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1. Introduction. This work can be considered as a continuation of
"A formula on some odd-dimensional Riemannian manifolds related to
the Gauss-Bonnet formula" by S. Tanno [7].

Let B be a compact orientable Riemannian manifold of dimension 2n.
The Gauss-Bonnet-Chern formula says

(1) \ Q = 22nπnn\X(B)
JB

where Q denotes the Gauss-Bonnet form and 1(B) is the Euler-Poincare
characteristic. In this formula even dimensionality is essential. If B is
odd-dimensional, then 1{B) = 0. However, for odd-dimensional manifolds,
we can think on the possibility of finding an analogous formula in which
the right hand side is a certain expression containing the Betti numbers.

On trying to find a formula analogous to (1) we expect the non-
vanishing fields on the manifold to play an important role.

On this line, S. Tanno [7] found the following result:

THEOREM. Let (E2n+\ g) be a compact Riemannian manifold having
a unit Killing vector field ζ such that R(X, ζ) Y = g(X, Y)ξ — g( Y, ξ)X,
for any X, Y vector fields on E2n+1 (i.e., a Sasakian manifold). Then,
if the field ξ is regular (Palais [5]), we have

2 ) ((-l)ψ(ζ)22"πnn\) \ F(Ω, ξ) = ± (n
JE r=0

where bJJE) is the i-th Betti number of E and F(Ω, ζ) is an expression
which depends on the curvature Ω and the field ξ.

We want to obtain an expression like (2) for odd-dimensional Rieman-
nian manifolds, which are not necessarily Sasakian.

However it seems convenient to continue assuming ξ to be a regular
unit Killing vector field. Concretely we state the following problem.

Let E be a compact manifold of dimension 2n + 1 with a regular
field ζ on E. Let g be a Riemannian metric on E for which ξ is a unit
Killing vector field. We want to find under these assumptions a formula
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analogous to (2). The simplest example of a manifold satisfying our
hypothesis and not Tanno's is the following:

Let B be a compact orientable Riemannian manifold of dimension 2n.
Let us suppose that b^B) is even and bo(B) = 1. We consider the product
B x S\ A unit tangent field to S1 defines a unit regular Killing vector
field on B x S\ related to the product metric. So, B x S1 satisfies our
hypothesis, but since bγ(B x S1) is odd, on B x Sι there is not any
Sasakian structure because it is well known that the first Betti number
of a Sasakian manifold is zero or even.

The first result which we obtain is the following.

THEOREM 1. Let (E, ξ, g) be a compact orientable Riemannian
manifold of dimension 2n + 1, with ξ a regular unit Killing vector
field on E. Then

!) \ f(Ω, ζ) = ± (n
JE r=0

where f(Ωf ξ) is a certain function of Ω and ζ. br(E) is the r-th Betti
number of E and dr = dim Ker {Hr(E/ζ, R) -> Hr+\E/ζ, R)}. This map is
the multiplication by the Euler class of the bundle E -> E/ξ.

The left hand side of (3) depends on g and ζ. However the right
hand side depends only on ζ (because dr depends on £). The right hand
side is concretely X(E/ξ).

Nevertheless, it is possible that, in the most interesting cases, the
conditions over the field ξ (unit Killing regular) determine X(E/ζ). That
is, if f and ξ' are two unit Killing regular vector fields on E, then
X(E/ξ) = X(E/ξ'). In this case the right hand side of (3) could be calculated
knowing only the Betti numbers of E.

In this work, we have tried to solve these problems in low dimen-
sions (dim 3 and dim 5) and we have obtained some particular results for
higher dimensions.

I am indebted to Professor J. Girbau who suggested this problem to
me and helped in some particular cases.

I also wish to express my sincere gratitude to Professor S. Tanno
for an invaluable review of my manuscript and his commentaries on
Corollary 2.

2. Preliminaries and notations. To state our result in dimension 5
more easily we introduce the following definition.
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DEFINITION. Let E be a compact connected manifold of dimension 5.
We say that the Betti numbers b^E) and b2(E) satisfy the i?Γcondition
if they satisfy any of the following conditions:

( 1 ) b,(E) = 0, b2{E) arbitrary
( 2 ) 6,(17) = 1, b2(E) = 0
( 3 ) b,(E) even Φ 2, b2(E) = 1
(4 ) b,{E) = 2, b2{E) = 0 or 1.
And we say that they satisfy the iϋ2-condition if
( 5 ) b,(E) odd Φ 1, and b2{E) < 12[(4δ1(£7) - 4)/10] + 12<501 + 3 - 461(£r).

(<S01 = 0 if ((461(£r) - 4)/10) 6 Z, and δoι = 1 otherwise. The bracket is the
Gauss symbol meaning the "integer part").

We give now a table which shows, for low Betti numbers, which
ones satisfy the i?2-condition.

b2(E)

3 0, 1, 2.
5 0, 1, 2, 3, 4, 5, 6.
7 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

In the proof of Theorem 3, we use essentially the classification of
complex surfaces given by Kodaira [3]. Let us recall the notation, de-
finitions and some results.

Let S be a compact complex manifold of complex dimension 2. We
denote by cx and c2 the first and second Chern classes of S. We represent
any cohomology class c e H\S, Z) by the value c(S) of c on the funda-
mental cycle of the surface S oriented in the natural way with respect
to its complex structure. Thus we consider c\ and c2 as integers.

We define hr'8 = dim HS(S, Ωr) where Ωr is the sheaf over S of germs
of holomorfic r-forms. We set pg = h2)0 = h0'2 and q = h0>1 and we call
pg and q, respectively, the geometric genus and the irregularity of S.

Moreover, if ξ and η are closed 2-forms on S we define

JS

We may consider ( , ) as a non-singular symmetric bilinear form
defined on H\S, R). We define b+ and b~~ to be respectively the numbers
of positive and negative eigen values of the symmetric bilinear form.

Kodaira obtains the following theorem, which we call

THEOREM A. If bx is even, then 2q = bίf 2pg = b+ — 1, hu0 = q. If
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bt is odd, then 2q = bt + 1, 2pg = b+, hί>0 = q — 1. Moreover c\ + Sq +
b~ = lOpg + 8 if h is odd, and c\ + 8q + b~ = lOp, + 9 if bx is even.

We use also the following theorem (Grauert):

"Any surface is obtained from a surface containing no exceptional
curve by means of a finite number of quadratic transformations".

Let us recall that an exceptional curve (of the first kind) on S is,
by definition, a non-singular rational curve C with (C2) = — 1.

Kodaira gives a proof of this theorem by showing that an exceptional
curve (of the first kind) C on S is contractible, i.e., there exists/: S^ S'
with f(C) — p, S — C isomorphe to S' — p, and / is a monoidal trans-
formation.

We have H%(S, Z) = H2(S', Z) © Z. Since H2(S, Z) is a finitely
generated Z-module, in the classification of surfaces, we always assume
that the surfaces do not contain exceptional curves.

From the last relation we have c\(S) — c\{S') — 1 which for a finite
number nt of quadratic transformations is c\{S) — c\(Sf) — nt.

We also use the following theorem of Kodaira, which we call

THEOREM B. We have the following table for surfaces which are
free from exceptional curves:

&! P 1 2 P 2 K c\ structure

even 0 0 plane or ruled
0 1 1 = 0 0 K% surface
4 1 1 = 0 0 complex torus

even + ^ 0 0 elliptic
even + + + algebraic
odd + 0 elliptic

1 0 0 ?

where Pm = dim H\S, Ω\mK)) and K is a canonical divisor.

Finally we recall the following result (Kodaira).

THEOREM C. If on a complex surface we have pg = 0 and c\ > 0,
then q = 0.

3. Proof of Theorem 1. Let E be a compact orientable manifold of
dimension 2n + 1. Let ξ be a regular field on E and g & Riemannian
metric on E such that f is a unit Killing vector field.

Since ξ is regular and the manifold E is compact the integral curves
of ξ are homeomorphic to S1.
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This allows us to define an effective action without fixed points of
S1 on E (Boothby and Wang [1]) and to construct in this way the
principal circle bundle E —> E/ξ = B, where B denotes the set of orbits,
which is a differentiable manifold (Palais [5]).

Let ω be the dual form of ξ by g, that is:

ω{X) = g(ξ, X) .

Let us now introduce a Riemannian metric on B. For this we define

h(X, Y)(p) = g{X\ Y'){q) - ω®ω(X', T)(g)

where X', Y' are fields on E, which are projected on X, Y respectively,
and q is a point on the fibre of p.

It is easy to see that this definition is independent of the point q
and of the fields X\ Yf chosen. We also see that it is a Riemannian
metric.

So, we have that (B, h) is a Riemannian manifold with g — π*h +
O)(X)ft).

Moreover, since E is orientable, there is a non-vanishing 2n + 1
form on E. This form, integrated over the fibres (the bundle is orienta-
ble), is a non-vanishing 2^-form on B. So B is orientable.

Therefore on B we have:

(4) S Q = 22nπnn\X(B)
JB

where Q = ( — l)n Σ Φ i O^t? Λ Λ Ωt**_lf ΰj denote the curvature
forms of the metric h and X(B) is the Euler-Poincare characteristic of
B.

Since ω(X) = #(£, X) and £ is a Killing vector field we have that ω
is a connection form on the fibre bundle and so we can write Ω) as a
function of the curvature on E with respect to the metric g (Kobayashi).

Let ψa

β, ω} be the connection forms on E and B, with respect to g
and h respectively. Let Ψa

β, Ω) be the curvature forms of the connec-
tions defined by ψa

β and ω) . Set Γ = dω.
Let Z7 be a small open set in which h = Σy ^ ® ^y where ί1, , θ2n

are 1-forms defined on U. Γ = 7τ*(Σti Λytf* Λ «0 with Λi + ŷ* = 0.
Set φ° = ω, φι = τr*(0') so that jr = Σ« 9α ® ^ α

Connections and curvatures are related as follows:

( 5 )
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¥1 = 0

( 6 ) Ψt =-Ψ\=-Σ AikAk!φ> A φ" - Σ Aιk;sφ° A φk

ks ks

Ψ} = π*φιd - Σ ( 4 Λ + AikAh)φk A <p° - Σ - 4 ^ * Λ <P°

where Σ f c A^ t̂f* = dA u — Σ * Aifcω* + Σ * Λ.kSω
s

h. It is easy to see that
Aτj = -(l/2)(<Kf, [e,, e,])) = -flrfe, F,.f).

PROPOSITION 1. In this hypothesis, all trajectories of ζ have the
common length /(ξ).

PROOF. Since ξ is a unit vector field we have, by means of its 1-
parameter group, a parametrization by arc-length. We set X(p) =
inf {t 6 R) t > 0 and φt(p) = p} the period of the orbit through p. It is
constant on each orbit. Clearly X(p) coincides with the length of the
orbit through p.

Let U be an open connected set, and pe U. Let V = <Pt(( — ε, e)x Vo)
be a neighborhood of p. φQ{p) = p with VQ transversal with the 1-
parameter group. For x e V, by taking a smaller neighborhood if need
be, we may suppose that there exists an orthogonal curve σ: [0,1] —• E
with (j(O) = p and σ(l) — x' where x and x' lie on the same orbit.

Then, the transformed σr of σ by φλ{p) is another orthogonal curve
(since ζ is a Killing field) with σ(0) = σ'(0) = p and πoσ' = π°σ. Then
by a straightforward application of the uniqueness of solutions of
ordinary differential equations we have σ — σ' and so the period of p
coincides with the period of x'.

By (4) we have

Λ Λ π*i2ί22«_1 Λ φ° =

If we put A(ij) instead of Ati we have

+ Σ (AdziJAiks) + A(iJc)A(ilS))φk A Ψ') A Λ (yj*j_1

+ Σ (A(ίI.t1_1)il(fcβ) + i i C i ^ U ί w O ) ? * Λ 98) Λ °̂

= X(B) .

Let us compute X(B) in terms of the Betti numbers of E. The
exact Gysin sequence of the bundle π: E-+ B is

0 > £Γ(B) -^-> ^ ^
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Splitting it

0 - • Hp+2(B)/lm DP - • H*+2(E) -> Ker Dp+1 -> 0

and so, since they are vector spaces, we have:

H»+\E) = Ker Dp+1 φ Coker Dp .

Then we get the following relations:

bo(B) =

6,(5) = bt(E) + bo(E) -do-d,

bn(B) = bn(E) + b

(with n = 2k or n = 2k + l, d, = dim Ker A and A : #4(-B; Λ) ^ ίί i + 2(S; R)
the multiplication by the Euler class of the bundle).

Since

( 9 )
r—Ό

expressing each br(B) as a function of br(E) and dr we have
n n—l

r=0 r=0

In this way we get formula (3), with f(Ω, ζ) given by (8). This
f(Ω, ζ) is independent of the choice of ξ-frame fields.

4. Dimension 3.

THEOREM 2. Let (E, g) be a compact connected orientable Riemannian
manifold of dimension 3. Let ζ be a regular unit Killing vector field
on E. Then

(11) (l/2π/(f)) ( (K(e) + SJBΓ(£))9 = 2 -
JE

if and only if b^E) is even, and

(12) (l/2ττ/(f)) ( (K(t) + *K(ξ))η - 3 -
JE

if and only if b^E) is odd, where K(ζL) means the sectional curvature
of the plane orthogonal to ζ, and K(ξ) means the sectional curvature
of any plane containing ζ (it is independent of the choice of the plane)
and rj denotes the volume form.

Moreover in the last case the bundle is trivial. (Then it is clear
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that the right hand side is independent of ξ, in the sense that if ξr is
another regular unit Killing vector field on E, then X(E/ζ) = X(E/ξ').

PROOF. X(E/ξ) = 2 - b,(E) + d0. Ejξ is a Riemann surface, so
b^E/ξ) = X(E/ξ) Ξ 0 (mod 2). If bx{E) is even we have d0 even and since
d0 ^ bo(E/ξ) — 1 (by connectedness) we have d0 = 0. If bt(E) is odd we
have d0 odd and so d0 = 1. By (8) we have

(13) (-l/4ττ/(£))( 2(^2 - 3A(12)V Λ ^2) Λ

Let us compute A(12)2. Let Xl9 X2, ξ be an orthonormal frame.
R(ξ, Xl9 ί, XJ = g(R(ξ, Xx)Xt ξ) = m, -Σi) = A(12)A(21)^ Λ 9°(ί, X.) -
A(12)2.

So A(12)2 is the sectional curvature of the plane determinated by ζ
and X,. If Z = λXL + /̂ X2 with λ2 + /i2 = 1 it is easy to see that
R(ξ, Z, ξ, Z) = A(12)2. So we can say that A(12)2 = K(ξ) = the sectional
curvature of any plane containing ζ.

Analogously we have Ψ\ Λ φ° = -K(t)Ψ° A φ1 A φ\
So (11) and (12) are proved.

Tanno's theorem in dimension 3 is contained in (11) since for
Sasakian manifolds we have bx(E) even and K(ξ) = 1.

5. Dimension 5. In the proof of Theorem 2 we use the fact that
E/ξ is a Riemann surface, that is, an algebraic curve. If we want to
do an analogous study in dimension 5, we would have to impose at least
the condition that E/ζ is a complex manifold.

For this, it is sufficient to assume that E admits an almost contact
normal structure from Morimoto's theorem [4].

THEOREM 3. Let (E, g) be a connected compact Riemannian manifold
of dimension 5 with a normal almost contact regular structure (φ, ζ, η),
ξ unit Killing vector field. Then

(14) (l//(f)2V2!) ( F(Ω, f) = 3 - 2bx{E) + b2(E)
JE

if the Betti numbers of E satisfy the Recondition. And

(15) (l//(ί)2V2!) \ F(Ω, ζ) = 5 - Sb^E) + b2(E)
ύE

if the Betti numbers of E satisfy the Recondition.

It is obvious that the right hand side does not depend on the chosen
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unit Killing vector field. In this formula F(Ω, ξ) is given by (8) where
A(ij) = g(eίf V fi), ψk dual of ek, and ξ, eίf •••, e2n an orthonormal frame.

We prove Theorem 3 studying separately the different cases of condi-
tions R1 and R2.

THEOREM 3a. Let E be a compact connected orientable Riemannian
manifold of dimension 5, and ξ a regular unit Killing vector field on
E such that E/ξ is a complex manifold. Then, if b^E) and b2{E) satisfy
the Recondition, we have E = E/ξ x S1 and X(E/ξ) = 5 - Zb,(E) + b2(E).

PROOF. If the fibration is not trivial we have d0 — 0 and so b^B) —
\{E) odd Φ 1. By Grauert's theorem we have B = Q Q(B'), with B'
free from exceptional curves (of the first kind). The geometric genus
pg and the irregularity q of B are invariant under quadratic transforma-
tions. Thus bx(B) = bλ{B') φ 1 and odd. So by Theorem B we have
c\(Bf) = 0. But cl(B) + nt = c\(Br) = 0 implies c\(B) ^ 0. Moreover c\{B) +
b~(B) = cl(B') + b~{B') = &-(£') implies c\{B) + b~(B) ^ 0. From c\(B) +
&-(£) - lbpg(B) + 8 - 8g(J5) ^ 0 we have pg{B) ^ [(8?(J5) - 8)/10] + doι.

Moreover, from the Gysin exact sequence, we have b2(E) = b2{B) —
bo(E) + dQ + dlβ And from Theorem A, b2(E) = 6+(β) + 6"(B) - 1 + d0 +
d, = 2pβ(5) + &~(.B) - 1 + dx ^ 2pg(B) + 6"(5) - 1. Also from Theorem A
we have:

b2{E) ^ 12pg{B) + 3 - ib^E) , that is ,

b2{E) ^ 12[(461(J5) - 4)/10] + 12δ01 + 3 - Ab,(E) ,

but we have excluded this case.
Thus the fibration must be trivial and therefore d0 = 1 and dγ —

bγ{E) - 1. So we have X(B) = 5 - Sb^E) + 62(#) independently of the
unit Killing regular vector field.

THEOREM 3b. Let E be a compact connected orientable Riemannian
manifold of dimension 5, and ξ a regular unit Killing vector field on
E such that E/ξ be a complex manifold. Then if bt(E) is even, bx(E) Φ 2,
and b2(E) = 0 or b2(E) = 1, we have E Φ E/ξ x S1 and X(E/ξ) = 3 -

b2{E).

PROOF. If the fibration is trivial, we have d0 = 1 and b^B) =
— 1. Therefore, bt(B) is odd and bt(B) Φ 1. As in the above case,

we have B = Q Q{B') with B' free from exceptional curves. Similarly
we have c\{B') = 0 and so c\(B) + b~{B) = c\(B') + &-(£') ^ 0. This implies
pg{B) ^ [ ( 4 6 ^ ) - 8)/10] + δOί and b2(E) ^ 2[(461(JE) - 8)/10] + 2d01 and this
inequality is not true for b2{E) = 0 or b2(E) = 1.

Thus the fibration must be non-trivial. In this case, d0 = 0 and
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b,(B) = \{E) even different from 2. Since b2(B) = 62(J57) + 1 - dx =
2p,(£) + 1 + &-(£), if 62(#) = 0 we have 1 - d1 = 2py(5) + 1 + &-(£) and
this implies %(#/£) = 3 - 2b1(E). This proves the theorem for b2{E) = 0.

If b2(E) = 1, let us see that cί(B') < 0: Otherwise we have c\(B) +
b~{B) ^ 0, and then pg{B) ^ [(4δ1(£r) - 9)/10] + d01 by Theorem A. Also
b2(E) = b2(B)-l + d1^2pg(B), and so 62(#) ^ 2[(4δ1(ί7) - 9)/10] + 2301,
and this inequality is not true for b2{E) = 1. Thus cftl?') < 0. Then,
since b^B') is even we are in the first five cases in the table of Theorem
B, and since c\(β') < 0, we are in the first case.

Since c\{P2{C)) = 9, B' is a ruled surface, that is, B' = P^C) x S,
where S is a curve of genus p (dimc S = 1). Therefore 62(J5') = &2(Λ(C)) +
W W ) ) WS) + δ,(S) = 1 + 1 - 2, since b^S) = 2p, bo(S) = 1, 6t(S) = 1
and 6,(^(0) = 0, WP^C)) - 1, W W ) ) = 1.

Moreover b2{Bf) = 2 implies 6"(B) = 2 - δ+(£') = 2 - 2p,(B0 - 1 and
this implies pg{B') = pg(B) - 0 and b'(B') = 1. Therefore ft-(J?) = b~(B') +
n t ^ 1. From bJJS) + 1 - d1 = 2p^(β) + 1 + b"(B) we have ^ = 0 and
χ(j£/ξ) = 3 - 2 6 ^ ) + 1. This proves the theorem.

In both cases we have proved that the surface E/ξ is free from
exceptional curves.

Let us study separately the cases 1, 2, and 3 of the condition R^

PROPOSITION 2. Let (E, ξ) be as in the above theorem. Then if
b^E) = 2 and b2(E) = 0 we have X{Ejξ) = — 1 and the fibration is not
trivial.

PROOF. In this case b2(B) = 1 — (d0 + eZJ. d0 = 0 implies b^B) =
\{E) = 2 and so b2{B) = 2pg(B) + 1 + &-(£). This implies dι = 0 and
X(2Sy£) = — 1. d0 = 1 implies δ^B) = d1 = b^E) — d0 - 1 and this implies
bz(B) = 1 — (ώ0 + d j = 1 — 2 and this is impossible.

PROPOSITION 3. Lei (£7, ζ) be as in the above proposition. Then
= 0 implies X(E/ζ) = 3 + b2{E) and the fibration is not trivial.

PROOF. b^B) = bγ(E) — d0 = — d0 implies dQ = b^B) = 0. Since di ^
we have ^ = 0.

PROPOSITION 4. Lβί (E, ξ) be as in the above proposition. If
b,(E) = 2 ami &2(S) = 1, we have X(E/ζ) = 0.

PROOF. 62(JB) = 1 + 1 - (d0 + d,). (i) d0 = 0 implies bx(B) = 2 and
b2(B) = 2 - ώx = 2p,(2?) + 1 + 6~(JB) and this implies d, = 0 or 1.

Let us see that dx Φ 1. Assume bt{B) — 1, then pff(jB) = b~{B) = 0.
But b~(B) = 0 implies that B is free from exceptional curves (cf. proof
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of Theorem 3a). By Theorem A, we have c{(B) = lQpg + 9 - 6" - 8g =
1 > 0 and q = 1. But by Theorem C, we have q = 0. This is a contradic-
tion. Thus d, = 0. (ii) If d0 = 1, then ^ = δ̂ JB) = 6,(̂ 7) - d0 = 1. In
both cases %(#/£) = 3 - 2b1(E) + b2(E) + d0 - d1 = 3 - 261(£7) + &2(#) = 0.

PROPOSITION 5. Let (E, ξ) be as in the above proposition. If
b^E) = 1 and b2{E) = 0, we have X(E/ζ) = 1 and the fibration is not
trivial.

PROOF. b2(B) = 1 - (d0 + d±). If d0 = 0, δ̂ JB) = δ^S) = 1. Therefore
b2{B) = 2p,(5) + 6-(B) = 62(#) + 60(^) - d0 - dx = 1 - dx. This implies
p/J5) = 0 and b~(B) + d, = 1. If ^ = 1, 6~(5) = 0 implies 62(JS) = 0, but
this is impossible, since XE e jff2(S; Λ) and Z^ is not zero because dQ = 0.
If d0 = 1, ^ = &ΛB) = 6 ^ ) - 1 = 0, but then b2(B) = 0 = 2pg(B) + 1 +
b~(B) and this is impossible. The last equality follows from Theorem A.
Therefore, we have d0 = 0 and dγ = 0. So X(E/ξ) = 1 and the fibration
is not trivial.

Obviously, Theorem 3 follows from Theorems 3a and 3b, and Proposi-
tions 2, 3, 4 and 5. The integrand is obtained from (8) for n = 2.

We have obtained, too, the following theorem:

THEOREM 4. Let E be a compact connected manifold of dimension
5, with bx(E) even, different from zero and two, and b2(E) = 0, then E
cannot admit any almost contact normal regular structure.

PROOF. In the proof of Theorem 3b, the existence of a field ξ with
E/ξ being a complex manifold, implies the fibration being non-trivial and
pg(B) = b~(B) = 0. From this last equality we see that B is free from
exceptional curves.

Then, from Theorem A we would have c\(B) = 9 — 8g < 0, and using
Theorem B, B would be a ruled surface and so b2{B) = 2 = b+(B) + b~{B) =
2pg(B) + 1 + b~{B), and this is impossible.

6. Higher dimensions. In higher dimensions we have obtained the
following result:

THEOREM 5. Let E be a compact connected Riemannian manifold of
dimension n = 3 + 4m, m > 0, which admits a regular unit Killing
vector field ξ. If b2(E) = b4(E) = = b2m(E) = 0, then

(16) X(E/ξ) = Σ 1 (n + 1 - r)(-l)%(E) + 1
r=0

if and only if bt(E) + b3(E) + + b2m+1(E) is odd. And
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(17) ΆE/ξ) = Σ V + 1 - r)( - 1)%(E)
r=0

if and only if b^E) + b3(E) + + b2m+1(E) is even.
If b,{E) = = bim+1(E) = 0. Then

(18) X(E/ζ) = Σ 1 (Λ + 1 - r)( - 1)%(E) .
r=0

(Therefore, X(E/ξ) is independent of the unit regular Killing vector
field ξ.)

PROOF. By Gysin exact sequence and the Poincare duality we have
the following relations:

bx(B) = b^E) - dQ = bim+1(B) = bim+1(E) + + b,(E) -dQ d4 m .

b2(B) = b2(E) + 1 - d0 - dγ = bAm(E) + . . . + bo(E) -dQ dim., .

Thus

(19) bim+1(E) + + b,(E) = d, + + dim

and

(20) bim(E) + + 64(JS?) = d2 + + d ^ .

But bim(E) = 68(JB), , and substracting (20) from (19) we have

&4«+iCE) = &2( E') = di + d4m. Analogously 64(£r) = d3 + d4m_2.

Therefore, it follows from hypothesis that dλ — ds = = dim-x = 0.
Moreover, if ξ' is another regular unit Killing vector field with JB' =
E/ξ', we have

(21) b2m+1(B) - 62m+1(B') = d[ - d0 + d2 - d2 + - + d'2m - d2m

(22) b2m+1(B) - b2m+1(B') = 0 (mod 2) .

We also have

(23) b2m(B) - 1 - (d0 + + d2m_0 .

By (21) and (22) we have

(24) do + d2 + + d2m = 2k + d0 + d2 + d2m .

Then if d0 = 1, by (23) we have d2 = = d2 m = 0 and so d0 + +
d2m = 1. If d0 = 0, by (23) we have b2m(B) = 0 or 1, d2 m = 0 o r l and
d2 + ••• + c?2w_2 = 0 or 1. If d2 + - + <Z2m_2 = 0, we have d0 + +
d2m = 0 or 1. If d2 + - « + d2m_2 = 1, we have b2m(B) = 1 — 1 = 0 and so
d2 m = 0, t h u s d0 + + d2 m = 0 or 1.

Analogously, d[ H + d2 m = 0 or 1. By (24) we have d[ H + d2m =
do + + d2m. Therefore, X(E/ζ) - Z(£7/ί') - Σ!U (^ + 1 - r)(-l)'&r(ί?) +
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do + • + d2m. S i n c e b2m+1(B) = b2m+1(E) + ••• + b^E) - (d0 + + d2m)
is even, we have proved (17) and (18).

If b,(E) = = bim+ι{E) = 0, it follows that b2m+1(B) = -(d0 + - + d2m)
and so:

= Σ (n + 1 - r)(-l)'δr(JE) .
r=0

This proves Theorem 5.

COROLLARY 1. Let (E, £) be a compact connected Sasakian manifold
of dimension 7, with £ regular, whose curvature is strictly positive and
£' another unit Killing regular vector field on E. Then X(E/ξ) =

PROOF. For this manifold b2{E) = 0. (Tanno [6]).

COROLLARY 2. S2p+1 x S2q (p + q = 2m + 1, p ^ m < g) does wo?
α regular Sasakian structure.

P R O O F . The Bett i numbers of S2p+1 x S2q (p + q = 2m + 1, p ^ m < q)
satisfy b2 = = δ 2 m = 0 and & ! + • • • + &2w+1 odd. So if £ is a regular
unit Killing vector field on S2p+1 x S2q we have

ΆEjξ) = Σ V + 1 - r)(-l)%(E) + 1
r=0

and therefore £ is not Sasakian.
Nevertheless S2 x S3 (S6 x S7) admits a Sasakian regular structure.

7. Remarks. ( i ) Let {E, g) be as in Theorem 2. If (£7, g) is of
constant curvature k, we have A; ̂  0 and:

If k = 0, then 2? is homeomorphic to S1 x S1 x S1.
If fc > 0, then £7 is a fibre bundle on S2.
If (JE7, g) is not of constant curvature but JBΓ(£) = k Φ 0, then (JE, gr', £')

with g' = fc^f and £' = ξlVΊc is a Sasakian manifold.
(ii) Let (E, g) be as in Theorem 3. We want to know in which

cases the integrand of (14) (or (15)) is positive. We know that the
integrand of the Gauss-Bonnet formula in dimension 4 can be written as
follows (Chern, Abh. Math. Sem. Univ. Hamburg, 20 (1955), p. 124):

+ Khn + KUUK232, + Klm)θι A Λ θ* ,

where
Qi _ (Λ /O\ Y 1 JC . ΛA; A βr
ύύ A \Λ.j U) S j XX.iQfoγU / \ V .

k,r

If
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Ψ% = (1/2) Σ Ranβ* Λ φ> , by (6)

we have

(26) RiM = Ktiii - ZA{iJT .

Then, by (25) and (26), we have the following result: "If the sec-
tional curvature is always positive, the integrand is positive. If the
sectional curvature along the planes orthogonals to ζ is always positive,
the integrand is positive".
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