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ON REPRESENTATIONS OF NON-TYPE I GROUPS
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For a unitary representation g -> Ug of a separable locally compact
group G on a Hubert space έ%f, let M be the smallest Wr*-algebra on
2έf generated by {Ug \ g e G}.

When M is a type I (resp. type II, type III) W*-algebra, we say
that the representation g -> Ug is of type I (resp. type II, type III).

A separable locally compact group is called a type I group if all its
unitary representations are of type I. For example, commutative
groups, compact groups, connected semi-simple Lie groups, connected
nilpotent Lie groups and solvable Lie groups of exponential type are
type I groups ([4], [10]).

In this paper, by a non-type I group we mean a group which is
not of type I.

For unitary representations of non-type I groups, the following is
known ([5]). A separable locally compact group G has a faithful type
II unitary representation if and only if it has a faithful type III uni-
tary representation. Therefore, non-type I groups have type II as well
as type III unitary representations.

In this paper, we shall construct type II and type III factors as-
sociated with unitary representations of some concrete semi-direct pro-
duct groups.

The author wishes to thank Professor 0. Takenouchi and the ref-
eree for their helpful suggestions regarding the improvement of the
paper.

1. Preliminaries. 1. Let the locally compact group G admit a
commutative closed normal subgroup N and let G also contain a closed
subgroup H such that N Π H = {e}, where e is the identity of G, and
NH = G. Then H is isomorphic to G/N and every element in G is
uniquely expressed as a product nh where n e N and h e H. One says
that G is a semi-direct product group of N and H and denotes it by
G = Nx8H.

Let R denote the additive group of real numbers and C2 the pro-
duct of two copies of the field of complex numbers. If (zί9 z2) denotes
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a n e l e m e n t of C 2 , w e w i l l d e f i n e t h e a c t i o n of ί e Λ o n C 2 b y

t(zίf z2) = &%, eia%) ,

where a is an irrational number and i = l / ^ ϊ .
Let Mδ denote the semi-direct product R x s C

2, where R acts on C2

as above. Mδ is called the Mautner group. For ζ = (ί; zί9 zt), ζ' = (f;
z[, zf

2)eRxsC\

ζoC = (t + t'; sx + β"*;,*, + eίa%) .

Let Afu = Rz x s C
4, where the action of JB3 on C* is given by the

matrix below relative to a basis (zlf z2, z3, z4) of C4 and (tw t2, t3) of Λ3

e**ie«2 0 0 0

0 e"se<«*2 o 0

0 0 e<4lβ**3 0

0 0 0 eu*l

with α an irrational number. That is, for ζ = ((ίlf t8, t8); 2W 22, «3, «4),

Mn is called an extended Mautner group.
It is known that Mδ and Mn are non-type I solvable Lie groups ([1]).
2. Let G be a separable locally compact group. Let E be a locally

compact space on which G acts on the right such that (1) {x)gιg2=
{xgdΰzi (2) xe = a?, where e is the identity of G, (3) (a?, #) —> #gr is a con-
tinuous mapping from ExG to !£.

For a positive Radon measure μ on E, let μff be the measure on E
defined by μg(F) = μ{Fg) for each measurable subset of E.

Let μ be a positive Radon measure on E which is quasi-invariant
under the action of G, i.e., μg and μ are absolutely continuous. The
triple (G, E, μ) is called a dynamical system.

Let L = LExG be the set of all continuous complex valued functions
on ExG with compact support.

A non-negative continuous function p(x, a) on E x G is called a mwί-
tiplier if it satisfies

rta, α£) = p(xa, β)ρ{x, a)

for each xeE, a, βeG.
Suppose that there exists a positive continuous function y(x, a) on
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ExG such that dμ{xa) = y(x, a)dμ(x). Then Ύ(X, a) is a multiplier.
Indeed,

dμ{xaβ) = y(x, aβ)dμ{x) = 7(m, β)dμ{xa)

For f, geL, define

(/, 3) = ))/(*, α)g(x, α)X(α)dαdμ(x) ,

where %(α) is a non-negative continuous function on G such that χ(α/3) =

Then L is a prehilbert space. Let ^ be the Hubert space which
is the completion of L.

Let f be a complex valued, measurable and essentially bounded
function on (E, μ). For each feβέf, define

L+f(x, a) = ψ(xa)f(x, a)

(resp. L'+f(x, a) = fix)fix, a)) .

Then Lψ (resp. L'+) is a bounded operator on
Next, we shall define a unitary operator Ua (resp. J7ά), for each

aeG, on J ^ by

^ α o /(^, α) =
(resp. U'aJix, a) =

where J is the modular function of G.
Let &~ (resp. ^ " 0 be a TΓ*-subalgebra of B(3ί?) generated by

{LΨ\ψ€L~(E, μ)} and {Ua\a 6G} (resp. {L^| f eL°°iE, μ)} and {U«\a e G}).

DEFINITION 1. (1) A dynamical system (G, E, μ) is called free if for
any aeG (aφe), the set of points satisfying the condition x = xa ixeE)
is of μ-measure 0.

(2) A dynamical system (G, E, μ) is called ergodic if Fg = F for
a measurable set ί7 and for every g e G implies either μ{F) = 0 or
μ(E\F) = 0.

LEMMA 1 ([2, Theorem 6]). Let (G, E, μ) be free. &~ {and ^') is
a factor if and only if (G, E, μ) is ergodic.

DEFINITION 2. A dynamical system (G, E, μ) is called measurable if
there exists a positive measurable function ψ on (E, μ) such that

a)~ι, aeG .
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LEMMA 2. A dynamical system (G, E, μ) is measurable if and only
if there exists a σ-finite positive measure v which is equivalent to μ
and dv(xa) = Δ(a)dv(x), aeG, that is, v is invariant under G.

PROOF. For any integrable set A, put

v(A) = ^ f(x)dμ(x) .

Then v is a σ-finite positive measure and equivalent to μ. Moreover,
for each aeG

v(Aa) = \ ψ(xa)dμ(xa) = \ ψ(x)Δ(a)Ί(x, a)~ιΊ(x, a)dμ(x)
JA JA

= Δ(ά)v(A) .

Therefore,

dv(xa) = Δ(a)dv(x) .

Conversely, let v be a σ-finite positive measure which is equivalent
to μ and dv(xa) — Δ(a)dv(x). Then, by Lebesgue-Nikodym's theorem,
there exists a measurable function f(x) on (E, μ) such that 0 < ψ(x) < oo
and v(A) = \ f(x)dμ(x) for all integrable set A. Therefore,

JA

Δ(a)\ f(x)dμ(x) = Δ(a)v(A) = v(Aa) = \ ψ(x)dμ(x)
JA JAa

= \ ψ(xa)y(x, a)dμ(x) .
JA

Consequencely,

Δ(a)f(x) = f(xά)Ί(x, a) .

LEMMA 3 ([2, Proposition 12]). If (G, E, μ) is free, ergodic and
measurable, then ^ (and Jβ**') is a type I or type II factor. In parti-
cular, if G is not a discrete group, then ά?~ (and J^') is a type 1̂  or
type Π^ factor.

LEMMA 4 ([2, Theorem 7]). If (G, E, μ) is free, ergodic and non-
measurable, then ^~ (and J^') is a type III factor.

REMARK. ^ is considered as a continuous crossed product
GxuL~(E,μ) ([11]).

2. Direct integrals of irreducible representations. A topological
transformation group (G, Ω) is a topological group G together with a
locally compact space Ω and a continuous mapping: (g,ω)-^gω of GxΩ
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into Ω such that (gh)ω = g(hω), and if e is the identity of G, eω = ω
for all g, heG, and ωeΩ.

(G, Ω) is polonais if G and 42 are polonais, i.e., they are separable
and metrizable by a complete metric. (G, 42) satisfies the condition^) if
each neighborhood U of e in G contains a neighborhood W of e such
that for all ω in 42, Cl[ Wω] Q Uω. C\[X] indicates the closure of X. If
G is locally compact and 42 is Hausdorff, (G, Ω) satisfies the condition(*),
as one may take W to be any compact neighborhood of e with WQU.

A Borel measure μ on 42 is non-trivίally ergodic if it is not con-
centrated at an orbit.

LEMMA 5 ([3]). Let (G, 42) be a polonais transformation group
satisfying the condition^). Then the orbit space Ω/G is a TQ-space ij
and only if Ω has no non-trivially ergodic measure.

For a separable locally compact group G, let Gxr be the standard
Borel space of all irreducible representations of G ([7]).

PROPOSITION 1. Let (Γ, Σ) be a polonais transformation group
satisfying the condition^), μ an ergodic Borel measure in Σ, and σ—>Π°
a Borel function from Σ to Gir. If for any a e Σ, Πa is equivalent to
jjrto) j o r aιι 7 e Γ, then the direct integral K = \ Πσdμ{σ) is a factor

JΣ

representation. Moreover, if μ is non-trivially ergodic, then K is a
non-type I factor representation.

PROOF. Suppose K is not a factor representation. Then, there
exists a projection E Φ 0, / in K(G)' Π K(G)", where K{G) is the algebra
generated by the representation {K(g)\g e G} and K(G)' is the commutant
of K(G).

Since Πσ, σ e Σ, are irreducible, the Boolean algebra of projections
associated with the direct integral is maximal in K(G)r, and must con-
tain E. Let B be a Borel set with 0 Φ μ(B) Φ μ(Σ) and E = \lB(σ)Idμ(σ),
where XB(v) is the characteristic function of B. K is proper because each
Π° is irreducible. By the double commutant theorem, the unit ball of
K(G) is strongly dense in the unit ball of K{G)". The latter being
metrizable in the strong topology, there is a sequence {gn}czG with
K(gn)->E strongly i.e., ί Πσ(gn)dμ(σ) -> \lB(σ)Idμ{σ). There is a sub-
sequence {gnk} and a null set N of Σ such that Πσ(gnk) —> XB(σ)I strongly
for all σeΣ\N. Changing notation, we assume that Π"(gJ -> XB(σ)I
strongly for all σeΣ\N.

Let A = Γ(B\N). As B\N is Borel, A is analytic (it is the image
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of Γx(B\N) under a continuous map), and hence measurable. A is
invariant, and we claim that μ(A) = μ(B). As μ(N) = 0 and B\N^A,
it suffices to show A\NQB. For any σeA\N, there are jeΓ and
β 6 B\N such that σ = 7(/5), i.e., Πσ = 77^. Then /7σ(^J -» XB(σ)I implies
tf'~1(σ)(<7j - **(*)!. But W-^\gn) = /P(0 J -* χ^/3)/ = 7, hence ZB(σ) = I
and ( e β . Thus μ is not ergodic.

If K is a factor representation of type I, then ^-almost all the re-
presentations Π° are unitary equivalent, i.e., μ is trivially ergodic under
Γ ([8]). Therefore if μ is non-trivially ergodic, then K is a non-type I
factor representation.

3. On a construction of non-measurable dynamical system. In this
section, we shall construct a non-measurable dynamical system (G, X, μ)
by means of a given topological transformation group (G, Ω) with some
conditions.

The idea is due to [3] and [6].
Hereafter, we assume that (G, Ω) is a topological transformation

group which is polonais and satisfies the condition^) and the orbit
space Ω/G = {Gω | ω e Ω} is not a T0-space.

The latter assumption is essential in our study.
We may select points p and q in Ω/G with p Φ q, qe G\[{p}] and

peCl[{9}].
Let Π be the canonical mapping of Ω onto Ω/G. Let X= Π^iClϋp}]).

(G, X) is a polonais transformation group satisfying the condition(*).

REMARK. Π~\C\[{p}]) = C\[Π-\{p})].

LEMMA 6 ([3]). There is a neighborhood W of e in G such that
W = W~\ and if {Qm} is a decreasing basis of open sets at an arbi-
trary point y in X, Cl[Πm=i WQm]QGy.

The following lemma is essential for our study.

LEMMA 7 ([3]). Let (G, X) be the topological transformation group
defined as above. We can inductively define, for each integer n ̂  0
and element g(n) in G and for each n-tuple (i19 , in) with ik = 0 or
1, an open set P(iί9 •••, in) in X satisfying the following properties'.

(l)n xeP(On),
(2 )n if (iίf , in) Φ (jίf , jn), then
WP(i19 , in) Π P(j19 , Jn) = 0, where W is as in Lemma 6,
( 3 )n Cl[P(iί9 , in)] £ P(ilf , in^) (n ̂  1),
( 4 )n diameter P(ίlf , in) < 1/n (n ^ 1),
( 5 ) n g(k)P(Ok9 ik+ί, , in) = P(0k_ίf 1, ik+ι, -, in) (n ^ 1),
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where 0Λ is the family of n zeros.

LEMMA 8 ([9]). Let Mn (n = 1, 2, •••) be copies of the group Z/2Z,
the additive group of integers mod 2. Let μn be a Radon measure on
Mn with μn{(0)} — p and μn{(l)} = q with 0 < p < 1 and q = 1 — p.
Then (Mn, μn) is a measure space (n = 1, 2, •). Let (M, μ) be the in-
finite product measure space of (Mn, μn). Let <& be the set of those
a = (an\n = 1, 2, •) in M for which anφ0 occurs for a finite number
of n only. (& is a countable group which acts on M). Then

( 1 ) ^ is free, ergodic and measurable if p = q = 1/2.
(2 ) ^ is free, ergodic and non-measurable if p Φ qΦ 1/2.

For each i = {i19 i2, . , in, . .} e M, the set fl?=i P(i» •••,*») has
precisely one element, say Θ(i). This is due to (3)Λ, (4)Λ and the com-
pleteness of X. It is easily verified that Θ is a one-to-one mapping of
M into X by (2)Λ. Let Affo, , i j = W x x {ί%}x {0,1} x , where
iί9 . . . , 1 . 6 {0,1}. Then

θ(M(ilf , in)) = Θ(M) ΓΊ P(i,, ., in) .

Hence θ is a homeomorphism because the sets M(iu , in) form an
open basis. Therefore we may identify M with Θ(M).

Thus we can define a measure λ on X by the formulas

and

λ(X\i l ί ) = 0 ,

where r is the number of 0's in (ilf ••-, i j .
Each point has measure zero with respect to this measure.
Let v be a finite measure on G, equivalent to a right Haar measure.

We shall define the convolution product measure v * λ of v and λ as fol-
lows: If B is a Borel subset of X, let

v*λ(£) = ( X(hB)dv(h) . (*)

We have to show that the integral in (*) exists. The proof was

given by Glimm [6].
Denote this convolution product measure v * λ by β.

LEMMA 9. The measure β is quasi-invariant under G.

PROOF. For any Borel set B of X, β(B) = 0 if and only if X(hB) = 0
for almost every h. On the other hand, for all g e G, X(hB) = 0 (for
almost every h) if and only if X(hgB) = 0 (for almost every h). There-
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fore, for any Borel set B, β{B) = 0 if and only if β(gB) = 0 for all g e G.

LEMMA 10. If (G, X) is effective, then gM n M = 0 for all
Wsg Φ e, where W is as in Lemma 6.

PROOF. If y e gM ΓΊ M, g Φ e, then there exists an element z =
Γl»=i P(ii, , iΛ) Π AT such that y = gzeWzΠM. However, WzΠMQ
Πn% TFPfo, , in) n M = n : = 1 P(ix, . , in) = z by (2)Λ of Lemma 7.
Hence, gz = z, a contradiction.

Let P.(0) = UP(ii, , i - l f 0) and P.(l) = U P(κ , i-» 1), where
the union is taken over all i5 = 0 or 1, j = 1, , n — 1. Define g(ri),
n = 0,1, 2, , by ff^jP^O) = P,(l) and ^ή-'P^l) = P,(0), Let ^ ^ be
the countable free abelian group generated by Mw)}. Then we can
consider J ^ as acting on M and the dynamical system {<3Γ9 M, λ} is
non-measurable.

PROPOSITION 2. // (G, X) is effective and G is abelian, the dy-
namical system (G, X, β) is free and non-measurable.

PROOF. It is obvious that (G, X, β) is free. Let & be a σ-finite
positive measure on X which is invariant under G. Define a measure
λ0 on M by \{K) = βo(WK) for each Borel set ίΓ, where W is as in
Lemma 6. Then \(gζn)K) = \{g{n)(K n P,(0))) + Mflr^)- 1^ ΓΊ PJX))) =

= /δo( WK) = λo(X) for each ^(n), where flr(w), w = 0,1, 2, . . . , are
elements in G which are chosen in Lemma 7. Hence λ0 is a ^-finite
positive measure which is invariant under J^". Since (.J^, M, λ) is non-
measurable, λ0 is non-equivalent to λ. Therefore, there exists a Borel set
B of M such that λo(J5) = 0 and \{B) Φ 0 (resp. λo(J?) Φ 0 and X(B) = 0).
Thus by Lemma 10 we have βQ(WB) = 0 and /3(T7J5) = v(T7)λ(jB) = 0 (resp.
βo(WB) Φ 0 and β(WB) = 0). However, WB is a Borel set of X. Hence
/30 is non-equivalent to β. Consequently, β is non-measurable.

4. The type of factors associated with unitary representations of
semi-direct product groups of Mautner type. Define the action of R on
C2 by

ί(*i, *.) = (****!, e ^ , ) , («i, 2 2 )eC 2 , t e Λ ,

where α is an irrational number.
Then the topological transformation group (JB, C2) is polonais and

satisfies the condition(*). Moreover the orbit space C2/R is not a Γ0-space.
The closure of the orbit {t(zlf z2)\teR} through a point (zlf z2)eC2 is
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the two-dimensional torus T2 if zx Φ 0, z2 Φ 0. T2 is a compact Haus-
dorff space satisfying the second countability axiom. Let μ be the
Lebesgue measure on T2.

LEMMA 11. The dynamical system (R, T2, μ) is free, ergodic and
measurable.

The proof is well known in the theory of dynamical system.

LEMMA 12. There exists a measure β on T2 such that the dynami-
cal system (R, T2, β) is free, ergodic and non-measurable.

PROOF. Since (JB, T2) is effective and R is abelian, we can construct
a measure β such that the dynamical system (R, T2, β) is free and non-
measurable by Proposition 2.

The ergodicity is trivial because T2 is the orbit closure.

Now we define a unitary representation 77 of Rx&C2 in Sίf —
L\T2xR, μxv), where v is the Lebesgue measure on R, in the follow-
ing manner.

For each (t; zlf z2)eR XSC
2, define

(ί; zlfz2)-^Π{t]ZvZ2)f((ζlfζ2\p)

= exp(-i(Re(<r"ζA + e'tatζ^)f((ζίf ζ2), p - ί))

(resp. (t; zlf z2) - Π\t;MvH)f((ζlf ζ2), p)

- exp(i(Re(eA + z2ζ2))f(e%lf e«"ζt), t + p)),

where Re denotes the real part.

REMARK. For each (z19 z2) e C2, define

A.v.t)(Cf ί) = exp(i(Re(^ζ + z2ξ))) ,

(ζ, ξ)eT2. Then fZvZ2)eL°°(T2,μ) and the closed linear hull of
{fZvZ2)\(zlfz2)eC2} is L~(T2,μ).

By Lemma 3 and Lemma 11, we have

LEMMA 13. The W*-subalgebra ^ (resp. ^') of B(£if) associated
with the unitary representation Π {resp. 77') is a type 1^ or type 11^
factor.

LEMMA 14. For each (ζ19 ζ2) e Γ2, define

Π\%[%φ{p) = exp(-i(Re(β-«CA + e~^ζ2z2))φ{p - t)) ,

for (t; zlf z2)eRxsC
2, φ(p) eL\R, v). Then

(1) 77(Cl'C2), (d, ζ2) 6 T2, are irreducible unitary representations of
RxsC

2 in L\R, v).
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(2) For any (ζlf ζ2) 6 T\ /7(Cl'C2) is equivalent to /7ί(ζi'ζ2) for all t e R.

PROOF. (1) Every operator commuting with the operators Π$£?l2)

is the multiplication by a function.
(2) The intertwining operator for /7(ζlζ2) and /Z ί̂ Φ can only be

the translation by t.

Therefore, by Proposition 1, Lemma 13 and Lemma 14 we have the
following theorem.

THEOREM 1. The W*-subalgebra J?~ (respm jτ>) of β(βέ?) associated
with the unitary representation

(ί; zίf z2) - ΠU;zvZ2)f((ζlf ζ2), p)

= exp(-ΐ(Re(β-«CA + e~iatζ2z2))Mζlf « , P - «))
(rβsp. (ί; ^, «,) - , Π[tiβvM%)f((ζl9 ζ2), p)

= e x p ^ R φ ^ + ^Λ/C^Ci, ^ ΐ α ίζ2), t + p))

of RxsC
2 in £ίf = L2(T2xR, μxv) with the Lebesgue measure v on R,

is a type IIM factor. Namely, Π and Πf are type EL factor represen-
tations of R x s C

2.

On the other hand, by Lemma 4 and Lemma 12, we have the fol-
lowing theorem.

THEOREM 2. The W*-subalgebra & (resp. &') of B(3ίf) associated
with the unitary representation

(*; »» Si) -> Φu;zvz2)f((ζι, ζ«), P)

= exp(-i(Re(e-"ζ A + β-ίαίζ^))/((ζ1, ζ2), p - t))

. (ί; zlf z2) -> Φ[t;zvz2)f((ζ>ι, ζ2), P)

= e x p ^ R e ^ t + z£J)(K(ζlf ζ2), ί)/((e"Ci, βiαίζ2), ί + p) ,

ζ^ ζ2), ί) is α multiplier) of R XSC2 m 3ίf = L\T2xR, βxv)
with the Lebesgue measure v on R, is a type III factor. Namely, Φ
and Φf are type III factor representations of R XSC

2.

For the same reason as in Theorem 1 and Theorem 2, we have the
following theorems.

THEOREM 1'. The W*-subalgebra ^~ (resp. J^') of' B(<%?) associated
with the unitary representation

i, C2> C3> C J , ( P i , P 2 ,
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Cl, C2, Cβ, CJ, (Pi —'*l, ί>2-ί 2 , ί>8 ~ *J)

((ίw t2, t 8); sx, z2, z3, z j

Π[(tvt2thUzvz2,z5>z4)f((ζίf Ca, Cβ, CΛ (Pi, Pa, Pβ)) = e x p ( ί ( Σ ϊ = i SiCJ

0/ Afu = JB3 XSC4 in ^f = L\T4xR3, μxv) with the Lebesgue measure
μ (resp. v) on T* (resp. i23), is a type 11^ factor. Namely, Π and Πf

are type IIM factor representations of R5 x s C
4.

THEOREM 2'. 27&e W*-subalgebra & (resp. &') of B(3έf) associated
with the unitary representation

C2> C3> C J , ( P i , 0

i, C2, Cs, ζ j , (Pi - ί u P 2 - ί2, 0s - « )

!, t29 ί 8 ); ^ , 22, «8, 34) - ^ Φ u ^ , * , , * , , ) ; , ^ , , , ^ , , ^ ^ ! , Ca, Cs, CO, (01, 02,

- exp( i (Re( t ^ζί)))K(Ci, C, C3, CJ, ft, ί2, « )

β" C4), (ίx + 0X, t2 + p l f ί, + p,)) ,

where p((ζlf ζ2, ζ3, CJ, (*i, *a, *J) ΐ* α multiplier) of Mn = R3 xsC* in
Sίf = L2(TixR3, βxv) is a type III factor, where β is a measure such
that the dynamical system (RB, T\ β) is free, ergodic and non-measur-
able, and v is the Lebesgue measure on R*. Namely, Φ and Φ' are type
III factor representations of R* xs C*.
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