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1. Introduction. The following theorem is due to V. A. Rohlin and
Ja. G. Sinai (cf. [3], [4]).

THEOREM. Let (Ω, _^7 P) be a separable complete probability space
and T an invertible measure preserving transformation on Ω. Then
there exists a sub-σ-field J^l such that

where &*{T) denotes Pinsker's field and Z the set of all integers.

Such a sub-σ-field ^ plays an important role in studies of mixing
properties of transformations, but it is not uniquely determined by the
transformation. The purpose of this note is to investigate the pair
(Γ, ^l) which we call a system and to characterize the relation between
the transformation and the sub-cr-field. Let (S, 2 0̂) be another system
defined on the same probability space. If there exists an invertible
measure preserving transformation R: Ω —>Ω such that RT — SR and
R^o = &Ό, then these systems (T, ̂ \) and (S, ^ 0 ) are said to be iso-
morphic or more precisely, system-isomorphic. Our problem is to find
a metric invariant of the system under system-isomorphy. We shall give
an invariant employing a result due to J. de Sam Lazaro and P. A.
Meyer [5], but this invariant is of "spectral" nature and is not complete
with respect to the system-isomorphy, so it remains still a problem to
find an invariant of "spatial" character.

In §§2 and 3 we shall construct two representations by applying the
method given in [5], and further we shall make the theorem more precise
so as to show the uniqueness of the representation. Then, this theorem
determines the required invariant which we call the multiplicity of the
system.

In §4 we shall show that the multiplicity of a Bernoulli system is
equal to the dimension of the space of all squarely integrable functions
which have zero expectations and are measurable with respect to the
independent generator of this system.
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2. The first representation of systems. In this paragraph we treat
the result in [5] restricting to the case of discrete time. The discussions
will be considerably simplified.

Let Sίf be an infinite dimensional real separable Hubert space, U a
unitary operator on 3ίf and Sff^ a closed subspace of £(f. We denote by
Sίfi the closed subspaces Όι^f^ for any i e Z.

DEFINITION 2.1 (cf. [5]). A pair (U, £2%) is called a situation if the
following conditions are satisfied:

(a) Jm c J^?+1 for any i e Z ,
(b) V*e

In addition, if
(C) ^f^

the situation is called purely non-deterministic.
It is clear that a purely non-deterministic situation is not trivial. In

fact, if it is trivial ^f = &?-„, then Sίf = {0} which is absurd.
Hereafter we consider a fixed situation ([/, Jg^).

DEFINITION 2.2 (cf. [5]). A sequence X = (Xi)iez in S(f is called a
helix for the situation (U, β£ζ), if the following conditions are satisfied:

(a) xQ = 0,
(b) Xi — αvi 6 3tfi for any ieZ,
(c) Xi — #*_! 6 r ^ i i for any ieZ where _L indicates the orthogonal

complement in 3ίf,
(d) U(Xi — Xi-γ) = a?<+1 — Xi for a n y ΐ 6 Z.

A helix X = 0 is called a trivial helix. For two helices X = (Xi)ίez
and X' = (x'i)iez we write X = JC' if a?< = x\ for all i eZ. We denote by
X + X', the helix (xt + # )iez and cX the helix (cα5i)ieZ where c is a
constant. The sequence dt = Xi — x^l9 i e Z is called the helix-difference
of X. The closed linear span of (<Z<)iez is denoted by Jg^.

DEFINITION 2.3. Two helices X and X' for a situation are said to
be mutually orthogonal if £ίfx and £ίfχt are mutually orthogonal in 3(f9

that is, if the corresponding helix-differences at time 1, d^ = α̂  and d[ — x[
are orthogonal in <§ίf.

Clearly §ίfx is invariant under U and orthogonal to £&?-<».
If X is a non-trivial helix, then as is easily seen from (d),

\\Xi+ι — Xi\\ = (constant) for any ieZ,

which is denoted by ||X||. If | |X|| = 1, X is called a normalized helix.
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In order to establish a representation theorem of situations, we begin
with the following lemma.

LEMMA 2.1. If there is no non-trivial helix for a situation, then
the situation is trivial.

PROOF. Suppose that the situation is non-trivial, that is,
Then Sffi =̂= ^g1+1 for all ieZ. Therefore there exists a non-zero element
x e Sίfx Π 31ft. We put x0 = 0, xt = ΣιUiUk-χx (i > 0), x< = - U'x-t (i < 0).

Then X = (Xi)iez is a non-trivial helix, which contradicts our assumption.

THEOREM 2.1. Let (U, J%f0) be any situation. Then there exists a
family of at most countable mutually orthogonal normalized helices
<%? = (Xln)) such that

(1) ^ = JT-oo θ Σ θ

and hence for any x e Sίf

( 2 ) x = x^ + Σ Σ a*"'*"'

where x^^ 6 .^too, (dtΛ))<ez iβ *feβ helix-difference of X{n), (a[n))ieZ 6 Ϊ2(Z)

PROOF. Let <%f — (X{n)) be a maximal family of mutually orthogonal
normalized helices for the situation {U, <^fQ). It is at most countable
since Sίf is separable.

Define

3ίΓ = (JT-oo θ Σ θ

which is a subspace of £έf and invariant under U and orthogonal to
We put ^tl = (JΓΠ3ZΪ) (i e Z) and consider the induced situation (U,
in ^Γ, which is purely non-deterministic, since

-OO - { 0 } .

On the other hand, the maximality of £? implies 3ίΓ Π
0 and so ^ 7 θ -%o — 01 hence there is no non-trivial helix for this
induced situation. Therefore from Lemma 2.1, JίΓ = 3$Γ_^ i.e., 3ίΓ =
{0}. Thus we get (1).

The family of helices <%f = (X(w)) with the property (1) is called a
base for the situation.

Now we shall apply the above result to measure preserving trans-
formations. Let (Ω, J^ P) be a separable complete probability space which
is isomorphic to the unit interval of R1 with the Lebesgue measure, and
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T an automorphism of Ω, that is, a bimeasurable measure preserving
Injection. Let J^l be a complete sub-σ-field of _̂ 7 We denote by ^l
the sub-σ-fields JΓ\J^ for all ieZ.

DEFINITION 2.4. A pair (T, ̂ ) is called a system if the following
conditions are satisfied:

(a) J ^ C J ^ + 1 for any ieZ,
(b) Viezjr^jr.

If
(c) ^loo ΞΞΞ Πiez^T is the trivial σ-field, the system (T, ̂ ) is called

a Kolmogorov system, or simply a i£-system.
Denote by < ^ = L&Ω) the class of all squarely integrable real random

variables with zero expectations, which is an infinite dimensional Hubert
space under the inner product (a?, y) — E[xy] for x, y e <%?. For each i e Z,
let J^? be the subspace of <§ίf consisting of all elements measurable with
respect to J^. We define a unitary operator U on £έf by (Ux)(ω) =
x(T~ιω) for a? e ^f. Then a pair (Ϊ7, SίfS) corresponding to a system (Γ, ^ )
is obviously a situation and the situation corresponding to a i£-system
is purely non-deterministic.

A helix for the corresponding situation is also called a helix for the
system, and other nomenclatures will be introduced in the same way.

Thus for any system we have the representations (1) and (2).
Further, it is known that the unitary operator U induced by a non-

trivial system (Γ, J^) has a Lebesgue spectrum with infinite multiplicity
in Sίf-oo. Thus we have

THEOREM 2.2. For any non-trivial system, the number of helices
which form a base is really countably infinite.

3. The second representation of iϊ-systems. As the helices determine
only the space ggfJ-** by Theorem 2.1, we simplify our discussion by
assuming that ^L^ — {0}. Thus throughout this paragraph we deal with
ϋΓ-systems. In the following we often omit the expression "a.s." for
simplicity.

The method applied in this section are analogous to the ones used in
martingale theory. First we note that a helix has the martingale property,
namely, for a helix X — {x^)iBZ9 (xi+ί — xj9 ^+j)i^0 is a martingale for a
fixed j 6 Z. In fact, by the orthogonality of the increments of helices
in Definition 2.2. (c), we have

= E[xi+i+ι - Xi+ilJ^+j] + xi+j -
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Let (T, &l) be a if-system.

DEFINITION 3.1. Given two helices X = (flc4)4βz and X' = (xfi)iez for
(T, ^ J ) , we define a random variable

and if X = X' we write simply <X> instead of <X, X>. Obviously <X, X'}
is measurable with respect to _ ^ and <X, X'> = <X', X>. Further for
another helix Y = (yi)iez, we see easily,

<x + r, x'> = <x, x'>
Two helices X and X' are called strictly orthogonal if (X, X') = 0, and
in this case X and X' are orthogonal in the sense of §2, since

For any helices X and Xf, the random variable <X, X'> is clearly
integrable. Now we define a signed measure on ^l with density {X, X'}:

for any A e ^ J ; we write μ<Jt> = μix,x> Then μ<X)X,> is absolutely con-
tinuous with respect to μw and μ<x,}. Indeed, for any

1/2

DEFINITION 3.2. Let X be a helix for a ίΓ-system (T, ̂ ) and v a
random variable measurable with respect to j ^ and squarely inte-
grable with respect to μ<x>. We define a process Y = (yι)ίeZ' Vo = 0,
Vi = ΣUi(yoΓ"**"1*)^ (ί > 0) and yi = -y^T'1 (i < 0) where (dJiβz is the
helix-difference of X. Then Y is clearly a helix for (Γ, ^ ) . We call
Y a helix-transform of X by v and write F = v * X.

For any helix X and X', <v*X, X'> = p<X, X'>, since

Now we show the representation theorem of helices by strictly
orthogonal helices. First we prove the existence part of the representation.

THEOREM 3.1. For any K-system (T, ̂ ), there is a family of at
most countable strictly orthogonal non-trivial helices <%f — (X{n)) such
that for any helix X, there exist helix-transforms v{n) * X{n) with

( l ) x = Σvw*x<«>
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where

Σ ί v{n)2dμ<xmh < oo .

PROOF. Let g? = (X{n)) be a maximal family of strictly orthogonal
non-trivial helices. Take any helix X and let vln) be the Radon-Nikodym
derivative of μ<χ,xu)> with respect to μ<xu)>. Remark that

(X, X{n)) = vw(X{n)) .

We have

0 ^ E[(xx - Σ ^ α Γ

- 2 Σ

- Σ y(

n

Therefore

and so

Σ ί »{n)2dμ<χM> ^ E[(X)] < oo .
n 3a

Thus we have helix-transforms v 1 " * ! " 1 (n ^ 1) and we can consider a
helix Σ»y ( M )*^ ( n )

Put Y = X - Σ» y(M'*X"", then for any n

= 0 .

Hence F is strictly orthogonal to all X{n). By the maximality of ^ Y
is trivial.

As the above proof indicates, the family (X{n)) may be considered
to consist of normalized helices.

Now we shall show that the above representation is unique in the
following sense.

THEOREM 3.2. We can choose the family <%f in Theorem 3.1. so that

( 2 )
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for all n where > denotes the absolute continuity relation of measures.
Further, if another family ψ — (Y{n)) is also one stated in Theorem

3.1. and satisfies the property (2), then μ<X(n)> ~ μ<Fu)> for all n where
~ denotes the equivalence relation of measures.

In the above theorem, the number of non-trivial helices in g? coincides
with that of helices in %f. We call such a family ^ a strict base of
non-trivial helices for the system. The number of non-trivial helices in
a strict base of helices for a iΓ-system is called the multiplicity of this
Jf-system (Γ, ^ ) , and denoted by Af(Γ,

PROOF OF THEOREM 3.2. Let gf == (X{n)) be the family stated in
Theorem 3.1. with the representation (1) for any helix X. As we can
employ the helices Xw/\\X{%) || instead of Xm, we assume that each helix
Xin) is normalized. Put

which is a helix. Then μ<X(n)> is absolutely continuous with respect to
)f since

Hence there exists a non-negative Radon-Nikodym derivative φ{n) such that

( 3 ) d

for all n.
Now let us define a sequence of ^-measurable sets; For any m, n

such that m ^ n,

= {ωeΩ\φ{n)(ω)> 0}

Amn = Σ /^(ω) = mj

where IA denotes the indicator of A.
Then for each m, (Amn)m^n is a disjoint family and for each n.

n

An = U 4 » (disjoint union) .
m = l

We put

for all m. We shall prove that the family (X<m>) is a desired one.
Orthogonality. For any m, m', m > m'
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where the first term of the right hand side vanishes by the strict ortho-
gonality of (X(w)) and the second term vanishes by the disjointness of
Amn and of Am,n for each n. Namely, <Z ( m ), X<m'>> = 0 for m Φ m'.

Absolute continuity. Define for each m

(φ{n)/n2 on Amn, n^m

(0 otherwise ,

then supp ψ{m) = U«̂ m AmΛ and from (3)

Since

supp ψ{m) = \JAmn= \ωeΩ Σhk^ m\

=) supp ψ(m+1)

we have j«<X^>> > μφm+1)y for all m.
Representation. Let X be any helix for the system, then Theorem

3.1. implies

n

Since

by (3) and for all n9m,n^ m.

IAmn*X^

by the disjointness of (Amn)n>n, we have

= Σλ w * ϊ ( " " (say).
m

Finally we prove the uniqueness following the method of [1]. Let
= (X(w)) and Ψ = (Γ ( w )) be the families stated in the theorem with

the property (2). Define θ{n) by

for all w. By Theorem 3.1. for a helix X{n), there exists (u(fc'%))* of
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measurable random variables such that

k

for all n. Hence for any m, n

(4 ) dμ<X(n)tXim)> = Σ v{k'n)v{k'm)dμ<Yik)>

and clearly μ<x

(1)> "< /Vα>>. By symmetry we can conclude that μ<xωy

>. For n > 1, we shall prove

by induction. Assume that this equivalence holds for n = 1, 2, •••, r .
By the Lebesgue decomposition of measure μc^+υ) with respect to μ<F<r+D>,
we have μ<X(r+Ό> = μ + μ' where μ < j«<F(r+i)> and μr is singular with respect
to μ<F(r+υ>, that is, there exists B 6 ^ such that

( 5 ) μ\Bc) = 0 , μ<ytr+i)ύB) = 0 .

If we can show that μ\B) = 0, then μ' is a null measure and we get

(r+1)> = μ < j«<F(r+i)>, and by symmetry we can conclude that
r+i)> which completes the induction.
Assume, for contrary, that μ\B) > 0. Then

Put

then μ<X(r+i)>(B0) > 0 and μ<γωy(B0) > 0.

On the other hand, μ<F(r+n>(l?0) = 0 from (5) and since μ<F<fe)> -<
for & ̂  r + 1 we get

( θ<k)dμ<γω> = μ^uoύBo) = 0 .

Therefore ^(A:) = 0, μ<Fω>-a.s. on Bo for all k ^ r + 1.
Then from (4)

/ g \ dμζx(n),x(m)y _ y i (̂fc.ίD ί̂fc.mJ

CίjW<F(l)> *5

| ; | μ^-a.s. on

for any n, m. Since
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for any n, 1 ^ n <; r, we have from the definition of Bo

( 7 ) df<χ{n)> > 0 , μ<Fo)>-a.s. on J50

for any n,l^n<^r + l. Now by (6) and (7)

Σ i>(*'%)20(&) > 0 , μ<Fω>-a.s. on Bo
k=l

for any n,l^n<Zr + l, and

Σ v ( f c 'w )i; ( f c 'm )^ { A : ) = 0 , μ < F ( i )>-a.s . o n BQ
k=l

for any n, m, n Φ m, 1 <> n, m <L r -{- 1.
Thus we get r + 1 non-zero vectors

αw = [^^^(o))!/^*^®), Λ = 1, 2, , r] (1 ̂  w ^ r + 1)

for some ωeB0 on the r-dimensional Euclidean space, which are mutually
orthogonal. This contradiction shows that μ\B) - 0 and the proof of
Theorem 3.2. is completed.

Our multiplicity is not an invariant under the ordinary isomorphy
in the ergodic theory but it is an invariant under the isomorphy in the
sense of the following definition.

DEFINITION 3.3. Two i£-systems (Γ, ^l) and (S, gf0) are said to be
system-isomorphic if there exists an automorphism R of Ω such that RT =
SR and RJ^ = 5f0.

If and only if X is a helix for (Γ, ^ ) , then XoR-1 is a helix for
(S, &Ό). Therefore the multipicity is an invariant under system-isomorphy.
A relation between the multiplicity and the ordinary isomorphy is given
as follows. By the definition, a if-automorphism S has a sub-σ-field ^ 0

such that (S, g 0̂) is a ίΓ-system.

THEOREM 3.3. Let (T, ̂ 0) be a K-system and S a K-automorphism.
If M(S, ^Q)φM{T9 JQjfor any ^ 0 such that (S, g 0̂) is a K-system, then
T and S are not ordinarily isomorphic. Namely if two K-automorphisms
T and S are ordinarily isomorphic, then we can find two sub-σ-fields
^ and ĝ o such that (T, _^Q and (S, gf0) are K-systems and M(T, JQ =
M(S, gfo).

4. The second representation of jB-systems.

DEFINITION 4.1. Let T be an automorphism of Ω and J ^ a sub-σ-
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field of &~. The pair (Γ, J ^ ) is called a B-system if
(a) (T*jaO<βz is an independent sequence of sub-σ-fields,

If we put ^ = Vi<o TιJ*f, then (T, ̂ ) is clearly a ίC-system. Indeed,
the conditions (a) and (b) in Definition 2.3 hold as we see easily, and (c)
is derived from the Kolmogorov's zero-one law. Thus we can apply the
representation theorem in §3 to E-systems.

THEOREM 4.1. Let (Γ, J ^ ) be a B-system and (T, ^) the K-system
deduced from (T, JV). Then the multiplicity M(T,\^), or simply
M(T, Jzf), is equal to the dimension of Ll(J*f), the subspace of all im-
measurable random variables in L2

0(Ω).

For the proof we need the following lemma.

LEMMA 4.1. Let (42, ̂ J P) be a product space of separable probability
spaces (Ωlf &ίf Px) and (J22, ̂ 2 , P2). Let x e L&Ω) satisfy

(1) \ x(-,ω2)dP2(ω2) = 0

in L\Ω^). If (x{n)) is a complete orthonormal system of L2

0(Ω2), then

(2) x = Σ v{n)χ{n)

n

in L\Ω), where

»<•>(.)={ x(-fω2)x<"\ω2)dP2(ω2).
)Ω2

PROOF. For almost all ω1eΩlfx(ω19 )eL2(Ω2), and

(3 ) x(ω19 ) - i/M) + Σ tf KωW'K ) in L\Ω2) ,
n

where

»i( ) = ί »( , oo2)dP2(ω2) = 0 in L\Ω,)
1 Ω 2

and

By Fubini's theorem, we see that the equality (2) holds in L2(42)-sense.

PROOF OF THEOREM 4.1. Let (T, JQ) be the X-system deduced from
the 5-system (Γ, J ^ ) and (x{n)) a complete orthonormal system of
We define helices (Xln)) as follows:
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atf" = 0 , ajίβ) = Σ »(#> ° I7"'*"1 ' (i > 0) ,

a <») = -ajϋVoΓ"* ( i < 0) .

They are indeed helices because xίn) e L&JΓ[) and E[x[n)

JB7[ίc(Λ)] = 0 by the independence of Jzf and J^l. Since

( 4 ) <2Γ< >, X<™>> = E\x^x^\^Λ = J S [ a W * ] = δ%m ,

(X(ίι)) is a family of strictly orthogonal normalized helices for (Γ,
Now let X = (Xi)iez be any helix for (T, ^ ) . By the definition of

helices,

xx 6 L0

2(^Γ) - L 0

2 (^; V J / ) , «! 6

hence for any

( 5) ( ^ d P = 0 .

By the independence of s/ and &l we can consider (Ω, ̂  V *$/, P) as
the product space of (i2, ̂ f P) and (Ω, Jzf, P). Then (5) implies (1) in
Lemma 4.1 for xx of the helix X, and hence we get

&i = Σ y ( % )#w in L2(i2, J^o V JK P)

This means

( 6 ) X = Σ^ Λ ) *^ ( " }

Since j«<χ(w)> = P for all w, from (4), all the measures μ<χ̂ )> are mutually
equivalent, and so the condition (2) of Theorem 3.2 is satisfied for the
representation (6). Therefore Λf(Γ, J&) = Λf(Γ, ^ ) = the dimension of
Z#o(jaO by the uniqueness theorem. q.e.d.

In a 5-system (Γ, J ^ ) , if *$/ is generated by a finite partition a,
M{T, <$/) = a* — 1 where α* is the number of atoms of a. We often
write M(a) instead of M(T,

SUPPLEMENT. We shall give here a proof of Theorem 2.2 using the
term of helix-transforms and we shall show that a ίC-system has the
Lebesgue spectrum with infinite multiplicity.

To prove the existence of family of countably infinite mutually
orthogonal helices, it is sufficient to show that for any non-trivial helix
X, the dimension of L2(<Zμ<z>) is infinite. Indeed if (vk) is a complete
orthonormal base of L2(dμζxy), the helix-transforms (vk*X) is a family of
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countably infinite mutually orthogonal non-trivial helices. Denote by S
the support of the measure μ<z>, i.e., S = {(X) Φ 0}. Since X is non-
trivial, P(S) > 0. Then the measure space (S, ̂ ΌΠS, μ<x>) has no atom.

(For any A e J^f) S, μ<xy(A) = [ (X)dP>0, that is, P(A) > 0, there exists
B e ^ n S , S c i , P(B) > 0, that is, μ<xy(B) > 0.) Hence (Ω, j ^ , μ^y) has
also no atom, which means that the space U(dμ<xy) has the infinite
dimension.

Thus Theorem 2.2 is proved without the term of the spectrum of
the systems. Further, the helix-differences of the countably infinite
family gf in Theorem 2.2 is a base of spectrum with infinite multiplicity
for a non-trivial system.

EXAMPLE 1. For Meshalkin's isomorphic two systems α, β such that

distr.(α) = (1/4, 1/4, 1/4, 1/4) ,

distr.GS) = (1/2, 1/8, 1/8, 1/8, 1/8)

where distr.(α) denotes the distribution of the partition a, we have
M(a) = 3, M(β) = 4. But it is well-known that these two systems are
ordinary isomorphic.

EXAMPLE 2. For Baker's transformation T on the two dimensional
torus,

T(x, y) = (2x, y/2) m o d 1 , 0<x,y^l,

p u t

a = [{{x, y ) | 0 <y£ 1/2} , {(x, y)\l/2 < y ^ 1}] ,

then (T, a) is a β-system, where a denotes the sub-σ-field generated by
a. By Theorem 4.1, M(T, a) = 1.

As a helix H = (ht)iez for (Γ, a) we define

1 0 < y ^ 1/2

Then any random variable x e Ll(a) Q Ll(T~\a) can be written as x = vhx

where v is a squarely integrable Γ^^-measurable random variable.
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