σ(l) = 1, geG, yeΪ°°(G)) corresponds bijectively to a (right) invariant
mean on Ϊ°°(G), we see that injectivity of X, hence projectivity of the
trivial flow, is equivalent to amenability of G So we are interested in
the case where G is non-amenable.

Let (Po, G) be the projective cover of ({s0}, G). (The homomorphism
of (Po, G) onto ({s0}, G), being trivial, is omitted.) Identifying X with
the set of constant functions on G, we embed the injective envelope
(C(P0), 1) of X in Z°°(G) (Lemma 3 (i)). Let (E(l°°(G)), G) be the flow with
the action of G defined as in §3, where E(l°°(G)) = {/el"(G)*:/(l) = 1,
11/11 = 1}. If K is a minimal weak* closed convex G-invariant subset
of E(l°°(G)), then the argument similar to the one in the proof of Lemma
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5 shows that ext K (the set of extreme points of K)9 with the action
of G induced on it, becomes a subflow of (E(l°°(G)), G) (i.e., ext If is
weak* closed and G-invariant) which is isomorphic to (Po, G).

DEFINITION. We call such a set K a minimal subset of E(l°°(G)).
An element of some minimal subset is called a minimal state on Z°°(G).

For fe E(l~(G)) define a map φf: l°°(G) -> Z°°(G) by

φΛχ) = «g-χ,f»β*G, χel~(G).

The map φf is a contractive module homomorphism with <p/(l) = 1 and
it is clear that conversely, a contractive module homomorphism φ: i°°(G) —•
ί°°(G) with <p(l) = 1 is of the form φf for some feE(l°°(G)).

DEFINITION. A map φ: l°°(G) —> l°°(G) is called a minimal projection
on l°°(G) if it is a contractive idempotent module homomorphism with
φ(l) = 1 and (Im <p, A:) is an injective envelope of X, where tc is the
embedding of X into Z°°(G) as constant functions on G. A closed sub-
module Y of £°°(G) is called a minimal injective submodule if Y = Im φ
for some minimal projection φ.

It is immediately seen that the map fv-*φf is a one-to-one map of
the set of all minimal states onto the set of all minimal projections and
that for a fixed minimal subset K, the map / H* Im φf is a one-to-one
map of K onto the set of all minimal injective submodules of l°°(G).
Moreover, using the isomorphism between the flows (Po, G) and (ext K, G)
(K, a minimal subset), it is shown that the subgroup

Go = {geGip g = p for all pe Po}

is the largest amenable normal subgroup of G.
Summing up the above assertions, we get the following

PROPOSITION 1. ( i ) The subgroup G0 = {g eG: p g = p for all p ePo)
is the largest amenable normal subgroup of G.

(ii) If K is a minimal subset of E(l°°(G))f (ext K, G) is a subflow
of (E(l°°(G)), G) which is isomorphic to (Po, G). Hence the flow (K, G) is
isomorphic to the flow (E(C(PQ)), G).

(iii) The map f\-+φf is a one-to-one map of the set of all minimal
states of i°°(G) onto the set of all minimal projections on l°°(G).

(iv) For a fixed minimal subset K of E(l°°(G)), the map f\->Imφf

is a one-to-one map of K onto the set of all minimal injective sub-
modules of Z°°(G). Moreover, Im φf is a C*-subalgebra of the commutative
C*-algebra l°°(G) if and only if f e ext K.

PROOF. We prove only (iii) and the second part of (iv). The other
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statements will be easily checked.
(iii) We have only to show idempotentness of φf for a minimal

state /. To see this, we use a technique of R. Kaufman [6; the proof
of Theorem 1]. Minimality of / implies that the seminorm p on l°°(G)
defined by p(y) — \\φAv)\\ = supff6ί? \(g y, /> | is a minimal admissible
seminorm relative to X. Since the seminorm px on l°°(G) defined by

p,(y) = lim sup 11(φf + φ2

f + + φ})(v)/n\\
Λ-+oo

is also an admissible seminorm relative to X with pt <; p, we have
Pi = p; hence for each y e V°(G)f

\\<PAV) - <p2Av)\\ = p(y - φλv)) = vλv - φAv))
= limjjup MφAv) - φT\v))ln\\ = 0 ,

i.e., φ} = <pf.
The second part of (iv): Let K be a minimal subset of E(l°°(G)) and

feK. Put Ω = extK and A = the weak* closure of {f-gigeG}. By
minimality of K, we have Ω c ί?lβ Regarding β (resp. Ωt) as a flow, we
get an isometric module isomorphism (resp. homomorphism)

κ\ I m φ s -> C(ΰ), fc(y)(ω) = <y, α)>, yelmφf, ωeΩ
(resp. A:̂  Im <?, -> C(βL), ιc£y){ω) = <y, α>>, 7/ e Im ̂ /, ω e flj .

Let A be the C*-subalgebra of Z°°(G) generated by Im^/. Then /sCi is
extended to an algebra-isomorphism ^! of A onto C(X?i). Therefore, since
κjc"ι\ C{Ω) —> Im 9/ c A —> C(i2t) is a map such that (^I^:~1)(?/)(O)) = j/(α>)
for yeC(Ω) and ωeΩdΩlf Imφ/ is a C*-subalgebra of Ϊ°°(G), i.e.,
Imφ/ — A if and only if Ω = i2x, i.e., feΩ = ext K. q.e.d.

REMARK 4. It is noted that the flow (Po, G) coincides with the
'universal minimal strongly proximal flow' for the discrete group G
defined by S. Glasner [2; Chapter III]. Although he defined the flow for
any topological group and proved its uniqueness up to a flow-isomorphism,
some of the above results seem to be new even for a discrete group.

5. Self-injective C*-algebras. We say that a unital C*-algebra is
self-injective if it is injective as a left Banach module over itself. M.
Takesaki [10] showed that a commutative AW*-algebra is self-injective
in this sense. (Although only two-sided Banach modules were treated in
[10], the reasoning in it can be applied also to the one-sided case.) We
see in the following that the converse is true, i.e., a self-injective C*-
algebra is a commutative AT^*-algebra. These results seem to show
that for a C*-algebra A, the category of Banach A-modules and contrac-
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tive module homomorphisms is too large.

PROPOSITION 2. A self-injective C*-algebra A is a commutative
algebra.

PROOF. We first show that A is commutative. Suppose the contrary,
i.e., Ay hence the enveloping von Neumann algebra A** of A, is not
commmutative. Then there exist minimal projections e19 e2 in A** such
that

βxβ2 = 0 , et = u*u and e2 = uu* for some u in A** .

By the transitivity theorem, there exist alf a2 in A such that

Ikill = HOEII = 1 , a,e, = ex , αxβ2 = 0 ,
α2βL = 0 , α2e2 = w* and ĉ α? = 0 .

Let X = (Σ® Ap)^ be the ϊ°°-sum of the Banach A-modules Ap — {ap: aeA},
where p runs through the set of all minimal projections in A** and the
module operation in X is defined by componentwise left multiplication
in A**. The map

/c: A-+ X , κ(a) = (ap) , aeA

is an isometric module homomorphism. Since A is self-injective, we have
a splitting σ:A*-X, i.e., a contractive module homomorphism such that
σoic = idA. Let /x be the pure state of A with support /x = ex. For
each a? in X, we have

= \\eισ(x)eισ(x)*eι

l l l k I I 2 ^ +

Given 0 < e ^ 1 - l/Ί/ΊΓ, define α?€ = ((«<),) in X by (^)P = atp if
HαiPH > 1 - e, =0 otherwise (i = 1, 2). Then we have H^ + eiθx2\\ = 1
for each 0 in [0, 2τr], so that

= 1 , / i (^(α» = 0 ,

/ i ( ( 2 ) ) = 0 and
For we have

î)) + ^ , say,
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and |/i(0"(#i))| ^ 1. Since H^cO — â H ̂  1 — ε, by the construction of xί

we have

so

1 ^ \fMxi + (*(*) - xdl(X - e))) I = |Λ(^i)) + 7/(1 - 6)|

Hence 7 = 0, fx{o{x^) = 1. On the other hand, the inequality

1 ^ l/iίtfto + eiθx2))\ = |1 + β"/i(*(a.))l

(0 6 [0, 2π]) implies that /i(σ(a52)) = 0. The other equalities follow similarly.
Thus (*) yields 1 = |l*i + xz\\2 ̂  \Uσ{x, + x2))\2 + \fx(a(xx + α » | 2 = 2, a
contradiction.

Let 42 be the spectrum of the commutative C*-algebra A. Then the
Banach A-module X constructed above coincides with the Px space l°°(Ω),
so that A is also a Pi space. Hence it follows from § 1, 1° that Ω is
stonean and consequently that A is a commutative AW*-algebra. q.e.d.
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