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ON REPRESENTATIONS OF NON-TYPE I GROUPS
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For a unitary representation g — U, of a separable locally compact
group G on a Hilbert space 57, let M be the smallest W*-algebra on
o generated by {U,|g € G}.

When M is a type I (resp. type II, type III) W*-algebra, we say
that the representation g — U, is of type I (resp. type II, type III).

A separable locally compact group is called a type I group if all its
unitary representations are of type I. For example, commutative
groups, compact groups, connected semi-simple Lie groups, connected
nilpotent Lie groups and solvable Lie groups of exponential type are
type I groups ([4], [10]).

In this paper, by a mon-type I group we mean a group which is
not of type I.

For unitary representations of non-type I groups, the following is
known ([5]). A separable locally compact group G has a faithful type
II unitary representation if and only if it has a faithful type III uni-
tary representation. Therefore, non-type I groups have type II as well
as type III unitary representations.

In this paper, we shall construct type II and type III factors as-
sociated with unitary representations of some concrete semi-direct pro-
duct groups.

The author wishes to thank Professor O. Takenouchi and the ref-
eree for their helpful suggestions regarding the improvement of the
paper.

1. Preliminaries. 1. Let the locally compact group G admit a
commutative closed normal subgroup N and let G also contain a closed
subgroup H such that NN H = {¢}, where ¢ is the identity of G, and
NH =G. Then H is isomorphic to G/N and every element in G is
uniquely expressed as a product mh where ne N and he H. One says
that G is a semi-direct product group of N and H and denotes it by
G = N X H.

Let R denote the additive group of real numbers and C? the pro-
duct of two copies of the field of complex numbers. If (z,, 2, denotes
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an element of C?, we will define the action of t€ R on C? by
82y, 2,) = ("2, €'2,) ,

where « is an irrational number and i = v/ —1.

Let M, denote the semi-direct product R x,C? where R acts on C?
as above. M, is called the Mautner group. For { = (t; 2, 2,), ' = (t';
2y, %) € R X C?

Col' =@+ t; 2 + €2, 2, + €z;) .

Let M,, = R® x,C*, where the action of R® on C* is given by the
matrix below relative to a basis (z,, 2,, 25, 2,) of C* and (¢, ¢, t;) of R®

ettgite 0 0 0
0 ez () 0
0 0 etfigrs
0 0 0 et

with a an irrational number. That is, for { = ((¢, &, ta); 24 25 23, 24),
C = ((t, by t); 21, 22 2 2) € My, = R* X C,

Coll = ((t, + b, + by &5 + )5 2, + €172, 2, + €'tz
2, + etttz 2z, + efsz)) .

M,, is called an extended Mautner group.

It is known that M, and M,, are non-type I solvable Lie groups ([1]).

2. Let G be a separable locally compact group. Let E be a locally
compact space on which G acts on the right such that (1) (x)g.,9.=
(29,)9,, (2) xe = x, where e is the identity of G, (8) («, g) —> xg is a con-
tinuous mapping from ExG to E.

For a positive Radon measure ¢ on E, let x, be the measure on
defined by p,(F') = p(Fg) for each measurable subset of E.

Let ¢ be a positive Radon measure on E which is quasi-invariant
under the action of G, i.e., ¢, and g are absolutely continuous. The
triple (G, E, p) is called a dynamical system.

Let L = L,,,; be the set of all continuous complex valued functions
on ExG with compact support.

A non-negative continuous function po(x, @) on E xG is called a mul-
tiplier if it satisfies

lo(x; aB) = P(xa, ,8),0(.’17, a)
for each xe E, a, BeG.
Suppose that there exists a positive continuous function v(x, @) on
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ExG such that dp(za) = v(z, a)dp(x). Then 7v(x, @) is a multiplier.
Indeed,
dp(zaB) = v(x, aB)du(x) = ¥(va, B)d(we)
= v(xe, B)Y(x, a)du(x) .

For f, ge L, define
(12 9 = || 7@ 2o, DU@dadp@)

where X(@) is a non-negative continuous function on G such that y(ag)=
X(@)X(B). )

Then L is a prehilbert space. Let 57 be the Hilbert space which
is the completion of L.

Let 4 be a complex valued, measurable and essentially bounded
function on (E, pt). For each fe 57, define

Lyf (2, @) = y(za)f(z, @)
(resp. Lyf(x, @) = ¥(2)f (2, @)) .
Then Ly (resp. Ly) is a bounded operator on 57°.

Next, we shall define a unitary operator U, (resp. U.), for each
aec@G, on 57 by

U, f(x, @) = d(e) " X(e) 2 f (2, ay'ex)
(resp. U f(x, @) = 7(T, @) X(e,) f (wety, aty))

where 4 is the modular function of G.
Let &+ (resp. ') be a W*-subalgebra of B(S#) generated by
{Ly |+ € LB, p)} and {U,|a € G} (resp. {Ly |y € L(E, p)} and {U;|a € G}).

DEFINITION 1. (1) A dynamical system (G, E, p) is called free if for
any @ € G (a+e), the set of points satisfying the condition x = 2 (xc F)
is of p-measure 0.

(2) A dynamical system (G, E, p) is called ergodic if Fg = F for
a measurable set F and for every geG implies either x(F') =0 or
HENF) = 0.

LEMMA 1 ([2, Theorem 6]). Let (G, E, ) be free. F (and F') is
a factor if and only if (G, E, ) is ergodic.

DEFINITION 2. A dynamical system (G, E, y) is called measurable if
there exists a positive measurable function 4 on (E, g¢) such that

(xa)y(x)™ = da)v(z, @)™, ae@G.
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LEMMA 2. A dynamical system (G, E, ) is measurable if and only
if there exists a o-finite positive measure v which is equivalent to p
and dy(za) = d(@)dv(x), @ € G, that is, v is invariant under G.

PROOF. For any integrable set A, put

w(4) = | @)dp@) .

Then v is a o-finite positive measure and equivalent to p¢. Moreover,
for each a e G

wAa) = | yea)paa) = | @@, o) v a)dpw)
= A@)u(A) .
Therefore,
dy(za) = d(a)dy(x) .

Conversely, let v be a o-finite positive measure which is equivalent
to ¢ and dy(za) = 4(a)dy(z). Then, by Lebesgue-Nikodym’s theorem,
there exists a measurable function y(x) on (&, ¢£) such that 0 < (x) < 0

and y(4) = S J(x)dp(x) for all integrable set A. Therefore,
A

4@)| v@dua) = @A) = vAa) = | v@dp@

= SA @)y (z, Q)dpu) .
Consequencely,

)y (x) = y(za)r(z, @) .

LEMMA 3 ([2, Proposition 12]). If (G, E, p) is free, ergodic and
measurable, then F (and F') is a type 1 or type 11 factor. In parti-
cular, if G is not a discrete group, then F# (and F') is a type 1, or
type 11, factor.

LEMMA 4 ([2, Theorem 7). If (G, E, p) is free, ergodic and mon-
measurable, then F (and F') is a type 111 factor.

REMARK. &% is considered as a continuous crossed product
G X, L>(E, pr) ([11]).

2. Direct integrals of irreducible representations. A topological
transformation group (G, 2) is a topological group G together with a
locally compact space 2 and a continuous mapping: (g, ®) — gw of GX Q2
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into 2 such that (gh)®w = g(hw), and if e is the identity of G, ew = w
for all g, he G, and we 2.

(G, 9) is polonais if G and 2 are polonais, i.e., they are separable
and metrizable by a complete metric. (G, 2) satisfies the condition(x) if
each neighborhood U of e in G contains a neighborhood W of e such
that for all w in 2, Cl[ Ww]< Uw. Cl[X] indicates the closure of X. If
G is locally compact and 2 is Hausdorff, (G, 2) satisfies the condition(*),
as one may take W to be any compact neighborhood of ¢ with WC U.

A Borel measure ¢ on 2 is non-trivially ergodic if it is not con-
centrated at an orbit.

LEMMA 5 ([8]). Let (G, 2) be a polonais transformation group
satisfying the condition(x). Then the orbit space 2/G is a T,-space if
and only if 2 has no non-trivially ergodic measure.

For a separable locally compact group G, let G be the standard
Borel space of all irreducible representations of G ([7]).

PROPOSITION 1. Let (I, 2) be a polonais transformation group
satisfying the condition(x), ¢t an ergodic Borel measure in 3, and c—II°
a Borel function from X to G. If for any oceX, II° is equivalent to
I for all vyeI', them the direct integral K = S II°'dp(o) is a factor

representation. Moreover, if p 1s non-t’riviallyh ergodic, then K is a
non-type 1 factor representation.

ProOOF. Suppose K is not a factor representation. Then, there
exists a projection E =0, I in K(G)' N K(G)", where K(G) is the algebra
generated by the representation {K(g)lg € G} and K(G)' is the commutant
of K(@).

Since I1°, 0 € ¥, are irreducible, the Boolean algebra of projections
associated with the direct integral is maximal in K(G)’, and must con-
tain E. Let B be a Borel set with 0 = #(B) = #(3) and E = SXB(G)Idp(o),
where X;(0o) is the characteristic function of B. K is proper because each
II° is irreducible. By the double commutant theorem, the unit ball of
K(G) is strongly dense in the unit ball of K(G)’. The latter being
metrizable in the strong topology, there is a sequence {g,} C G with
K(g,) — E strongly i.e., SH"(g,,)dp(a)—»SXB(O)Idp(a). There is a sub-
sequence {g,,} and a null set N of 3 such that II°(g,,) — X3(0)I strongly
for all ce 3\ N. Changing notation, we assume that 17°(g,) — Xz(0)I

strongly for all g € 3\ N.
Let A = I'(B\N). As B\N is Borel, A is analytic (it is the image
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of I'x(B\N) under a continuous map), and hence measurable. A is
invariant, and we claim that p(A) = #(B). As p(N) =0 and B\NCZ A,
it suffices to show ANNCZB. For any oe A\N, there are ve I and
B € B\ N such that ¢ = v(B), i.e., II° = II"®. Then II°(g,) — Xz(c)I implies
(g,) — Xa(e)I. But II77""(g,) = II¥(g,) — Xx(B)I = I, hence X;(0) =1I
and ¢ € B. Thus g is not ergodic.

If K is a factor representation of type I, then g-almost all the re-
presentations /7° are unitary equivalent, i.e., g is trivially ergodic under

I’ (8]). Therefore if g is non-trivially ergodic, then K is a non-type I
factor representation.

3. On a construction of non-measurable dynamical system. In this
section, we shall construct a non-measurable dynamical system (G, X, p)

by means of a given topological transformation group (G, 2) with some
conditions.

The idea is due to [3] and [6].

Hereafter, we assume that (G, 2) is a topological tramsformation
group which is polonais and satisfies the condition(x) and the orbit
space 2/G = {Gow|we 2} is not a T-space.

The latter assumption is essential in our study.

We may select points p and ¢ in 2/G with p = ¢q, ¢eCl[{p}] and
p € Cl[{g}].

Let II be the canonical mapping of 2 onto 2/G. Let X = II7*(Cl[{p}]).
(G, X) is a polonais transformation group satisfying the condition(x).

Remark. II(Cli{p}]) = CILI({p}]

LEMMA 6 ([38]). There is a metghborhood W of e in G such that
W= W, and if {Q,.} s a decreasing basis of open sets at an arbi-
trary point y in X, CliNa, WQ,. 1< Gy.

The following lemma is essential for our study.

LEMMA 7 ([3]). Let (G, X) be the topological tramsformation group
defined as above. We can inductively define, for each integer n =0
and element g(n) in G and for each n-tuple (i, +--,1,) with i, =0 or
1, an open set P(iy, ---,1,) in X satisfying the following properties:

(1), =eP(0,),

(2), of (iu sy ) F (ju “++, Ju)y then

WP, «++, %) NP3, <+, 4.) = @, where W is as in Lemma 6,

(3 )'n CI[P(?:H ) 'Ln)];P(?’u ) in—l) (’I’l/ = 1)’

(4), diameter P(¢), -+, 1,) <1l/n (n=1),

(5)n gB)PO4y thrsy =+ 2y %) = POy 1, Gpgyy =20, %0) (2 1),
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where 0, is the family of m zeros.

LEMMA 8 ([9]). Let M, (m =1,2, ---) be copies of the group Z/2Z,
the additive group of imtegers mod 2. Let p, be a Radon measure on
M, with p{0)}=p and p{Q)}=q with 0<p<1l and q¢g=1— p.
Then (M,, tt,) ts a measure space (n = 1,2, --.). Let (M, ) be the in-
finite product measure space of (M,, tt,). Let & be the set of those
a=(ayn=1,2, --+) in M for which a,* 0 occurs for a finite number
of m only. (& 1s a countable group which acts on M). Then

(1) £ s free, ergodic and measurable if p = q = 1/2.

(2) & s free, ergodic and non-measurable if p + q #* 1/2.

For each ¢ ={i, 1, ++-, 1, ---}€M, the set Ny, P, +--, %, has
precisely one element, say ©(:). This is due to (3),, (4), and the com-
pleteness of X. It is easily verified that © is a one-to-one mapping of
M into X by (2),. Let M(i, ---,1,) = {1} X -+ x{3,} xX{0, 1} X - -+, where
Ty +++,1,€{0,1}. Then

O(M(3yy + -+, 1) = O(M) NP5y =-+, 1) -

Hence # is a homeomorphism because the sets M(i, .-, 4,) form an
open basis. Therefore we may identify M with 6(M).
Thus we can define a measure » on X by the formulas

MM(tyy + -+, 1) = D°¢""
and
MX\M) =0,

where 7 is the number of 0’s in (3, ---, 7,).

Each point has measure zero with respect to this measure.

Let v be a finite measure on G, equivalent to a right Haar measure.
We shall define the convolution product measure v\ of v and )\ as fol-
lows: If B is a Borel subset of X, let

y:\(B) = Sax(hB)dv(h) . ()

We have to show that the integral in (x) exists. The proof was
given by Glimm [6].
Denote this convolution product measure v« \ by B.

LEMMA 9. The measure B is quasi-invariant under G.

Proor. For any Borel set B of X, 8(B) = 0 if and only if MAaB) =0
for almost every h. On the other hand, for all geG, MhB) =0 (for
almost every h) if and only if M(hgB) = 0 (for almost every h). There-
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fore, for any Borel set B, B(B) = 0 if and only if B(¢gB) = 0 for all geG.

LemMmA 10. If (G, X) 1is effective, then gM N M= @ for all
Wog +#e, where W is as in Lemma 6.

Proor. If yegMNM, g + e, then there exists an element z =
N, P@4, +++, %,) N M such that y = gze WzN M. However, Wz N MZ
Nz=, WPy, -+-,4,) N M = N5-, P(3y, +-+,1,) =2 by (2), of Lemma 7.
Hence, gz = 2z, a contradiction.

Let P,(0) = UP(@iy, *++, %,y 0) and P,(1) = U P(4y, ++*, Ty, 1), Where
the union is taken over all ;=0 or 1,5 =1, ---,n — 1. Define g(n),
n=0,1,2 -, by gIP,0) = P (1) and gm)'P,(1) = P,(0). Let.%" be
the countable free abelian group generated by {g(n)}. Then we can
consider .97 as acting on M and the dynamical system {92, M, \} is
non-measurable.

PropPOSITION 2. If (G, X) 1is effective and G 1is abelian, the dy-
namical system (G, X, B) is free and non-measurable.

Proor. It is obvious that (G, X, B) is free. Let B, be a o-finite
positive measure on X which is invariant under G. Define a measure
M on M by M(K) = B(WK) for each Borel set K, where W is as in
Lemma 6. Then N\(g(n)K) = M(g(n)(K N P,(0))) + M(g(n) (K N P,(1))) =
By(g(n) W(K N P,0))) + B,(g(n)*W(K N P,Q1))) = B(W(KN P,0))) + B( W(KN
P,(1))) = B(WK) = N(K) for each g(n), where g(n),n =0,1,2, ---, are
elements in G which are chosen in Lemma 7. Hence )\, is a o-finite
positive measure which is invariant under .%". Since (%7, M, \) is non-
measurable, )\, is non-equivalent to ». Therefore, there exists a Borel set
B of M such that )\(B) = 0 and MB) # 0 (resp. \(B) = 0 and N\(B) = 0).
Thus by Lemma 10 we have 8,(WB) = 0 and 8(WB) = y(W)A(B) = 0 (resp.
B(WB) + 0 and B(WB) = 0). However, WB is a Borel set of X. Hence
B, is non-equivalent to 8. Consequently, 8 is non-measurable.

4. The type of factors associated with unitary representations of
semi-direct product groups of Mautner type. Define the action of R on
C? by

U2, 2,) = (€2, €2,) , (2,,2,)€C*, teR,

where a is an irrational number.
Then the topological transformation group (R, C?) is polonais and
satisfies the condition(x). Moreover the orbit space C*/R is not a T,-space.
The closure of the orbit {t(z, z,)|t € R} through a point (2, z,) € C* is
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the two-dimensional torus T? if 2,+#0,2,%0. T? is a compact Haus-
dorff space satisfying the second countability axiom. Let g be the
Lebesgue measure on T°.

LEMMA 11. The dynamical system (R, T* p) is free, ergodic and
measurable.
The proof is well known in the theory of dynamical system.

LEMMA 12. There exists a measure B8 on T?* such that the dynam:-
cal system (R, T B) is free, ergodic and mon-measurable.

PROOF. Since (R, T?) is effective and R is abelian, we can construct
a measure B such that the dynamical system (R, T? B) is free and non-
measurable by Proposition 2.

The ergodicity is trivial because T* is the orbit closure.

Now we define a unitary representation I of R X.C® in 5 =
L¥(T*x R, rxvy), where v is the Lebesgue measure on R, in the follow-
ing manner.

For each (¢; 2, z,) € R x,C? define

(& 2y 2)) = My, f((E &)y )
= exp(—1i(Re(e™*(z, + e7™(,2,)) (€, &), » — 1))
(resp. (t; 2y, 2,) = sy, f((Cs Co)s D)
= exp(t(Re(z.{, + 2.0,))f(e"C,, €C,), T + D)),
where Re denotes the real part.
REMARK. For each (z, 2,) € C?, define

Siepep(, 8) = exp(i(Re(z,£ + 2,8))) ,

€ &eT*. Then f,,.,eL>(T ) and the closed linear hull of
{fleppl (21, 2,) € C?) s L=(T?, ).

By Lemma 3 and Lemma 11, we have

LEMMA 18. The W*-subalgebra # (resp. F ') of B(S#) associated
with the unitary representation II (resp. II') is a type I, or type 11,
factor.

LEMMA 14. For each ((, {,) € T?, define

II.52,6(p) = exp(—i(Re(e (2, + e7*'(pz,))9(p — 1))

for (¢; 2, 2,) € R X C? ¢(p) e LA(R, v). Then
(1) % (L, )eT?, are irreducible unitary representations of
R x;C* in LAR, ).
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(2) For any (C,, &) € T?, II'*v* is equivalent to II'“v*? for all t€ R.

PrROOF. (1) Every operator commuting with the operators I7{;fs,
is the multiplication by a function.

(2) The intertwining operator for I7¢“v%? and [I*“i'*? can only be
the translation by t.

Therefore, by Proposition 1, Lemma 18 and Lemma 14 we have the
following theorem.

THEOREM 1. The W*-subalgebra F# (resp. # ') of B(S#) associated
with the unitary representation
(t 2y, 22) = [0, f (€ Co)s D)
= exp(—1i(Re(e .z, + e "(,2)) f((L,, &), » — 1)
(resp. (t; 2y, %)) — M igs,00 (4 &)y D)
= exp(t(Re(z,L, + 2.L))f(e"C, €'Cy), t + D))
of RX,C* in 57 = LNT*x R, uxv) with the Lebesgue measure v on R,

is a type 11, factor. Namely, II and II' are type Il factor represen-
tations of R x,C"*.

On the other hand, by Lemma 4 and Lemma 12, we have the fol-
lowing theorem.

THEOREM 2. The W*-subalgebra <& (resp. Z') of B(S#) associated

with the unitary representation
(& 2, 2,) — @(t;zl,zz)f((Cu &), D)
= exp(—i(Re(e (.2, + e (,2,)) f((Cy Co)y @ — 1))
(resp. (t; 2, 2,) — @’(t;zl,zz)f((Cv )
= exp(i(Re(z.L, + 2,5,))0((C,, &), (€L, €C), T + p)

where 0((C, &), t) is a multiplier) of R X,C* in 52 = L (T*X R, BXV)
with the Lebesgue measure v on R, is a type III factor. Namely, @
and @ are type III factor representations of R X C*.

For the same reason as in Theorem 1 and Theorem 2, we have the
following theorems.

THEOREM 1'. The W*-subalgebra & (resp. & ') of B(S#) associated
with the unitary representation

(8 tay Ts); 21y 24y 25y 24)
- H((t,,tz.t3),z,,zz,zs,z,,)f((Cu Czy Cs, Cl)’ (pu D, ps))
— exp(_,i(Re(e—z(tﬁtg)Clzl + e—i(t3+atz)czz2



NON-TYPE I GROUPS 149

+ e g, + 6 )
X F((Co &y &oy Sy (01 — &y D2~y 25 — 1))
(resp. ((L, Ly, ts); 2y, 2oy 24y 2,)
= I e300 020 (G Cor Gy C)y (D1 D2y 1)) = €XD(I(304-, 2:50))
X f(e*HDE,, eftstel,, M, 6"3L,), 1, + Dy, T, + Dy, b + Dy)

of M, = R* xX,C* in &% = LX(T*xXR’, uxv) with the Lebesgue measure
U (resp. v) on T* (resp. R®), is a type II. factor. Namely, II and II'
are type Il factor representations of R® X, C*.

THEOREM 2'. The W *-subalgebra <& (resp. <#') of B(S#) associated
with the unitary representation

((tu tzv ts); 2y Zgy 23 24) - Q((tl,tz,ta);zl,zg.za,z4)f((cu Cz; Cs’ CA); (pv Dq,y pa))
= exp(—i(Re(e """z, + o7z, 4 €7 2,
+ e_“3C4z4))Xf((C1, Cz’ Cs: C4); (pl - tu D, — tz; Ds — ts))
(resp. ((Ly, Ly, t5); 24, 24y %3y 2,) — Qz(tl,tz.ta):zpzz-23,14)f((cu o &oy €0y (D1 D3y D3))

= exP(i<Re <:Z=:|1 chi)))p((Cu Cz; Cs; CA): (tu tz; ta))
Xf((eiul-‘—tZ)Cl, ei(t3+at2)C2’ ei(t1+t3)C3! eitSC‘)’ (tl + pl’ t2 + p2’ t3 + p3)) ?

where  O((Cyy &y Coy €, (1) sy 82)) 18 @ multiplier) of M, = R’ X,C* in
# = LXT*X R, Bxv) ts a type IIl factor, where B is a measure such
that the dynamical system (R®, T*, B) is free, ergodic and non-measur-
able, and v is the Lebesgue measure on R’. Namely, ® and @' are type
IIT factor representations of R* x,C*.
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