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Abstract. The purpose of this paper is the construction and coho-
mological study of semi-simplicial models for the Weil algebra of a Lie
algebra. The geometric context where the authors introduced these alge-
bras is the construction of generalized characteristic classes for foliated
bundles. There are two main aspects to the results of this paper. The
first is the homological equivalence of all semi-simplicial Weil algebras
even after passing to basic elements with respect to a subalgebra and to
quotients by certain characteristic filtration ideals. The geometric con-
sequence is that the generalized characteristic homomorphisms defined on
these various complexes all have the same domain of universal generalized
characteristic invariants. The second aspect is a comparison map from
the ordinary Weil algebra to the semi-simplicial Weil algebra realizing a
homology isomorphism after passing to basic elements with respect to a
subalgebra and to quotients by characteristic filtration ideals. The geo-
metric consequence is a comparison of the characteristic class constructions
on the various complexes considered, which is also of significance for ex-
plicit computations.
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1. Introduction. The purpose of this paper is the construction and
cohomological study of semi-simplicial models for the Weil algebra of a
Lie algebra as announced in the notes [13] and used in our subsequent
work [14], [15].

To appreciate the results of this paper it will be useful to recall
the geometric context leading to the algebraic constructions of this
paper. This context is the construction of characteristic classes for
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foliated bundles. Since an account of this subject has appeared (beside
the original papers) in the form of detailed notes of our lectures [16],
we will be brief and refer to these notes for more details.

A foliated G-bundle is a principal G-bundle P -^ M equipped with
(i) a foliation (involutive subbundle) LaTM of codimension q on M, (ii)
a foliation L c TP on P which is G-equi variant, projects onto L under
7Γ, and such that LUΓ\GU = {0} for every ueP and Gu the tangent space
to the fiber through u. An adapted connection is a connection o) on P
such that o)u(Lu) — 0 for each ueP, i.e., the horizontal subspace of the
connection contains the subspace Lu for each ueP. Let Ω\P) denote
the De Rham complex of global forms on P. The Weil homomorphism

(1.1) k(ω):W\Q)^Ω\P)

of an adapted connection has certain characteristic filtration preserving
properties, which leads directly to the construction of a generalized
characteristic homomorphism (see [16], Chapter 4). This homomorphism is
defined on the cohomology of the truncated Weil algebra W(Q)q or more
generally the relative truncated Weil algebra W(Q, H)q. The closed sub-
group HdG reflects the appearance of an additional iϊ-reduction of the
G-bundle P. The characteristic homomorphism measures the incompati-
bility of this geometric structure with the foliated bundle structure of
P.

One obstacle to the application of this construction to holomorphic
and algebraic bundles is the fact that no global connections need then
exist. But what one can use instead is a family of local connections on
the bundle P restricted to the sets of a cohomologically trivial open
covering ^ of M. Even in the smooth case connections are often given
in this way by local data, and a direct construction of the characteristic
homomorphism of P via these data is desirable, regardless of the fact
that they can be constructed by the use of a global connection in P.
This leads automatically to semi-simplicial methods, since the resulting
invariants are defined in Cech cohomology. The need for semi-simplicial
methods arises also in the construction of characteristic classes for sim-
plicial bundles, where the characteristic homomorphism takes values in
the simplicial De Rham cohomology.

We explain the basic idea for the construction of the generalized
characteristic homomorphism z/(P)* in this more general context (see
[13] [14] [15]). Let <%S = (U5) be an open covering of the base space
M of the foliated G-bundle P -»M, such that each P/Uj admits a con-
nection ω5 adapted to the foliation. For the family ω = (ωs) there is
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then a generalization of the Weil homomorphism (1.1) to a g-DG-algebra
homomorphism

(1.2) kx{ω): W[(β) - C\<&, π*Ω'P) .

The domain is the semi-simplicial Weil algebra defined in 2.18 (the sub-
script hints to the Definition 2.22 of a whole sequence W8(Q), s ^ O of
such Weil algebras). The target is the g-DG-algebra of Cech cochains
of ^ with coefficients in the direct image π*ΩP of the De Rham sheaf
complex ΩP of local forms on P. The map (1.2) is formally constructed
as a map of cochain complexes. This semi-simplicial Weil homomorphism
is filtration preserving for certain characteristic filtrations on domain
and target. This leads to a semi-simplicial characteristic homomorphism,
defined on the cohomology of the truncated semi-simplicial Weil algebra
WtfaX, or more generally the relative truncated semi-simplicial Weil
algebra WΊ(Q, H)q. The subgroup HaG again reflects the appearance
of a geometric structure on P, whose incompatibility with the foliated
bundle structure of P is measured by this characteristic class con-
struction.

The results of this paper are twofold. First the complexes W(Q, H)q9

WJ&j H)q and similarity constructed complexes Wa(Q, H)q for s ^ 0 are
shown to be homologically equivalent. The geometric implication is that
the generalized characteristic homomorphisms derived on these complexes
from the maps k((ύ), kγ{ω) and similarily constructed Weil homomor-
phisms ks(ω) all have the same domain of universal generalized chara-
cteristic invariants. Secondly a comparison map

(1.3) λ: W(Q) - W&)

is constructed which realizes this homology isomorphism after passing
in (1.3) to basic elements with respect to a subgroup, and to the quo-
tients by the relevant filtration ideals. The geometric implication is the
comparison of the constructions arising from (1.1) and (1.2), in the case
when both apply, as e.g., in the situations where global adapted connec-
tions exist. This comparison map or difference map is not only signifi-
cant for explicit computations, but is a technical tool which makes its
appearance in practically all aspects of the theory of generalized chara-
cteristic classes. In its simplest form it is an algebraic equivalent for
the Weil lemma establishing the homotopy between the characteristic
homomorphisms corresponding to two connections. It is explained in
[25] how the construction of characteristic classes for foliations by
Bott-Shulman-Stasheff [4] in the context of a semi-simplicial De Rham
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theory for BΓ relates to our construction via the semi-simplicial Weil
algebra Wx.

The organization of the paper is as follows. Section 2 is devoted
to the construction of a sequence of semi-simplicial Weil algebras Ws

for s ^ 0, with Wo = W. The need for W1 has been explained above
(see also Section 6 of this paper). The need for an iteration of this
construction arises e.g. in the proof of the independence of the semi-
simplicial characteristic homomorphism from the choice of a family of
local adapted connections (Proposition 6.11). The crucial argument is
contained in the commutative diagram 3.33. For a functorial construc-
tion of Ws the appropriate domain is the category ^fQ of Lie algebras
L over a fixed Lie algebra g. Then W8(L) for s ^ 0 is recursively defined
as a cochain complex over the semi-simplicial point with coefficients in
a local system of g-DG-algebras (see Definitions 2.18 and 2.22). This
construction assigns to every Lie algebra L z> g a sequence W8(L)9 s ^ 0
of g-DG-algebras in a contravariant functorial manner. These DG-algebras
are all acyclic (see 5.9). The cohomologically interesting objects W8(L, fyq

arise from these algebras by passing to basic elements with respect to
subalgebras ϊj c g, and to quotient algebras by filtration ideals arising
naturally out of geometric considerations (see Definitions 4.61 and 5.3).
The main result of this paper is the fact that the homology H(WS(L, fj)q)
is the same for all s ^ 0 and in fact also independent of the choice of
the Lie algebra L over g. It can therefore be evaluated on the particular
algebra L = g. Thus the complexes Wa(L, §)ff for s ^ 0 and L over g all
realize the homology H(W(Q,Jj)q) (see Theorem 5.5 and Corollary 5.7 for
precise statements, and Remark 5.22 for the change from Lie algebra pairs
(g, ϊj) to pairs (G, H) of Lie groups). The main fact to establish is the
independence of the homology H(W0(L, §)ff) from L. This is done in
Section 4 (Theorem 4.63 and Corollary 4.76). The remaining facts follow
by general spectral sequence arguments which are carried out in Section
5. We expect that the general principle behind this construction will
turn out to be useful in other contexts. The explicit computation of
the algebras H(W(g, ί))g) is the subject of the note [12] (see also [16],
Chapter 5 and the detailed treatment in [20]). It is not discussed in this
paper.

In Section 3 we construct the map λ of (1.3) and analyze its proper-
ties. Since Wx is defined as a complex of cochains, we consider more
generally a local system E of g-DG-algebras on a semi-simplicial set S,
equipped with a family ω = (ωd) of connections ωά\ Λ g* —> Es for the
0-simplices j e So of S. We construct then a map
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(1.4) XE:W(Q)-*C(S,E)

whose properties are summarized in Theorem 3.25. This map has a
certain analogy to the maps defined by Bott in Section 5 of [1]. We
draw particular attention to the commutation of this map with the
differentials on both sides of (1.4). This fact is based on the simplicial
Stokes formula of Lemma 3.5. Applied to Wίf it leads to property (i)
for λ in Theorem 3.26. For the map λ1: W-> W® W in particular this
proves that it is a homotopy between the universal connections W-*W(g)l
and W —> 1 (x) W. Thus λ can be viewed as a generalization of the
classical Weil lemma on characteristic forms. More applications of λ
can be found in Chapter 5 of [16], and in [17] [18].

In Section 4 we discuss filtrations. In contrast to the canonical g-
filtration F(Q) defined on every g-DG-algebra (see Definition 4.1), we
consider on the Weil algebra W{L) for L e ^ another even filtration
Flp(o)W(L) by g-DG-ideals. This filtration is defined in 4.30 and is func-
torial not only on £fv but also for linear maps φ: U —• L over g (see
Corollary 4.32). The technical result in this direction is Proposition 4.7,
which is a refined statement of the universal property of the Weil
algebra. It is then shown that the universal maps X1: W(L)' —> W(Lι+1Y~ι

preserve the filtration F0(Q). This statement 4.41 is vital, since it implies
e.g., that homotopies between Weil homomorphisms for two connections
pass to quotients by the filtration ideals F*P(Q) (see Proposition 4.54).
This property does notably not hold for the canonical filtrations on
domain and target. The definition of the relative truncated Weil alge-
bras W0(L, fyq and W(Q, ίj)q as the quotients by the filtration ideals
F2

0

{q+ί\Q)W(L, $) and F*«+1)(Q)W(Q, $) is given in 4.61 and 4.62. The main
result of this section and indeed the crucial fact in this paper is the
homotopy equivalence of the DG-algebras W0(L, fj)q and W(Q9 fj)q, which
holds even functorially for linear maps U -> L over g. The precise
statements are Theorem 4.63 and Corollary 4.67. We emphasize again
that this is not true for the truncation with respect to the canonical
g-filtration on W(L, ί)) (see Remark 4.69). A geometric use of this
realization of H{W(Q, f))q) by the complex W0(L, fyq is discussed in
4.70.

The isomorphism of the algebras H(W8(L, ίj)q) for all s ^ 0 and all
Lie algebras L over g is established in Section 5. The DG-algebra
WS(L, Ij), defined in 5.3 is the quotient of Wa(L, Ij) by the ideal
F?q+1)(Q)W8(L, Ij) of an appropriate filtration F8(Q) on W8 (defined in 5.1).
Theorem 5.5 follows from the previously established facts by a general
spectral sequence argument. It also follows that the additive map λ in



378 F. W. KAMBER AND PH. TONDEUR

(1.3) induces an isomorphism λ*: H(W(β,'1))q) -> HίWfa, f))q), which in fact
is multiplicative (Theorem 5.21).

These results are applied in Section 6 to the generalized characte-
ristic homomorphism of a foliated bundle P-+M. The basic underlying
fact is the filtration property 6.4 of the generalized Weil homomorphism.
Note that there again the critical filtration on W1 is F1 and not the
canonical filtration as a g-DG-algebra. This is the geometric reason for
the appearance of the filtrations F8 on W8 for s ^ 0 in the earlier
sections. The construction of Δ(ω) in diagram (6.9) depends on a family
ω = (α>i) of adapted connections ωό on P\Ujf where ^ = (Uj) is an open
covering of M. This construction on the cohomology level is shown to
be independent of the particular choice of ω (Proposition 6.11). This
leads to a semi-simplicial characteristic homomorphism of the form

in 6.17. The target is the De Rham cohomology of M9 viewed as hyper-
cohomology of M with coefficients in the sheaf complex Ω'M of forms on
M in the sense of Grothendieck. The main properties of this map are
summarized in Theorem 6.21. We refer also to [16] for an elaboration
of the functorial nature of this construction. The paper concludes
with comments on specific geometric situations where this theory
applies.

2. Semi-simplicial Weil algebras. For the discussion of semi-simpli-
cial objects (ss objects) in various categories we need the basic category
Δ with objects Δx = {0, •••,£}, I ^ 0; face maps

I A A

e\: Δx -» Δι+1; ej(fc) _ , 1 . _ . ^

for i = 0, , I + 1; and degeneracy maps

k 0 ^ k

for j = 0, « , i ; which by composition generate all weakly monotone
increasing maps Ap -» Δq. These face and degeneracy maps satisfy the
relations

(2.1) φεr - eJ+toeΓ1 i ^ j

(2.2) μ ι r ° μ \ = μ ι ^ o μ i j + ι i ^ j
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(2.3) ί = j , i + 1 .

A ss object in a category ^ is a contra variant functor J~>^% a
co-ss object a covariant functor zί—>^ (see e.g., [23] for standard termi-
nology). We need several such constructions in this paper.

First we consider finite-dimensional Lie algebras over a field of
characteristic zero. For every such Lie algebra L there is an associated
ss Lie algebra

AL = (L,),*,,; L z = Lι+ί = L_x x L

l+l factors

with face and degeneracy operators given by

e\\ L
ι+ί

x\ sl(x0, , xι+ι) = (x0,

for i = 0, , I + 1; j = 0, , I. These operators satisfy the relations
(dual to the relations (2.1) (2.2) (2.3))

(2.4) ε^c

(2.5) μ ι

J + 1

= εi-^eϊ

,' μ)-\°eli 1 i < j

(2.6) ε\oμι

5 = - 1 i = j , j + 1

. /^"'oε iί i > 3 + 1

This construction is clearly covariant functorial in L.
Consider now the Weil algebra construction

W(L) = Λ L* (x) SL*

for a Lie algebra L (see [5] or [16], p. 54 for the definition). It is a
commutative DG-algebra which is contra variant functorial for Lie algebra
homomorphisms L —> U. Applied to ΔL it leads to a co-ss commutative
DG-algebra

W{AL) = (TΓ(L,))^o f W(Lt) = W(Lι-

with face and degeneracy operators

W(e\):W(Lι)-+W(Lι+ι)
W(μιj): W(Lι+1) -

induced by the dual maps
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(e{)*: Lt -> Lϊ+1; (s')*(a0, ••-,«!) = («o, , α,-i, 0, α,, , α,)
(/ιj)*: L,*+1 -> L, ; (μ))*(aQ, , αI+1) = (α0, . . , ad + α,+1, , α,+ι)

for i = 0, , I + 1, i = 0, , I on the Lie algebras involved. We still
denote W(e\) = ε and ΐF(/4) = μ). These operators satisfy then the
relations (2.1) (2.2) (2.3). The evaluation formulas for these operators
are

(x) α ^ ! ) α7
0(2.7) e{(α0 0 0 α,) = α0 0

(2.8) μli(aQ 0 0 αI+1) = α0 0 0 atai+1 0 0 αz+1 .

It will be necessary to consider instead of Lie algebras L the
category J*?q of Lie algebras L over a fixed Lie algebra g. The objects

are Lie algebra inclusions Q^> L, and the morphisms are Lie homomor-

phisms U -^> L making the diagram

U

9<

commutative. E.g.,

plays now the role of the Weil algebra for such an object g -4- L of £fq.
For the ss Lie algebra ΔL over g the co-ss DG-algebra W(ΔL) is then
a family of Weil algebras over W(Q).

Next we concentrate our attention on the g-DG-structure on the
Weil algebra W(L). We recall the concept of a g-DG-algebra A (see [5]
and [16], p. 46). This is a differential graded algebra A', which is equi-
pped with derivations i(x): A' -> A*"1 of degree —1 and derivations θ(x):
A' —> A' of degree 0 for every x e g, such that the following conditions
hold:

(2.9)

'i{xf = 0 for all XGQ;

θ[x9 y] = [θ(x\ θ(y)] for all x, y e g;

[θ(x), i(y)] = i[x, y] for all x, y e g;

θ(x) = i(»)cϊ + ώi(αj) for x e g .

Here the commutator of derivations Z> and Df of degree r and r' is
the derivation of degree r + τr given by
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[D, D'] = DD' + (~iγ"+ίD'D .

The conditions (2.9) are equivalently expressed by saying that A is a
differential F(g)-algebra, where

V.(a)= l7(β)®Λ.(β)

is defined via the enveloping algebra Ϊ7(g) and the exterior algebra
Λ.(β) with a twisted tensor multiplication as in [16], p. 96. The
operators θ(x), i(x) for x e g give rise to maps Vp (x) A' —> A'~p charac-
terized for p = 1 by

(x (g) l).α = θ{x)a

(1 (g) x)ma = i(sc)α .

Here the map g —> U(Q) is as usual denoted x-+x. Homomorphisms of
g-DG-algebras are homomorphisms of differential F(g)-algebras.

We need also to consider differential F(g)-modules or g-DG-modules.
This is a DG-module (M, d) with a F(g)-action such that the Cartan
formula

θ(χ) = di(x) + i(x)d

holds for x e g. Homomorphisms of g-DG-modules are homomorphisms of
differential F(g)-modules.

For a Lie algebra L over g the canonical L-DG-structure restricts
to a g-DG-algebra structure on W{L). For the ss Lie algebra AL =
(L,),fc0 over g the F(g)-action on W{Lt) = TΓ(L)®Z+1 is modified by the
convention

{x (g) l).α = θ(x)a

(1 ® sc).α = ( — l)H(x)a

for a? e g and a e W(L{). This turns W{ΔL) into a co-ss g-DG-algebra.
The construction of the ss Weil algebras is best understood in the

following general context.
Let S be a ss set S = (Sz)z 0̂ with face and degeneracy operators as

in (2.4) to (2.6). A local system of g-DG-algebras A on S is a family

A = (A.) , σeS

of g-DG-algebras parametrized by the simplices σ of S, and g-DG-homo-
morphisms

el(σ): A&\{0) -* Λ, for e{: S*+1 —• S>* and σ 6 Sι+1

μι

d(σ): Aμ\{β)-^A9 for μι

j:Sι->Sι+1 and σ e S ,
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with obvious composition rules (corresponding to (2.1) to (2.3)). A g-
DG-algebra A determines on every ss set S a constant local system also
denoted A with Aσ = A for all σ e S and el = id, μ) = id for all i, j.

We consider then on S the ^1-valued cochains

(2.1) C\S, A) = Π C\S, A), C\S,A) = U Ao.

Together with the maps,

ε\\ Cι —> Cι+1 , (e\c){o) == ε\c{&\&) for o e Sί+1 , c GC1

μ): Cι+1 -> Cι , (Aijc)(σ) = μ)c{μ)σ) for ίTeSt , c e C ι + 1

this is a co-ss g-DG-algebra. The differential dc of total degree 1 is
defined on Z-cochains by the usual formula

(O ΛΛ\ rl Λ 4- ( Λ\ιrl

where 5 is the simplicial differential of bidegree (1, 0)

and dA is of course of bidegree (0, 1). The F(g)-action is defined by

f((flc (R) l) c)(cr) = Θ{x)c(σ)
(2.13) __ ,.

for ceC z , σeSi and xeg.

PROPOSITION 2.14. C\S, A) is a Q-ΌG-algebra.

PROOF. We have defined the g-DG-structure. It remains to explain
the Alexander-Whitney multiplication and verify the compatibility with
the differential dG. Let Cp>q = CP(S, Aq). Then the multiplication

fl . ΓiptQ (O\ Γ^p',q' ^ (^P+p'yQ + q'

is given by the composition

where μA is induced by the multiplication in A and

V = e;ί?+1o osj+ι: C
p'9

are defined by the face operators in C. This is an associative multi-
plication and has all desired properties. •

The g-DG-algebra C(S, A) is obviously functorial for maps / : S —• S'
of ss sets in the following sense. If A is a local system of g-DG-alge-
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bras on S' with pull-back f*A' on S given by (f*A')σ = A'f{σ), σeSlf

I ^ 0, then there is a canonical map

(2.15) C(/, 4'): C(S', A') -> C(S, jf ii') ,

the pull-back of cochains. If A is moreover a local system of g-DG-
algebras on S, and f: f*A' -> A a morphism of local systems (on S) with
induced cochain map

(2.16) C{S, f): C(S, f*A') -> C(S, ii) ,

then the composition C(f, f) = C(S, f)°C(f, Ar) defines a homomorphism

(2.17) C{f9f):C{S',A')->C{S,A)

of g-DG-algebras.
The total cohomology of C(S, A) with respect to the total differen-

tial (2.11) is denoted by H(S; A), the one with respect to the simplicial
differential (2.12) is denoted Hδ(S; A). The first filtration on C(S, A)
gives rise to a spectral sequence converging to H(S; A), whose 2£f ff-term
is given by Hp

δ(S, H\A')). Here H\A') denotes the local system σ->
Hq(Am

σ) on S.

We can apply the construction of C(S, A) in particular for the ss
point S = Pt. This is the terminal object in the category of ss sets
with exactly one simplex σι in each dimension I ̂  0 and canonical face
and degeneracy maps. A local system of g-DG-algebras on Pt is the
same as a co-ss g-DG-algebra. Consider for a Lie algebra L over g the
co-ss g-DG-algebra W(ΔL)9 which we denote W(AL) when viewed as a
local system on Pt.

DEFINITION 2.18. The Q-ΌG-algebra

W,(L) = C(Pt, W{AL))

is called the (first) ss Weil algebra of L.

The subscript indicates that this construction will be iterated to
yield g-DG-algebras W8(L) for all s ^ 0, where W0(L) = W(L). This
object has of course co-ss character, but the term co-ss Weil algebra
seemed overly pedantic.

The local system W(AL) on Pt assigns to σt the algebra W(Lt) =
W(Lι+1) = W(L)®ι+\ W&L) has the bigrading

By (2.11) the differential dWl of total degree 1 is defined on elements of

Wϊ' = W[ by
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(2.19) dWl = δ + {-l)ιdw{

where

(2.20) δ = Σ (-l)'e4: W[ -> TΓί+1 .
ϊ=0

Note that the Weil differential dw[: Wl ' -> TΓί is of bidegree (0, 1) and
δ of bidegree (1, 0).

The F(g)-action on W[ is according to (2.13) given by

for α e TFί and α? 6 g. The Alexander-Whitney multiplication in C(Pt,
TF(4L)) turns TFX(L) into a g-DG-algebra. We finally note that the
construction of WΊ(L) from W(L) is reminiscent of the construction of
the Amitsur complex of an algebra.

The construction of W1 from W = Wo can be iterated. The only
thing to observe is that WΊ(L) is again contravariant functorial in L
(as Lie algebra over g).

DEFINITION 2.22. The (iterated) ss Weil algebra W8(L) of L is the
q-ΌG-algebra

W.(L) = C(Pt, W.ΛAL)) , s>0.

This can be expressed more formally as follows. Let j*fa denote as
before the category of Lie algebras L over the fixed Lie algebra g.
The construction of the semi-simplicial Lie algebra associated to L
defines a functor Φ: J2fq —> Jj*fq into the category zLSfβ of ss objects of
^ . Let J^ζ denote the category of g-DG-algebras. Then a contravari-
ant functor F: J*fq -> J^ζ induces a contravariant functor ΔF\ Δ£έ^ —>ΔStf[
into the category ΔJ^ of co-ss objects of j*£. The cochain complex
construction induces a functor Ψ: Δs^ —> J ^ . The composition

(2.23) Fx = ΨoΔFoφ: ^ ^> « χ

is a contravariant functor associated to F = Fo. We can iterate this
construction and define a sequence of functors F8, s ^ 0 by the recursion
formula F8+1 = (F8\. For F = W = Wo we get the functors W8, s ^ 0.

The canonical projections

(2.24) p8: W8(L) ̂  W°8(L) = W8_X(L) , s > 0

are obviously g-DG-homomorphisms. The Weil algebra W(L) is well
known to be cohomologically trivial. It is not difficult to verify the
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same property for the ss Weil algebras Wa(L), s > 0. But the essential
feature of these algebras is that they behave cohomologically like the
Weil algebra W(L) in a much stronger sense. The precise statement is
given in Theorem 5.5 and Corollary 5.7 of this paper. The reason for
the introduction of these algebras has been explained in the introduction
and is discussed again in Section 6.

3. Homotopies. The main topic of this section is a homotopy con-
struction, which makes its appearance practically in every aspect of
the theory of secondary characteristic classes. It embodies among other
things the algebraic features of the classical Weil lemma on characteris-
tic forms in a principal bundle.

We begin by constructing for every commutative g-DG-algebra E'
a simplicial g-DG-algebra E = (E{l))^0 as follows. Let

(3.1) (2̂ >) > = (Eli* , t j / ( g tj - l))

where t0,
 # ,£z are elements of degree 0 and dt0, •• ,dtι elements of

degree 1. The algebra E{1) is considered attached to the standard l-
simplex J{1) = {(tOf •••, tj)IΣ/=o*/ = 1 a n d *i ^ °} T i i e differential dE is
defined by sending dts to 0 and by the formula

. 1 *(3.2) dE(e(t0, , ί,) (g) ωk) = (dEe)(fOf , t {) (g) ω fc

( ) Σ ^ ( y , ) g j
3=0 dtj

The face maps εj: J(Z) -> J α + 1 ) given by

induce maps εj: £ r α + 1 ) -> £ r ( Z ) by sending

tit dti —> <i, cWi for 0 ^ i < j

ίy, ίZίy —> 0 ,

t<f dt, -> ίί_i, €?«<_! for j1 < i ^ ϊ + 1 .

This turns E into a simplicial DG-algebra. Modifying the i-action on
E'~ι by the factor (—I)1 and extending i9 θ to derivations of degree
-1,0 of Eι by i(ίy) = 0, i(dίy) = 0, θ(t5) = 0, ^(dty) = 0, this turns E
into a simplicial g-DG-algebra.

A boundary operator 3: Ea+1) -> E{1) is defined by
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(3.3) 3 = Σ(

A map πf: E(l)' -> E'~ι is defined by integration over the standard simplex
A{1) as follows. If

v = em(£0, , ίi) (x) ̂  e (j0*[ίo, , *«]/( Σ *y - l ) ) ® d«i Λ Λ dίi

with vj = dt0 Λ Λ (Zίy Λ A cZί/, j = 0, , Z, then we define

(3.4) τr<^ = ( - l H t>= ( - l ) ι t β(ί0, •• ,ί,)(8)PΪ6ί? ;

and on (E[t0, , «i]/(ΣU h - 1)) ® (Λg(dί0, , ώ O Λ Σ U dίy)) for g <
the mapTri0 is defined to be zero. Then π^ is a Vr(g)-module map.

With the preceding definitions we have the following result.

LEMMA 3.5. (Simplicial Stokes formula). On E{1+1)

+ {-l)ιdEoπi+ι) = π^oδ, I ^ 0 .

PROOF. For v = em(ί0, , tι+1) (x) α>fc e (E{l+1))m'k both sides of the equa-
tion in 3.5 map v into zero except for k = I, I + 1. For ft = Z + 1, it
is sufficient to consider elements of the form v — em(t0, , t I + 1) ®p£+ 1.
Clearly 3(1 ® y0) = 0 and hence 3(v) = 0. On the other hand we have
by (3.2)

πϊ+1)(dEn+i)V) - π«+1){dEem (g) vj+1 + ( - l ) m Σ - ^ - e w (g) dt5 A vl+1} .

From (3.4) it follows that

(3.6) 4 + 1 ) ( ί Λ , , tι+1) ® ωfc) = (-l) I + 1d^2+ l )(e"(i0, , ίI+ι) 0 ωft) .

Using dts A vl+1 = 0 for i = 1, , Z + 1 we have therefore

πίί+1)((k<!+i)V) + (-l)ιdEπϊ+ι)(v) - 0 .

For ft = Z, it is sufficient to check (3.5) for elements of the form v — em®

ωι

a, where ωι

a = d^ Λ Λ dta A Λ dti+1, a = 1, , Z + 1. Then

» O + (-1)- Σ Jr
y

where we have used (3.6). By the classical Stokes formula, we have
then
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(-1)'-Σ
i=0
ί+i r

(-1)"" Σ (-1)5' \ „ Φ
3=0 J j t 1 )

Actually the term dEπιi+1)(v) = 0, since veE
{l+1)m>1. This finishes the

proof of 3.5. •

Next we consider commutative g-DG-algebras with connections.
Recall that a connection in E (also g-connection in Em) is given by a

multiplicative homomorphism Λ g* —> E of degree 0 which is a homomor-
phism of F(g)-algebras (see [5] and [16], p. 97). Such a map is characte-
rized by its restriction g* -> E1 and extends to a unique homomorphism
of differential F(g)-algebras k(ω): W'(Q) -^ E' (the Weil homomorphism
of ω) making the diagram

" \k(ω)

(3.7)
u

/«
Λg*

commutative (see [16], p. 57 and also the refinement in Proposition 4.7
below). The canonical map u: Λ g* —> W(Q) is a universal connection
(extending to the identity on W(Q)). We shall use the term connection
indiscriminately for the connection map ω and its Weil homomorphism
fc(α>). Thus e.g., id: W(Q)—> W(Q) is the universal connection in W(Q).

Let E' again be a commutative g-DG-algebra. For any set of I + 1
connections ωd: Λ g* —> E' with Weil homomorphisms

let σ = (0, , I) and consider

(3.8) k(ωσ): W(Q)-+E{1) ,

the Weil homomorphism of the connection in E{1) determined by

ωσ: g* -> (Eil)Y .

(3.9) i i
tf ^ Σ t, ωs(a) , where

i=o
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The composition of k(ωσ) with πf defined in (3.4)

(3.10) Xι

E(σ) = π^ok(ωσ): W'fa) -> E'~ι

is a F(g)-module map of degree — I. We also use the notation Xι

E{σ) =
χι

E(ω0, ••-,©,).
Let εj(σ) = (0, , j , , I + 1). The boundary dσ is given by

ϊ+l

3=0

PROPOSITION 3.11. The maps Xι

E(σ) defined for all sets of I + 1
connections, I ^ 0 satisfy the following properties:

i ) Xϊ\σ)odw + (-l)ιdEoXE+\σ) = Xι

E(dσ);

( i i ) K(σ)w = 0 for we W>2p, I > p;

(in) KU) = Hωd);

(iv) λ^(0, ΐ)a = (α>! - ωo)α /or α e g * , ί j = (0, 1), ω = (α>0, ωO .

PROOF. The proof of (i) follows from the Stokes formula in Lemma
3.5. Property (iii) is immediate from the definition. To verify (ii) we
need to evaluate for an ϊ-simplex σ the curvature in E{1)

(3.13) k(ωσ)ά = dEwωσa - ωσdAa

for a:eg*. If we use Σi=o£i = 1> then
I

Σ
Using (3.2) and the identity (3.6) in [16], (3.13) takes the form

(3.14) k(ωσ)ά = dEωσ(a) + — a[ωσ, ωσ] - Σ ^(ωd - ω0) ® dί, .

It follows by multiplicativity of k(ωσ) that for w e Wq'2p with p < I
property (iii) holds. Note that for I = 1, σ = (0, 1), α> = (α>0, α)j) we get
from (3.14) in particular with ί0 = 1 — ί, ίx = t

(3.15) fc(α)(0>1))α = (1 — t)k(ωQ)ά + tk{ω^)a

Property (iv) finally follows from (i), evaluated at aeWlf0= A*8* and
property (ii). Π

REMARK 3.16. For σ = (0,1) and ω = (α>0, ®i) formula (i) reads

λi(0, 1 ) ^ + djτλi(O, 1) = λ°^(9(0,1)) = fcCωJ - k(ωo)
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where the last equality follows from (iii). But for Φ e I{G) we have
dwφ = 0 (see [16], p. 60), so that

(3.17) d*λi(0, 1)Φ = (Kω,) - k(ωo))Φ for Φ e I(G) .

This is the Weil lemma for the characteristic homomorphisms associated
to two connections ω,, ω1 in E' (classically the De Rham complex Ω'(P)
of global forms on a principal bundle P with structural group G).
More generally the map λ^(0, 1) is a homotopy between k(ω0) and k{ω^).

Next we generalize the construction of the maps Xι

E to sets of ί + 1
connections in a local system of g-DG-algebras. For this purpose we
restrict ourselves to ss sets with the following property. Let A be a
set and consider the ss set (Aι+I)ι^o of simplices in A The face and
degeneracy maps are given by

Aι+2 = Map (4+ 1; A) -> Aι+1 = Map (4, A)

σ\->σos\

Aι+1 = Map (Δl9 A) -> Aι+2 = Map (ΛI+ι, Λ)

and are again denoted by ε\, μ), i = 0, , I + 1, i = 0, , i. We
assume in the following that S = (Si)i^o is a ss subset of {Aι+%^, i.e.,
S; c yίz+1 and the sets St are closed under the maps ei and μs. Let £7'
be a local system of commutative g-DG-algebras on S (see Section 2).
Let α> = (a)j)jes0 be a family of g-connections in E, i.e., ω/. Λ g* —> Ej
for jeS0. For any ί-simplex σ = (i0, •• , i ί ) e S z there are then connec-

cdiU

tions A Cω .̂): W(β) -> S i y > J5. We have by (3.8) and (3.4) maps

(3.18) πf(σ): Ef — Eϊι

(3.19) fc(ί»o): TΓ(β) -> ̂ ί I > #

For σ 6 S ί + 1 we have thus with self-explanatory notations a commutative
diagram

(3.20) TΓ(β) ^S ! ) — > E°

We define for every σ

(3.21)
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Applying the simplicial Stokes formula 3.5, which holds for every σ,
and diagram 3.20, we obtain

(3.22) Xι

E

+ϊ(σ)odw + (~l)ιdEσoXι

E

+\σ)
l+l

= Σ (- iyεKσ)K(Φ) = (SλiXσ), for a e Sι+1 .
3=0

The family λ^α ), (reS; defines a linear map of degree zero

(3.23) Xι

E: W(Q) -> C\S, E) , ϊ ^ 0

by the formula

λ^wV = Xι

E{σ)w , σeSt , we W(Q) .

The family λjg, £ ̂  0 defines by Proposition 3.11, part (ii) a total map

(3.24) λ£ = (λL)^0: W(aY - C\S, E')

which by (3.22) commutes with dw and the total differential dc in C\Sf

E'). Thus X'E is a map of differential F(g)-modules (see (2.13) for the
i-action). The other properties of λ^ translate similarly and we have
the following result.

THEOREM 3.25. Let E be a local system of Q-ΌG-algebras on the ss
set S, and ω = (ωj)jeSo a family of connections in E as above. Then
there exists a canonical map XE: W(QY —> Cm(S, E') of degree zero satisfy-
ing the following properties'.

( i ) XE is a map of differential V(g)-modules;
(ii) Xι

E(w) = 0, for w e Wq'2p(o), I > p;
(iii) X°E: W(β) -> C°(S, E) is given by XE{w)5 = k(wά) for j e So,

w 6 W(Q);

(iv) XE(ά) = δX°E(a) for a e Λψ.

This construction can in particular be applied to the ss Weil algebra

t, W{ΔL))

as defined in (2.18) for any Lie algebra L over g. The connection defined
in W{ΔL)Q — W(L) for the unique 0-simplex of Pt is the universal con-
nection w : Λ i * - > W(L). In W(Lι+1) = W(AL)% we have the I + 1 con-
nections uf. Λ I/* -> W{Lι+ι) = W(L)®ι+ι given by inclusion into the jth-
factor. Theorem 3.25 translates then to the following statement.

THEOREM 3.26. Let L be a Lie algebra over Q. There exists a
canonical V(Q)-module map X: W(L) —> WX(L) of degree zero defined by
linear maps X1: W(L)* —> W(Lι+1Y~ι of degree —1(1^0) and satisfying
the following properties:
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( i ) Xι+ίodw + (~Ί)ιdw[^oχ^ = Σyti ( - 1 ) % X I ^ 0; i.e., X is a map
of differential V(Q)~modules;

( i i) ftoλ = id^;
(iii) X\w) = 0 for we W(L)q>2p, I > p.
(iv) λxα = 8a for α e Λ V

We observe that λ is universal in the sense that it determines all
the mappings XE via a certain coefficient map. Let /: S —> Pt denote
the unique semi-simplicial morphism and denote W{JQ)S = / * W(AQ), the
pull-back of W(ΛQ) to S (see Section 2). Given a family ω = (ωd) of g-
connections on J?" as before, we construct a coefficient map

(3.27) k(ω):

as follows. For every σ = (i0, , ii) e Sh I ^ 0 the I + 1 connections

^ V Λ 9* -> ^iy ^ Ĵ α determine a unique F(g)-module map

(3.28) ωσ = (ωiQ, , ωu): A (Qι+T ^ Eσ

which extends by (4.7) below to a unique g-DG algebra homomorphism

Using the canonical isomorphism W(Q1+1) = W(Q)®1+1 we may identify
k(ωσ) with the algebra sum of the Weil homomorphisms k(ωtj):

(3.28') k(ωσ) - (fc(α)<0), , fc(α>4l)) •

As (TΓ^fl)^ = ^(S^+1) for σ e S j , and as the maps &(<*)*) are evidently
compatible with face and degeneracy maps, we obtain a coefficient map

(3.29) k{ω) = (fc(ωσ))σ6S: W(AQ)S -> Cβ(S, ^") .

By the general construction in (2.17) this determines a g-DG-algebra
homomorphism

(3.30) Jφ>) = C(/, &(α>)): TF,(g) = C'(Pt, TΓ(Jg)) -> C"(S, ^*) .

As the construction of λE is compatible with coefficient maps, we obtain
the formula

(3.31) XE(ω) = k,(ω)oχ ,

i.e., the diagram

λ E(ω)

(3.32)
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is commutative. The construction of k^ω) can be extended to W8(Q), S^

1 as follows. Let T be another simplicial set and let ωk = (ωktj)jeSo be
a family of connections for E for every ke To. Then for ω = (ύ)k)keTo

we define k2(ω): W2(Q) -> C'(T, C'(S, E)) by the following commutative
diagram

>C(T,C'(S,E))

(3.33)

C (Ptf

where the coefficient map k^ω): W^JQ^ —> C'(S, 2?*) is determined for
every simplex τ = (fc0, •• ,ί; r o)6ΪT

r o as follows. Associated to r is the
(m + l)-tuple of families of connections ωτ = (ωkQ, •••, α)fcw) on £". AS
in (3.30) this determines morphisms of g-DG-algebras

(3.34) fc^αO: T^fe-^1) -> C\S, E) , m ^ 0 .

The coefficient map k^ω) is now defined at τ e Tm by kx(ωv). Explicitly,
for σ eSi, I ^ 0, the map

is given by the matrix (ωkaJβ) a = 0, , m; £ = 0, , I of g-connec-
tions.

A vertex a e So is called conical if the mapping σ = (i0, , iι) \-*
σa = {a, i0, , iι) maps iSz into Sz+1 for all I ^ 0. It is well-known (see
e.g., [7, Ch. I, 3.7]) that the existence of a conical vertex implies the
acyclicity of the cochain complex C'(S, A) for any abelian group A.
More precisely, the mappings ge?x\ C\S, A) -+ Cι~\S, A) defined for I > 0
by the formula ^(c)σ = c(σa) for σ eSι__lf ceC1 satisfy the homotopy
relations

(3.35) §ι-s3ίfι + ^T+i°δ, = idU ί >0

and

(3.36)

ε
Here A ^ C°(S, A) denote the mapping of A to constant 0-cochains and

3a

evaluation of 0-cochains at aeS0 respectively. It follows that the
augumented complex
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is acyclic, i.e.

s (0, I > 0
(3.37) Hι

δ(C(S, A))^\

with the isomorphism in degree 0 induced by j a and ε. If A' is now
a DG-algebra, C'(Sy A') is a double complex (see Section 2), and (3.37)
implies that one of its spectral sequences collapses. Hence we have the
following fact.

PROPOSITION 3.38. Let S be a simplicial set with a conical vertex
a and let A' be a ΌG-algebra. Then there is a canonical isomorphism
(induced by ε)

ε*: H'(A) % H\S\ A') = H(Ctot(S; A)) .

Furthermore ja* — ε*1 and thus ja* is independent of the choice of the
conical vertex aeS0.

Proposition 3.38 applies in particular to the standard ss set Δ{p) of
singular simplices in the set Ap = {0, , p}, p ^ 0, in which every vertex
is conical.

We turn now to the canonical projections p8: W8 —> TFβ_! (see 2.24)
for s = 1, 2. For any vertex ke To we have by the construction of k2((ϋ)
in (3.33) a commutative diagram

(3.39)

Similarly for a family of connections ω = (<»/),• e S o in E and a vertex
ke To we have a commutative diagram

(3.40)

W(a) — E

For conical vertices k e Γo, the vertical maps on the RHS in 3.39, resp.
3.40 are by Proposition 3.38 isomorphisms in cohomology, which do not
depend on k. Together with the results of Sections 4 and 5 this will
imply the connection-independence of the generalized characteristic homo-
morphism of a foliated bundle (see Section 6, in particular Propositon
6.11).
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The construction of Xι

E shows that for a constant local system on S
given by a g-DG-algebra E (see Section 2), and a family ω = (ωj)jeSo of
connections in E, we have

Thus the mappings Xι

E(σ) introduced before are a special case of the
mappings Xι

E(σ). In particular for S = Pt and a single connection ω in
E we obtain for σ, = (0, , 0) e Pt,

Xι

E(σι):W(Q)->Cι(Pt,E) = E,

where Xl

Efa) = Xι

E(ω9 •••, ω) = (k(ω), •••, Jc(ω))oχι. In this situation we
have the following facts.

PROPOSITION 3.41.

( i ) For any Q-ΌG-algebra E and connection ω in E we have

Xι

E(ω, , ω) = XE(σt) = 0 / o r ϊ > 0

( i i ) μoχι = 0, Z > 0, wfcere μ = μ°0o...o^{ij: T7(g)®ί+1 - * TΓ(g) denotes

l-fold multiplication in W(Q).

PROOF. Since fc(α>) is multiplicative we have by (3.28') a commuta-
tive diagram

(3.42) \k(ω)<g) -®k(ω) \k(ωσι) \k(ω)

I \ I
E(g) - (g)E—--—• Cf(Pt, E) = E .

The equivalence of the two statements is now clear from (3.32). To
prove (i), we observe that by the definitions (3.9), (3.10) we have Xι

E(σι) =
πiok(ωσι) and ω°ι = Σί=o*iβ> = <*>• Hence k(ωσ) is independent of tό and
dtjf j = 0, •••, I and therefore πi}ok(ωσι) = 0 by Definition (3.4). •

Proposition 3.41 says that the difference maps Xι

Ef I > 0 for a con-
stant family of connections are all zero. Thus if S is a ss set and ω=
(ω^jeso a constant family of connections in E given by ω3- = ω, j eS0,
then the diagram

3,E)

(3.43) h J>^ΐ*

is commutative. Again ε induces an isomorphism in cohomology if
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admits a conical vertex (e.g., in the standard ss set Λ{p), p ^ 0, where
every vertex is conical).

4. Filtrations. Recall the canonical (Koszul) filtration on a g-DG-
algebra E' defined by

(4.1) FpEn = {a e En\v.a = 0 for v e Vg with q > n - p} .

This property is equivalently expressed by

v.a = 0 for ve ΛqQ with q > n — p

and still equivalently by

v.α = 0 for v = a?! Λ Λ α»-p+i , #£ e g .

The following properties of the canonical filtration are important:

(4.2) FPE =) F P + 1 J&, F 0 ^ = E and F^JS"1 = 0 for p > n

(4.3) F*E c E is a g-DG-ideal

(4.4) FpE.FqEaFp+qE;

(4.5) JP*2£* = (Eί{Q))p, i.e., the elements α of degree p

such that i(x)a = 0 for all x e g.

A homomorphism (of degree zero) of g-DG-algebras E' -*Efm is clearly
filtration preserving. More generally a homomorphism E' -* JS"~Z of
degree — ϊ sends ί7^1* into Fp~ιE'n~ι. If we want to emphasize the
dependence of the filtration on g, we write FPE = FP(Q)E. For the
Weil algebra W(Q) e.g.,

F2P-\Q)W(Q) = F»te)W(a) = sψ.w(Q), p ̂  o .

For the Weil algebra W(L) of a Lie algebra L over g we have more
generally

(4.6) Fp(Q)W(L) = Π Λ8F(L, g)*.Λ L* (x) S*L* , p ^ 0 .
+2ί^

Here V(L, g) is defined by the short exact sequence

so that V(L, g)*cL*.
The universal property (3.7) of the Weil algebra is a consequence

of the following refined result, which is essential for the considerations
of this paper.

PROPOSITION 4.7. Let L be a Lie algebra over g, ^ c g any subal-
gebra and E' a commutative Q-ΌG-algebra. Let ω: L* -> E1 be a linear
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map such that

(4.8) i(x)ω(a) = i(x)al for x e g , a e L*

(4.9) θ(y)ω(a) = ω(θ(y)ά) for yeί) , aeL* .

( i ) Γfeere ecm£s a unique homomorphism of ΐ>G-algebras

(4.10) k(ω): W(L) -> #

(ίfoe TFβiZ homomorphism of (ύ), making the diagram

W(L)

ΐ \k(ω)

(4.11) u| JE
/

/ΛOI

commutative, where u: ΛL* —> TF(L) = Λl/* ® SL* denotes the universal
connection α-^α(g)l αwcZ Λ<ϊ> ί̂ β multiplicative extension of ω (this
map will again be denoted (0 as already done before).

(ii) k((θ) is an §-ΌG-homomorphism.
(iii) For the ^-filtration F(Q)E' we have the property

(4.12) k(ω): Λ8V(L, g)*.Λi* (x) S*L* -> Fs+ί(g)jE;.

REMARK 4.13. Note that if (4.9) is replaced by the same condition
for all xeQy then ω = Λco: Λ'L* -+E* is a F(g)-algebra homomorphism,
and so is then k(ώ). Therefore

k(ω): F%Q)W{L) - F'faW , p ^ 0 .

But in the more general situation discussed in Proposition 4.7, the sub-
space

Λ8V(L, β)* (g) S*L* c F8+2\Q)W(L)

is only mapped into F9+*(Q)E\ SO that fc(α>) does not preserve the cano-
nical g-ίiltrations.

PROOF. First ω is extended to a multiplicative homomorphism ω =
Aω: Λ'L*-+E\ This defines k{ω) on L* (g) 1 c TF(L). The multiplica-
tive map k(ώ) on 1 (x) SL* is characterized by its effect on elements l(x)
αeKgjS1!/*, where as usual άeS^* corresponds to ae^L*. By
definition

(4.14) k(ω)ά = dEω(a) — ω(dAa)

where dΛ denotes the Chevalley-Eilenberg differential in ΛL*. First
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we have to verify that the algebra homomorphism k{ώ) commutes with
the differentials. The formula

k(ω)dw = dEk{ώ)

is verified on generators exactly as in [16], p. 58. To prove the formula

(4.15) k{ω)θ{y) = θ(y)k(ω) for yeί),

we first observe that on ΛL* it is true by assumption. For αeS 1 ! /*
we have then

(k(ω)θ(y))(ά) = (dEω - A a)odA)(θ{y)a) = dEθ(y)ω(a) - A a)oθ(y)dAa

= θ(y)(dEω(ά) - A (odAa) = θ(y)k(ω)a

which verifies (4.15). The formula

(4.16) k(ω)i{y) = i{y)k(ω) for y e §

is again true on Λl/* by the assumption 4.8. For αeS\L* we have
on the one hand k(co)i(y)a = 0 (since the derivations i(y) are zero on
S'L*). On the other hand for any yeQ

(4.17) i(y)k(ω)a = i(y)(dEω(a) — A ωda)

= (θ(y)-dEi{y))ω(a) - Λ ω(θ(y) - dAi(y))a

= (θ(y)oω — ωoθ(y))a .

Here we used (dEi(y))ω(a) = dEi(y)a = 0 and dAί(y)a — 0. Assumption
(4.9) implies that this term vanishes for y e § and hence i{y)k(ω)a = 0.
This finishes the proof of part (ii).

It remains to prove (4.12). By the multiplicativity of k(ω) and the
filtration FP(Q)E', it suffices to check the following facts:

(4.18) k(ω)a e F\Q)E1 for all a e V(L, 9)* c L*

(4.19) k(ώ)a e F\$)E2 for all άeS'L* .

But (4.18) means by (4.5) that

i{x)k{ω)a = 0 for x 6 g and aeL* with a \ g = 0 .

This is clear since in fact with these assumptions

i{x)k(ω)a = i(x)ω(a) = %{x)a = 0 .

Property (4.19) means by (4.1) that

(4.20) i{x)i(y)k(ω)a = 0 for x, y e g and α 6 S1!/* .

Now by (4.17) we have for any 2/eg the identity i(y)k(ω)a —
ω°θ(y))a and therefore
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i(x)i(y)k(ω)ά = i(x)θ(y)ω(a) - ω(i(x)θ{y)a) .

Using the identity θ(y)i(x) — i(x)θ(y) = i[y, x] (see (2.9)), it follows that

i(x)i(y)k(ώ)a = (θ(y)i(x) + i[x, y])ω(a) - ω((θ(y)i(x) + i[x, y])a)

= θ(y)(i{x)ω{a) - ω(θ(y)i(x)a) .

The last simplification follows from the assumption (4.8). But clearly
θ(y)(i(x)ω(a) = θ(y)a(x).l = 0 and similarly for the second term, which
establishes (4.20). This finishes the proof of Proposition 4.7. •

As an application of Proposition 4.7 we note that the Weil algebra
functor W on the category j*fύ of Lie algebras L over a fixed Lie
algebra Q extends to linear maps φ: U —> L making the diagram

(4.21) \
*

9
φ*

commutative. The composition L* —> L'* c W(U) extends by part (i) of
Proposition 4.7 to a unique homomorphism of DG-algebras

(4.22) k(φ): W(L) -* W(U) .

The multiplicative map k(φ) is characterized by its values on generators
a e Λ1!/*, # e SMΛ For α e Λ ΐ * we have clearly

(4.23) k{φ)a = ^*α g) 1 .

For aeSιL* we have by (4.14) (again we identify φ* with its multi-
plicative extensions to Λ L*)

(4.24) k(φ)ά = ^(95*0: (x) 1) — φ*(dAά) ® 1

= 1 (g) d"φ*a + (dAφ*a — ̂ *(dΛα)) (g) 1

where

(4.25) αJΓ(9) d^a +
Δ

Here we have used the identity (see e.g., [16], (3.6))

\a[φ9 φ] = -φ*(dAa) .
Δ

T h e e v a l u a t i o n of aK{φ)e Λ2L'* f o r x,yeU g i v e s
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aK(φ)(x, y) = - φ*a[x9 y] + a[φx, φy\ = a([φx, φy] - φ[x, y])

so that K(φ) measures the deviation of φ from being a Lie homomor-
phism. It follows that for a Lie homomorphism φ the extension k{φ)
on l(g) SL* is simply the multiplicative extension of 9>*:L*—>!/*. Thus
for a Lie homomorphism φ: U —> L (over g) the map k{φ) coincides with
the functorial map W(φ).

For any linear map φ: U —• L (over g) condition (4.8) holds and by
(4.18) (4.19) we have

% ) α e Λ T ( L ' , s ) * for aeV(L, g)*

%>)α e (Λ1 V(L', βΓ.Λ1!/*) <g> Γ JL Γ <g) S1!/* for α 6 SLL* ,

where Γ stands for the ground field. By multiplicativity it follows
that

(4.26) k(φ): Λ 8 F(L, g)* ® S^L* -+Mu+V=t Λ8+UV(L', g)*.Λ L* ® SυL'* ,

and with g = dim L'/g = dim V(L', g) clearly s + u ^ g. Thus ^ ^
min (ί, q — s) and

(4.27) s + ^ + 2v = s + 2(^ + v ) - ^ = s + 2 ί - u

^ s + 2ί — min (t, g — s) .

It follows that

(4.28) fc(9>): Λ 8 F(L, g)* ® S*L*
ΓΊ

It is convenient to introduce on the functor W(-) on Jέfΰ the
following even filtration (as distinguished from the canonical filtration
(4.6))

(4.29) F?(Q)W(L) = J?* ,

where ^ = (T7(L)i(8))+.W(L). This reads explicitly as follows

(4.30) FV(β)W(L) = Ji Λ'V(L, g)*.Λ L* <8> S'L* , p ^ 0 ,
+ t^

F'O(Q) is a decreasing, multiplicative filtration by g-DG-ideals in W(L).
The fact that FI*(Q)W(L) is invariant under the operations i(x), θ(x) for
xeQ is immediate from the definition of F0(Q). The ideal F2

0

P(Q)W(L) is
invariant under the Weil differential dw = cϊ' + d" by definition of dw and
the fact that dJa = dΛ« satisfies i(y)i(x)dAa = — α[a;, /̂] = 0 for as, 2/eg,
α e F(L, g)*, and hence dΛα e (Λ V(L, g)* Λi.*)2.

From (4.6) and (4.30) it follows

(4.31) Fl'(Q) W(L) c F*(Q) W(L) , p ^ O .
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Using F0(Q) we can now rephrase the filtration properties of k(ω) in
(4.12) and of k(φ) in (4.26) as follows.

COROLLARY 4.32. (i ) Let ω: L* —• E1 be given as in Proposition
4.7. Then

k(ω): Fl>W(L) -> FP(Q)E for all p ^ 0 ,

i.e., k(ω) preserves the filtrations FI(Q) and F'(Q) (up to the factor 2).
(ii) Let φ: U —» L be a linear map over g, where L, ΊJ [are Lie

algebras over g. Then

k(φ): Fl'(Q)W(L) -> FΠQ)W(L') for all p ^ 0 ,

i.e., the filtration F'0(Q) is defined on the functor W: J2̂ —> J ^ and on
its extension to linear maps over g.

All this applies in particular to the situation where φ — θ: L —> g
is a retraction of the inclusion i = iL:Q-+ L, i.e., θ°i — id. Then there
is a unique DG-homomorphism

(4.33) k(θ): W{Q) -> W(L)

extending θ*. It is an ^-DG-homomorphism for any subalgebra § c g
with respect to which θ is ϊj-equivariant. This follows from part (ii)
of Proposition 4.7. The property

(4.34) k(θ): F?($) TΓ(β) -> F?(β) W(L)

will be used below. Note that for L = g the quotient V(L, g) = 0, so
that Flp(a)W(β) = F2P(Q)W(Q). (4.28) implies then in contrast to (4.34)

k(θ): F2P(Q)W(Q) -> F2^min^q)(a)W(L)

with q = dim L/Q (this property was used in [18] and appears there as
part (ii) of Lemma 4.9).

We have just discussed the properties of the unique extension of
L* £ £/* c W{U) to the DG-homomorphism (4.22). But a linear map
φ: L' —> L (over g) leads also more simply to the composition L * ^ L ' * c
Λ I/'*. Its unique extension to a DG-homomorphism

(4.35) A(φ): W(L) -> Λ L'*

is of course the composition

(4.36) A(φ) - πok{φ)

where π: W(U) —> Λ I/'* denotes the canonical projection. By (4.23) (4.24)
it follows that A{φ) is characterized by the formulas
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{Δ(φ)a = φ*a
(4.37)

for α e Λ ΐ * , αeS'L*.
On Λ L*, L e ^ g we may consider the filtration î όCs) induced by

the canonical projection π: TF(Z#)—> ΛL*. Since there are no symmetric
elements in Λ L*, it follows from (4.6), (4.30) that

(4.38) *T(9) Λ L* = i^p(g) Λ L* for p ^ 0 ,

i.e., the g-filtration F2

0

P(Q) coincides on Λ'L* with the canonical g-filtra-
tion FP(Q).

By (4.36) and Corollary 4.32, (ii) we have for Δ(φ), φ\ L^ U a
linear map over g:

(4.39) Δ{φ)\ Fl*(&)W(L) -> Fl'fa) Λ i ' * = FP(Q) Λ L'* for p ^ 0 .

We turn now to the filtration properties for the V(L)- resp. F(g)-
module map

λ1: TΓ(L) -> ^(L^ 1 )- 1

constructed in Section 3 (see Theorem 3.26). Clearly

(4.40) X ι : F p ( Q ) W ( L ) - + F * - ι ( Q ) W ( L ι + i γ - 1 f o r p ^ l

as is the case for any g-DG-map of degree — I. Concerning the filtration
F0(Q), we have the following fact.

PROPOSITION 4.41.

X1: F?(Q)W(L)' -+ Fl*fa)W(Lι+ί)-1 , p ^ 0 .

PROOF. First we make explicit the filtration jP0(g) on W(Lι+1). Let
Vι(L, g) be defined by the exact sequence

(4.42) 0 -> g -> Lι+1 -> Vt(L, g) -> 0 .

Thus F0(L, g) = V(L, g) in the notation of (4.30). Then

(4.43) Fl*(Q)W(Lι+1) = JL A'Vι(L, β)*.Λ L*'+1 ® SJL*ί+1 , p ^ 0 .

Let s + ί = p and consider an element

w = ^ Λ Λα^A fteΛ

where αt e Λ1 ^(L, g)* and ft- 6 SXL*, i = 1, , s, i = 1, , t. We have
to show Xι(w)eFlpW(Lι+1). Since by (3.26) we have X\w) = 0 for ί > ί ,
we can assume that Z ^ t. Recall from Section 3 that by definition X1

is the composition
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X1: W{L) ^ 4 W(Lι+1Yl) ^ W(Lι+1) , σ = σt e Pt,

where ud: A (L)* -> W(Lι+1) = W(L)®1+1 are the canonical connections
given by inclusion into the j t h factor, j — 0, •••, ί, and uσ — Σi=o£/Mi
with Σi=o tj — l As k(uσ) is multiplicative, we have

k{u°)w = kiu^vkiu0)^ Λ(wσ)α..fc(ttσ)& &(wσ)& 6 TΓ(Lι+1)z .

We will show below that all the coefficients of the factors k(u°)at and
k(uσ)βd are elements of F2

0(Q)W(L1+1). It follows by the multiplicativity
of jPJ(β) that the coefficients of the terms containing dtx A Λ dti
must be in F2

0

p(g)W(Lι+1), p = s + t, and hence 7Γ^)(A(^)^)ei^f(g)T;Γ(Lz+1)
by the Definition (3.4) of π{$. It remains therefore to verify the for-
mulas

(4.44) k(u°)a e F2

0(Q)W(Lι+ί) for a e A'V{L9 g)*

(4.45) k(uσ)β e FI(Q) W(Lι+1) for β e SXL* .

For conciseness we introduce the notation

[a{5) = k(Uj)(a) = l(x) (x)α(g) ® l (αin j-th place) for ae Λ1!**
(4.46) ,~

[βω fc^Oβ = 1 (g) -(x) /3 (g) .(g) 1 (^ in i-th place) for ^ 6
Note that Vt(L9 g)* in (4.42) is determined by an obvious split exact
sequence

0 > Vι(Lf LY > Vι{L, β) — V{L, fl)* > 0

and that

aU) „ α(*> e y^Lf Lγ f o r α 6 Λ i L * ?

α(^ 6 Vt(Lf β)* for α 6 F(L, g)* .

We have then directly from the definition of u°

(4.47) k{u°)a = Σ ίi^ ( i ) = «(0) + Σ ^i(«(i) - «(0))

and thus &(^σ)«e jPo2(g)TF(L)(Z) for αe7(L,g)*. For βeS'L* we have
by (3.14)

&(O# = dw®ι+i(uσ(β)) - Σ (/5(i) - β{0)) (x) dίi + — β[u% u°] .
i=i 2

Expansion along uσ = Σi=o £i% gives by straightforward calculation

k(u°)β = Σ ^-/3(i) - Σ
i0 l(4.48) χ , χ ,

- Y Σ î/3[̂ i - t̂ o, ^i - u0] + — _Σ i
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For dual bases xkt x* in L and L* we obtain by the expansion formula

-β[uif ud] = Σ xt{i) A

the explicit expression

k(uσ)β = Σ t&j) - Σ (β{j) - β{0)

j0 i l

(4.49) + 4" t *'{ Σ (a;*(i) ~ ̂ f0)) Λ

- 4- Σ «<MΣ (*iW) - ^?(0)) Λ ( ( ) y η }

This formula shows that all coefficients of k(uσ)β are indeed elements
of F*(Q) and the proof of Proposition 4.41 is complete. •

REMARK 4.50. From the universal formula (4.48) we obtain for any-
family ω = (ω0, •••, α>ι) of connections ωά\ W(Q)—>E the following formula
for k(ωσ)β, β e Sψ

Kωσ)β = Σ tjkiω^β - Σ (ωy - ωQ)β (x) dίy

(4.51) χ f χ f

- 17 Σ *;/3[a>; - α)0, α)y - ω0] + — Σ titiβ{ωi - ω0, ωό - ω0] .
2 i=i 2 <,i=i

In particular if yδeS^* is invariant, i.e., βeI(Q)2

9 then

(4.52) §

THE HOMOTOPY X\θ). 4.53. The following application of the uni-
versal homotopy λ1 is important.

PROPOSITION 4.54. Let Θ:L-^Q be a linear retraction of I:Q-^L.

( i ) There exists a well-defined map

with the properties:

(4.55) d\\θ) + X\θ)d = k(θ)oW(i) - id

(4.56) X\θ): F?(Q) W(L) -> FJ'(β) W{L) .

(ii) If θ is §-equivariant for any subalgebra £)cg, then X\θ) is a
V(fy-module homomorphism.

PROOF. With the universal homotopy

λ1: W(LY -> W(U)'-1 = (W(L) (g) W(L))-1
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the definition of X\θ) is

(4.57) \\θ) = (id, fc(0)oTF(i))oλι .

To verify the stated properties, we identify the map

(id, k{θ)oW{%))\ W(L) ® W(L) -> W(L)

as the functorial map induced in the sense of (4.22) by a linear map
φ: L —> L x L. For this purpose consider the composition φ defined by
the commutative diagram

L^->LxL

\Δ ΐidxi

L x L > L x g .

φ is a linear map over g (with Δ°i\ g —> L x L the inclusion of g in
L x L). By functoriality we have for k(φ): W(L x L) -> W(L)

k(φ) = W(A)ok(iά x )̂ofc(id x i) .

On TΓ(L) (x) TF(L) s TΓ(L x L) the map TΓ( J) is the multiplication and
hence for a® be W{L) (x) W{L)

Kφ)(a<g>b) = ak{θ)W(i)b .

It follows that

(4.59) k{φ) = (id, k(θ)oW{ϊ)) .

By Corollary 4.32 we have then

(4.60) k(φ): F$*(β) TF(L x L) - F

Together with Proposition 4.41 this implies the filtration property (4.56).
The homotopy formula (4.55) follows from composition of the homotopy
formula for λ1 in (3.26), part (i) with the DG-homomorphism k(φ). The
proof of part (ii) follows from the fact that λ1 is a map of F(g)-modules,
and k(θ) and hence also k(φ) are maps of F(ί))-modules for fy equivariant
θ. •

We finally consider the g-truncated relative Weil algebra

(W0(L, $), = W(L, 1)Wΐ9+1)(Q)W(L, 5) , 0 ^ q
{ * j [WQ(L, §). = WIL, ή) = TF(A » , ϊ = o o .

For L = Q this coincides with the truncated relative Weil algebra with
respect to the canonical filtration F(Q)
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) f = W(Q,

as considered in [14] [16]. We show that W0(L, fj)q and W(Q, J})ff are
homotopy equivalent for all 0 ^ q <* oo, and this functorially for linear
maps 1/ -+ L over g which are ϊ)-equivariant. More precisely we have
the following result.

THEOREM 4.63. Let φ: U —> L be a linear map such that

φoi' = ί

(4.64) ("V /\

θoφ = ff

for the inclusions i:Q-^L, ΐ ' :g-^Z/ and retractions Θ:L-+Q, 0':Z/—>
g Let § c g emώ assume θ, θr as well as φ to be \equivariant. Then
for every q, 0 ^ q <̂  <>°, ίfeβrβ is α diagram

(4.65) x x — • r r > ( < / ) /

k(φ)ok(θ) =

0/ ΌG-homomorphisms between the relative truncated Weil algebras
with respect to the filtration F0(Q). The maps k(θ), W(i) resp. k{θ'),
W(i') are inverse homotopy equivalences. Hence k(φ) induces an isomor-
phism in cohomology which is independent of the linear map φ: U —>L
over g.

PROOF. By functoriality diagram (4.64) induces a diagram

W(L)—^—> W{U) W(i')ok(φ) = W(i)

(4.66) W "77
^ ( β ) k(φ)ok(θ) = k(θ')

of fy-DG-homomorphisms. They preserve the filtrations FQ(Q) by (4.32).
Clearly W(i)ok(θ) = id, and k(θ)oW(i) ~ id according to (4.55). The
homotopy X\θ) preserves by (4.56) the filtration F0(Q) on W(L). Similarly
for U. The desired result follows by passing everywhere to the ΐ)-basic
subalgebras and to the quotients by the filtration ideals F2

Q

{q+1)(Q). •

For a convenient reformulation consider a pair (g, £)) of Lie algebras
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admitting an ϊ)-equivariant retraction g —> §. Denote ^ β f ί ) the category
of Lie algebras L over g admitting an ^-equivariant retraction L->Q.
Then we have the following result.

COROLLARY 4.67. (i) The filtered functor Wo( —, ί))q on the category
JzfM) is homotopy equivalent to the constant functor given by the cano-
nically filtered Q-ΌG-algebra W(Q, ΐ))9.

(ii) The spectral functor associated to the filtration FIP(Q) on
W0( — ,fyq is naturally equivalent to the constant functor given by the
spectral sequence associated to the canonical filtration F(Q) on W(Q, 1j)q.

PROOF, (i) was proved in Theorem 4.63. Part (ii) follows by the
same argument, since W(i), k(β), and X\θ) induce homotopy equivalences
of the associated graded algebras

(4.68) G0W0(L, Q)q ~ GW(Q, $) f ,

and hence isomorphisms of the i?r-terms for r ^ 1. •

REMARK 4.69. No such results hold with respect to the canonical
filtration F(Q) on W(L, ί))q. The maps

k(θ)

are still homotopy-equivalences. But the homotopy k(θ)°W(i) — id is not
compatible with the canonical filtration, and therefore does not pass to
the quotients by the filtration ideals with respect to F(Q). In fact there
is not even an isomorphism of the homologies H(W(L, §)/F2{q+1)(Q)W(L, $))
and H(W(β, fy/F2{q+1Kg)W(e, $)). To see this let e.g., § = g. Then

W(L, β) ^ T7(g, g) = J(g) .

But

H(W(Lf Q)/F^(Q)W(L, g)) and I(g)/F2(9+1)(g)I(g)

are certainly not isomorphic. E.g., for g = 0 the second algebra equals
the ground field, whereas the first algebra is highly non-trivial [3] [6]
[10] [12].

SIGNIFICANCE OF WO( — , ϊj)q 4.70. In the next section we will esta-
blish the appropriate generalizations of the statements 4.63 and 4.67 for
the functors W8(~9 §)g. But first we wish to give a geometric inter-
pretation for the complex Wo(—, §)ff. For this purpose we return to
the geometric context explained in the introduction. More specifically

we consider a foliated G-bundle P -̂ > X. The foliation LQ on X is the
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quotient of a foliation L o n P which is G-in variant i.e., Lg = L/G. For
a closed subgroup GaG there is then defined o n l = P/G a quotient
foliation LQ = L/G. The projection P = P-> P/G is itself a foliated G-

bundle P—>M. Thus there is a factorization

P = P - ^ X = P / G

ikf =P/G

of the foliated bundle map S into the foliated bundle map π and the
G/G-fibration π. This situation has been extensively discussed in [18],
Section 3, to which we refer for more details on the following discussion.
Let I be the codimension of the foliation L on I , q — dim g/g. Then
the foliation LQ on M has codimension q + I. Let ί ί c f f be a closed
subgroup and θ an ϋ-equivariant splitting of the exact sequence

θ

An adapted connection ώ in the G-bundle P leads to an adapted connec-
tion ω = θoώ in the G-bundle P. This in turn leads to the following
commutative diagram

k(ώ)H k{ώ)H

Ω(P/H)

(4.72)

The vertical map on the RHS is the Weil homomorphism of (O on P.
The map k(ώ)H: W{Q, H\ —> Ω(P/H) is the Weil homomorphism of ώ on
P, annihilating the filtration ideal F2{1+1)(Q)W(Q, H). The point of diagram
4.72 is that this same map on W(Q, H) also annililates the filtration ideal
Fl«+ι+1)(Q)W(β, H), since

(4.73) FI^KQ) W(Q, H) C F*»(Q) W(Q9 H) , p ^ 0 .

The effect of this is that the Weil homomorphism k(ω) of ω can be
realized directly by k(ώ) on the complex TΓ0(g, H)q+ι. This is the
geometric significance of the filtration F0(g) on T7(g, H).

We turn next to a generalization of these results to the functors
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5. Isomorphism Theorems. In this section we prove the main
result of this paper, namely the homology equivalence of all truncated
relative ss Weil algebras W.(L, ί))q for s ^ 0.

First we generalize the Definition (4.29) of the filtration F0(Q) on the
functor Wo = W as follows. Let s > 0 and Wa(L) the g-DG-algebra
defined in (2.22). Then

(5.1) F?(Q)WS{L) = Ά. F*
1

defines recursively an even filtration on Wa(L).

LEMMA 5.2. FS(Q)WS(L) satisfies the following properties:
( i ) F8{Q)W8{L) is functorial for Lie homomorphisms U —> L over g;
(ii) F8(Q)W8(L) is a decreasing, bihomogeneous and multiplicative

filtration by Q-ΌG-ideals;
(iii) F8(Q)W8 is preserved under the face and degeneracy maps

e\: W8(Lι+ί) -* W8(Lι+2) , μ): W8(Lι+2) -> W8(Lι+ί) .

PROOF, (i) For s = 0 this property holds by part (ii) of 4.32 (even
for linear maps U —> L over g). From (5.1) it is then clear that the
functoriality holds for all s ^ 0. (ii), (iii) are proved by induction on
s (the case s = 0 is clear). As the operators i(x), θ(x) for x e g leave
W8(L)1 = W8^(Lι+1) invariant, so are the subspaces F?Wt(L) by (5.1).
We can assume that dWs_1 leaves F^W^L1^) invariant and that the
face and degeneracy maps satisfy

el: Fl^WULι+1) -> Fl^WULl+2)

fή: F^WUL™) - F^WULι+ι) .

It follows that δ = Σίίί (-l)*e{: FTW£L) -> F\PW8{L) and therefore also

dWs{L) - δ + (-l)ιdWs_lUι+ί): FTWXL) - , F?W.{L) .

The face and degeneracy maps obviously preserve F8W8. The multipli-
cativity follows from the commutative diagram below (for the notations
see the definition of the multiplication in the proof of 2.14).
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Since the vertical maps (defined by face maps) are filtration preserving,
and /V.-i does so by induction assumption, so does μWg. This completes
the proof of 5.2. •

Thus we can consider more generally than (4.61) the g-truncated
relative ss Weil algebras

(W8(L, $)f = WS{L, WFl^(β)Ws(L, ή) , 0 £ q

For s > 0 the natural projection (2.24) induces DG-maps

(5.4) pa(L, $): WS(L, fyq -> WS_,{L, fyq , 0 ^ g ^ oo .

The following theorem was originally stated in [13] [15] for L = g under
the assumption that (g, ϊj) is a reductive pair of Lie algebras. The
assumption we need is only the existence of an ^-equivariant retraction

THEOREM 5.5. Let L be a Lie algebra over g admitting an ί)-equi-
variant retraction L—>g. Then for every q, 0 tί Q tί °°, and every
s > 0 the commutative diagram of ΌG-homomorphisms

WS(L, fyq -^—L—> WS^{L, fyq

(5.6) JWW.W JTΓ-xίi.*)

induces a commutative diagram of homology-isomorphisms. This dia-
gram is natural for Lie homomorphisms U —> L of Lie algebras over g.

Together with Theorem 4.63 this establishes the following fact.

COROLLARY 5.7 [13]. Let 0 ^ q ^ oo. Γfeew £&e functors H(W£L, §),),
s ^ 0 cm ίfee category £fM) of Lie algebras over g are all naturally
equivalent to the constant functor given by the algebra H(W(Q, ή)g).

For q = oo this leads to isomorphisms

(5.8) H(T7 s (L,^))^ i ϊ (^(g,^) = / ^ ) , s ^ O .

The last isomorphism is induced by the restriction W(Q9 ί)) -> W(ί)f §) =
), which is a homotopy equivalence by formula (4.55) for the inclusion

ί) c g and an fe-equivariant retraction g —> §. For § = 0 in particular
this shows that

(5.9) H(WS(L)) ~ £Γ(TΓ(β)) = k (ground field)
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i.e., the cohomological triviality of the ss Weil algebra and the ordinary-
Weil algebras.

For 0 5̂  q ^ °o and ί) = g we have further by (5.7) the isomorphisms

(5.10) H{ WXL, fl)f) s H( W{&, β ) f ) = I(Q)q , s ^ O .

PROOF OF THEOREM 5.5. We consider the following properties for
fixed q, 0 ^ q <; oo.

Q8: for every 0 <L t ti s the natural restriction homomorphism

induces a homology isomorphism.

P8: for every 1 <; ί <̂  s the natural projection

induces a homology isomorphism.

The statement QQ was proved in Theorem 4.63. We shall prove the
following implications:

( i ) Q.«P. + 1 >

(ii) Qo and P 8 + 1 => Q8+1.
This will then complete the proof of Theorem 5.5.

To prove (i) we consider the spectral sequence associated to the
following filtration on Wa+ι(L, ί))g:

(5.11) 'FιW.+ι(L, $)f =

This is a decreasing multiplicative filtration with graded algebra

(5.12) Έl" = 'GιW'8+1(L, » f = Wl(Lι+\ « f

and d0 = (?(ώτrs+1) = ( — l)ιdwaιLι+i) It follows that

(5.13) Έl"

We can consider the assignment σ ^ H(W8(Lι+1, §)q) for ί ^ O as the
local system of coefficients H(W8(ΔL, Jj)ff) on the ss Pt . Then

The differential d,: Έ[> ->Έ[+1" of bidegree (1,0) corresponds to St =
Σito( — l)jeι

d. We claim that as a consequence of Q8 the local system
H{W8{AL, ί))q) is isomorphic to the constant local system defined by
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% lj)β) For this purpose consider for i ^ O the commutat ive dia-
g r a m of Lie homomorphisms

(5.14) * \ χ

L
Ui
9

where Δh 4{+ί denote the respective diagonal maps and j = 0, , I + 1.
By functoriality there is then a commutative diagram

H(W8(Lι+\ $)f) A

By the assumption Q8, the maps into H(W9(Q, fyg) are isomorphisms. It
follows that the map ej is an isomorphism which does not depend on
j = 0, , I + 1. This proves the constancy of the system H(W8(ΔL, ί))q).
In particular the face maps ej correspond to the identity under the
identifications

It follows that

ϊ+i fid for i odd)
« Σ ( D i i d(5.16) «i = Σ ( - D i i d n , 7

y=o (0 for £ even]
Therefore

(5.17) '
_ J 0 for ί > 0

for ϊ =

and the spectral sequence [of the filtered algebra (5.11) 'collapses. The
edge map

is therefore an isomorphism. But this map is induced by the natural
projection p8+1(L, §). This establishes the implication Q8 => P8 + 1.

To prove the implication (ii), consider the commutative diagram of
DG-homomorphisms
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τxr tτ
Wβ+1(L,

(5.18) |wVn«f» |τrf(ΐfή) Iτ7o(i,tt

Clearly property Qo together with Ps+1 implies then that all vertical
maps induce homology isomorphisms, i.e., property Qβ+1. This finishes
the proof of Theorem 5.5. •

REMARK 5.19. The argument in the proof just completed establishes
more generally the following fact. Let F: J*fq ~> J ^ be a contra variant
functor with values in the category J^f of DG-algebras. Define recur-
sively a sequence of functors Fs, s ^ 0 (Fo = F) as explained at the end
of Section 2. If we apply this construction to the functor Fo= Wo( — , ί))qf

it is easy to verify that F8 = W8( — , ίj)q. If Fo satisfies property QOf i.e.,
if the homology functor H(F) on ^ is naturally equivalent to the
constant functor defined by the algebra H(F(Q)) (the value of H(F) on
the initial object of =2 )̂, then more generally all functors Fa9 s ^ 0
satisfy the same property. In other words the implication Qo => Q8,
s ^ 0 follows by a general spectral sequence argument, whereas the
property Qo for Fo may or may not hold. For the case of the functor
FΌ = Wo( — , fyq on the category J*fiα,y the property Qo was established in
Section 4 (Theorem 4.63 and Corollary 4.67), whereas the arguments in
this section are of the general nature just explained.

We turn now to the map λ: W—> Wλ. With the Definition (5.1) of
FIP(Q)W1(L) Proposition 4.41 clearly translates to the fact

(5.20) λ: FI\Q) W{L) -* F?(Q) WX(L) , p ^ 0 .

It follows that λ induces an additive DG-map

THEOREM 5.21. The induced homology map

λ*: H(W0(L, $),) -> mWAL, ή),)

is a multiplicative isomorphism inverting the homology isomorphism
(Pi)* induced by the canonical projection px{Ly Jj): WX{L9 fy)q^> W0(L, §)q.

PROOF. By part (ii) of Theorem 3.26 we have ft°λ = id: W0(L) -*
WJJJ). Since both λ and p1 are filtration preserving, this also holds on
W0(L, fj)q. But (Pi)* is already known to be an isomorphism by Theorem
5.5. Therefore the same holds for the one-sided inverse λ*. •

REMARK. While by the above argument the homology map λ* is
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an isomorphism of algebras, it is worth emphasizing that λ itself is
definitely not multiplicative (except for Q = R). For this it suffices to
observe that for linearly independent a, /3eg* in fact λ(α)λ(/3)^λ(/3)λ(α)
in W^Q). Since λ is defined on the commutative algebra W(g), it cannot
be multiplicative.

REMARK 5.22. The isomorphism λ* of Theorem 5.21 as well as the
isomorphisms of Theorem 5.5 are applied in the geometric context to
pairs (G, H) of Lie groups, HaG a closed subgroup. The passage to
ϊ)-basic elements is then replaced by the passage to iϊ-basic elements,
which leads to algebras W8(L, H)q, W8(Q, H)q etc. We always assume
G connected and H with finitely many connected components. For the
action of the component group Γ = H/Ho we have then for the invari-
ants

W = W,(Q, H)q .

Since the cohomology of Γ is trivial, it follows that

As the maps |08(g, 6)* in Theorem 5.5 are isomorphisms which are Γ-equi-
variant, it follows that the corresponding maps

A (β, # ) * : H(W8(Q, H)q) -* H(WUβ, H)g)

are also isomorphisms. That

λ*: H(W(Q, H)q) -> H{W,{% H)q)

is an isomorphism follows again from the fact that it inverts p^Q, H)*.
Corollary 4.32, (i) has the following generalization to local systems

E of g-DG-algebras on a ss set S. The canonical g-filtration on C(S, E)
is given by

(5.23) F'fa)C(S, E) = C(S,

PROPOSITION 5.24. Let ω = (ωj)deSo be a family of linear maps
ω: L* —» E), j e So satisfying the conditions (4.8) (4.9) in Proposition
4.7. Then the Weil homomorphism (3.30) has the filtration property

> F>(Q)C(S, E) , p ^ 0 .

PROOF. Together with the Definition (5.1) of Fl^W^L) and the
definition of h^ω) as a coefficient map this follows from part (i) of
Corollary 4.32. •

COROLLARY 5.25. Let the situation be as above. Then the difference
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map XE(ώ) has the filtration property

λ£(α>): F?(a)W(L) - F>(β)C(S, E) , p ^ 0 .

PROOF. Since by (3.31) the map XE(co) is the composition fc^ωjoλ:
TΓ(L) -> C(S, # ) , this filtration property follows from (5.20) and (5.24). •

REMARK 5.26. The last facts imply the following. If E is a local
system with the property that FQ+\Q)E = 0, there is a commutative
diagram of DG-maps

/λE(ω)

W(Q)g .

Since λ induces a homology isomorphism, the maps k^ω) and XE((θ) are
homologically equivalent. The same facts hold if E is equipped with
any finite filtration such that k^ω) has the filtration property 5.24.
This is in particular the case for a family ω of local adapted connections
in a foliated bundle, as discussed in the remainder of this paper.

6. Generalized characteristic homomorphism. In this Section we
apply the preceding results to the geometric context described in the
introduction, where all these constructions originated (see [12] to [15]).

For a foliated G-bundle P-^+M, (G connected), an open covering %? =
(Uj)jej of M such that P/Uj admits an adapted connection ωjf the family
ω = (α>y) on P/ΉS defines then a generalized Weil homomorphism

(6.1) Uω): W;(Q) —

We refer to (3.30) for the construction of k^ω). The notations are those
of the introduction. We write in particular C ( ^ , π*Ω'P) = C(N(%f), π*Ω'P),
where JV(^O is the ss set given by the nerve of the covering ^ . The
map k^co) embodies the idea of constructing the characteristic classes of
P out of local connections ω5 on PjUό for Ήf = (U^^j- The early
papers of Koszul [21] [22] already propagate the idea that the characte-
ristic classes of a principal bundle can be constructed out of its transi-
tion functions. This corresponds to the choice of a family of local
connections which locally trivialize the bundle.

To explain the filtration phenomena for the map (6.1), we first
observe that the target carries a filtration defined by the normal bundle
Q — TM/L of the foliation LaTM. More precisely let <^* denote the
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sheaf of sections of the dual bundle Q*. The powers of the differential
ideal &*.π*ΩP define a filtration

(6.2) FpO(f?, π*Ωp) = C(&, Apέ2*.π*ΩP) for p ^ 0 .

This is a decreasing filtration by g-DG-ideals on C. With q the codimen-
sion of LdTM we have then

(6.3) Fq+1C(%S, π+ΩP) = 0 .

Observe that the codimension q has to be taken as the rank of <^* over
the underlying structure sheaf ^ , and then Λg+1«^* = 0, which implies
(6.3). Thus e.g., in the holomorphic context q denotes the complex codi-
mension of L c TM. The crucial filtration property of kx{ω) is then as
follows.

PROPOSITION 6.4.

K(ω)Fn$)WM<zFpC{^,π*ΩP) for p^O.

PROOF. By (3.29), (3.30) the map kλ(ω) is determined by the coeffi-
cient maps

where σ = (i0, , i,) e N(&)u I ^ 0. The filtration Flp($) is determined
on W + 1 ) = W[(a) by F2

0

P(Q)W(Q1+1) (see (5.1)). Using (4.43), (6.2) and
the multiplicativity of k(ωσ)f it is sufficient to verify the following
filtration properties:

(6.5) fc(α>,)(α<'>-α<*>) 6 Γ(U{ijtth)9 έ?* π*

(6.6) fc(α)α))§W) e Γ ( ^ . , ^ * π*βp) U

for αeΛ^fl*) and βe&fa*) (see (4.46) for the notations). Concerning
(6.5) we have k(ωσ)(aU)—a{k)) = ωtj(cc) — <oik(a). As for the difference of
any two connections we have

i(α?*)(ω<i(α) - ωi]c(a)) = a(x) - a(x) = 0 for x e Q ,

where x* denotes the canonical vertical vector field on P determined by
x e g. Since the connections ωtj and ωiJe are adapted, they annihilate
the foliation LaTP (projecting onto L a TM). It follows that the 1-
forms (Oijia) — <oik(a) on π~\UUάΛk)) are locally representable as Σi^*^z*/z>
where τz e ^ * and f% e ώp. This proves (6.5).

To prove (6.6) we observe that k(ωσ)β{j) = k(ωiά)β, i.e., k(ωσ)βU) is a
curvature term of the adapted connection ωt. on P/Utj. But, as for
the curvature of any connection, we have then i{x*)k(ωi3)β = 0, x 6 g.
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Since ωί3. is adapted and L is involutive it follows that

k{ωi3)β{X, Y) = dω(β)(X, Y) + β[ω{X\ ω(Y)] = 0 ,

for germs of vector fields X, Y in L. It follows that the 2-forms k(ωί3)β
on π~\Ui3) are locally representable as Σ ? ^ * ^ Λ τ ; , where T j β ^ * and
Ί\ e ΩP. This proves (6.6). •

Since by (6.3) we have Fq+"C(<%f9 π*Ω'P) = 0, it follows that kx{ω)
induces a g-DG-algebra homomorphism (still denoted fc^ω)) of the form

Let now H c G be a closed subgroup with finitely many connected
components (taken in the appropriate category). By passage to iϊ-basic
elements we obtain then a DG-algebra homomorphism

(6.7) Uώ): W&9 H)q -> C(a% Z*ΩP/H) .

Here π: P/H-* M denotes the projection induced by π:P—> M. Let s:
M —> P/H be a cross-section of π, defining an £Γ-reduction of the G-bundle
P. By composition we obtain then a homomorphism of DG-algebras

(6.8) Δ(ω) = s*o&1(α>)oΛ,

which completes the following diagram

Recall that by Theorem 5.21 and Remark 5.22 the map λ induces an
algebra-isomorphism in cohomology and thus kx(ω) and X^Ω determine
the same multiplicative maps in cohomology. The following argument
shows that in fact the cohomology maps k^O))* and Δ(<s))* are inde-
pendent of the family of local adapted connections on ^ . Given two
families of local adapted connections ω0 and ωt on ^ , we observe that
by (3.33) we have a homomorphism of g-DG-algebras

k2(ω0, ωj: W2(Q) -+ C(J ( 1 ), C ( ^ , π*ΩP)) ,

where Δω is the standard ss set with two vertices. As in Proposition 6.4
it follows that k2(ω0, ωt) preserves filtrations and therefore we obtain a
commutative diagram analogous to (3.39)
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H\) ***£h H\C(Δω, C(^, π,ΩP/H)))

(6.10)

By Proposition 3.38, Theorem 5.5 and Remark 5.22 the vertical maps
are isomorphisms which are independent of I = 0, 1. It follows that

&i(α>z)* = Uι)*°h(<t>o, oO^if t) ; 1 = e^ok2(ω0f ω J X f t ) ; 1 is independent of 1 =
0,1. Hence we have proved the following result.

PROPOSITION 6.11. The homomorphisms of graded algebras

&,(<»)*: H\WX<& H)q) -> H\&; it*Ω'PIH)

and

J(ω)m: H\W(β, H\) -> H\<&\ Ω'M)

are independent of the choice of the family of adapted connection (ύ =
(o)y) on P/%S.

From now on we will denote these two cohomology maps by

(6.12) UP, a θ * : HXWώ, H\) -+ HX<&\ fi*(Ωm

PIH))

(6.13) A(P, <&)* = s*ofcx(P, ^ ) , o λ s κ : JEf(?Γ(fl, H) g) ^ H\^; Ω'M) .

π
These maps depend only on the foliated bundle P -* M and, in the case
of Δ(P, ^ 0 * , also on the ίZ-reduction s of P.

As an immediate consequence of Proposition 6.11 we get the compati-
bility of the maps Δ(P, ^ 0 * under refinements of ^Λ If indeed 3^ = ( y < ) l e I

is a refinement of %f via an index map a: /—> J and if α> = (ωs)jejf resp.
a)' = (ft)ί)iβi are families of adapted connections on P / ^ , resp. P/3^,
then α*(α>) = (α)β(<)| FOiez is a second family of adapted connections on
P/T*. From Proposition 6.11 we get the commutative diagrams

and

( 6 1 5 ) ^ ( P , ) *

H(W(Q,
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where jUφ denotes the canonical map induced by a. So far the target
of the map Δ(P, fS)* is the cohomology algebra H{&\ Ω'M) and therefore
depends a priori on the covering ^Λ The passage to the De Rham coho-
mology of M can now be done by standard methods of sheaf-cohomology
theory [7, Ch. II, Sections 5.3 and 5.4], [8]. To allow the interpretation
of the general theory in various categories, we view the De Rham
cohomology of M as the hypercohomology H(M; Ω'M) of M with coeffi-
cients in the sheaf complex Ω'M of differential forms (with respect to the
structure sheaf <?M) on M, i.e., H'ΌR(M) = H'(M; Ω'M) = H\Γ(M; <£f (Λf, ΩM)))
where ^(Λf, —) is the canonical resolution on M [8], [9]. From the
triple-complex

(6.16) K = Cm&, &XM, Ω'M))

we obtain then the following information. Filtering K with respect to
degrees ^p in ^"(M, —) we get a spectral sequence whose £Ί-term is
given by

"E[>s = H\<&\ <g"{M, ΩM)) .

Thus "El's = 0 for s > 0, since <^r(M, - ) is flabby, and we have an
edge isomorphism

jf;: H(M; ΩM) = HUM) - ^

induced by the canonical inclusion j " : ̂ {M, Ω'M) -> K. The first spectral
sequence of K (with respect to the complementary degree) is then of
the form

where £έf\Ω'M) is the local system of coefficients on N(βS) given by
σ \~* Hs(Uσ, ΩM) = H8(Γ(Uσ, ^{M, ΩM))9) s ^ 0. Thus we see that the edge
maps

j r j "

defined by (j^)* = j'i^oj* are isomorphisms provided Sίf\Ωr

M) = 0 for
s > 0, i.e., if the sheaves Ωr

M are Γ(Uσ, -)-acyclic. If the sheaves Ωr

M

are in addition globally acyclic, i.e., Γ(M, — )-acyclic, then by a similar
argument the canonical inclusion

(6.18) iu\ Γ(M, ΩM) -> C(^Ί ΩM)

into C° induces an isomorphism in cohomology (compare Remarks 6.23,
6.24, and 6.25).
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The composition

(6.19) Δ{P)* = OV)*oj(P, ^ ) ,

is called the semi-simplicial characteristic homomorphism of the foliated
bundle P^M relative to the ff-structure s P ' c P defined by s:M—>
P/H. It has been introduced and applied in [13], [14], [15]. The map
Δ(P)# depends only on the foliated structure of P and the iϊ-reduction
s (see Remark 6.23 for a case where Δ(P)+ is even independent of s).
In addition to the primary characteristic classes of P satisfying a Bott
vanishing theorem, Δ(P)* defines characteristic classes of secondary type,
which are obstructions to the invariance of the ίf-subbundle P' a-P under
the flows generated by vector fields tangent to the foliation on P (com-
pare [14], [16], and [17], [18] for explicit calculations and applications).

Furthermore, if the foliated bundle P-^> M admits a global adapted
connection ω: Λ*Q-> Ω(P), we get from Proposition 3.41 a commutative
diagram derived from (3.43)

(6.20)

where s*ofc(ω): W{&, H)q Ά Γ(P/H, Ω'PlH) - ί U Γ(M, Ω*) is the composition
of the ordinary Weil homomorphism k(co) of co with the map s defining
the if-reduction of P. Thus in the presence of a global adapted connec-
tion the direct construction of the generalized characteristic homomor-
phism via s*ofc(α>) (see [16], Theorem 4.43) gives the same result as the
ss construction even at the cochain level. We summarize the construc-
tion of the ss characteristic homomorphism Δ(P)# as follows.

THEOREM 6.21. Let π: P —> M be a foliated G-bundle with G connect-
ed and q the codimension of the foliation on the base space M. Let
HcG be a closed subgroup with finitely many connected components,
and an H-reduction of P given by a cross-section s: M-> P/H of the
associated bundle π:P/H—>M. Then the map Δ(P)+ in the commutative
diagram

H\) kliP)* > HΌR(P/H)

(6.22) -

fa H)q)
 kίiPt
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is an algebra homomorphism depending only on the foliated bundle P
and the H-r eduction s of P. It is determined on HiWfa, H)q) by a
family ω = {ωό) of adapted connections on P / ^ \ f̂(P)* is functorial
in all data. Since λ* is an algebra-isomorphism, this implies that
H'(W(Q, H)q) and H'iW^Q, H)q) can be used interchangeably as domain
of definition for Δ(P)*. We have further the following properties.

( i ) // the open covering ^ — (Uj)je/i satisfies the condition

Hs(Uσ,Ω
r

M/Uσ) = 0, for s > 0 , r ^ O

for every σ e N(%f), then the target of Δ{P)* is given by

Ω'M) s H

and Δ(P)* can be realized by the map Δ(P, Ήf)* into H{^S; Ω'M), the
total cohomology of the double complex C(^f Ωm

M).
(ii) Assume in addition that the foliated bundle P admits a global

adapted connection ω and that HS(M, Ωr

M) = 0 for s > 0 and r ^ 0. Then
the target of Δ(P)* is given by

H\Γ(M, Ω'M)) = H'&; Ω'M) ~ H

and Δ(P)* can be realized by the map s*°k{ω)* into the cohomology of
global forms on M.

We conclude with a few remarks about specific situations in which
this general theory applies.

SMOOTH CASE 6.23. If all structures involved are smooth and M is
paracompact, the modules ΩV

M and Ωv

M\Ua are fine. Therefore the maps
in (6.17), (6.18) induce isomorphisms in cohomology. Using a partition
of unity one obtains also a global adapted connection ω on P. Hence
part (ii) of Theorem 6.21 applies. If further H = KG is a maximal com-
pact subgroup of G, there exists (up to homotopy), a unique ^-reduc-
tion of P and therefore Δ{P)* depends on P only. If P is in particular
the canonically foliated frame bundle of a codimension q foliation on M
given in terms of a Haefliger Γ^-cocycle, the semi-simplicial construction
given here defines the characteristic homomorphism directly in terms of
that cocycle. In this case our construction coincides with the characte-
ristic homomorphism of foliations in Bott-Haefliger [3] [10]; compare also
Bott-Shulman-Stasheίf [4], Shulman [24], Shulman-Stasheff [25] and Vey
[26].

COMPLEX-ANALYTIC CASE 6.24. In this situation the appropriate cover-
ings Ήf of Mare Stein coverings, where the UσaM are Stein-manifolds for
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σ e N(&). By Cartan's Theorem A the cohomology groups H8(Uσ, Ω
r

M/Uσ)
are zero for s > 0, and part (i) of Theorem 6.21 applies with respect to
families of holomorphic adapted connections. Some explicit calculations
in this context can be found in [15]. In this context the subgroup H
entering into Theorem 6.21 need not necessarily be complex-analytic.
One simply passes then to the smooth De Rham complex j^ζ(Λf) on the
RHS of diagram (6.22), prior to applying the map s*.

ALGEBRAIC CASE 6.25. In the category of algebraic varieties (or
schemes) over a ground field of characteristic zero our construction applies
in much the same way as in 6.24. In particular Stein coverings will
have to be replaced by affine coverings. Even in the absence of folia-
tions one obtains in this way a semi-simplicial description of the charac-
teristic homomorphism

^ G))

of an algebraic G-bundle (compare Illusie [11]).

COHOMOLOGY OF BG 6.26. We finally observe that our theory yields a
semi-simplicial realization of the Chern-Weil homomorphism for ordinary
G-bundles P using local connection data in P [13] [14]. In particular
we obtain for the universal G-bundle EG-+BG an isomorphism

A*. I(KG) s IKWfa KG)) — H{BG, R) ,

and a spectral sequence

E?« = H%Q, KG) (g) KGr - HiWάβ, KG)) ,

whose edge-homomorphism is the universal Chern-Weil homomorphism

KG) - HiWfa KG)) = H(BG, R)

(compare [15], 2.11). In this case our construction coincides with the
results in Bott [2] via the van Est theorem.
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