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1. Introduction. Let (M", g) be an n-dimensional compact connect-
ed Riemannian manifold. The Laplacian acting on smooth functions on
M has a discrete spectrum with finite multiplicities. Hersch [6] showed
that for any Riemannian metric ¢ on the two dimensional sphere S?

M(g) vol (8% ¢) = 8x

where \,(g) denotes the first eigenvalue of the Laplacian with respect
to g. The equality holds if and only if g is the canonical metric (up to
a constant multiple).

This implies an affirmative answer to the Blaschke conjecture on S?
and gives another proof of Green’s theorem [5] (cf. [3]). In connection
with this result, Berger [1] posed a problem: Does there exist a con-
stant k(M) satisfying

M(g)vol(M™, g)*'™ < k(M)

for any Riemannian metric ¢ on M? When M is a sphere, can one
characterize the canonical metric up to a constant multiple by the above
equality?

If this problem is affirmatively answered for an mn-dimensional
sphere S*, the Blaschke conjecture is affirmatively answered for S* (cf.
[8]). And it is interesting to know some relations between the spect-
rum theory and differential geometry. It is known (cf [1], [9]) that the
answer to this problem is affirmative when M is a flat torus. But
Urakawa [8] gave a counterexample when M is a compact Lie group
with the nontrivial commutator subgroup, in particular, S®. Tanno [T7]
also answered the problem negatively when M is S*+!(n = 1). Urakawa
and Muto [10] showed that there are many counterexamples when M has
Euler number zero.

In this paper, we give a negative answer also when M is S** (n=2).

THEOREM. There exists a continuous deformation g, (0 <t < o) of
the canonical metric g, on S (n = 2) such that

Ni(g:)vol(S™, g )" — oo (t—>o0) .
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2. Construction of the deformation g,. Let (%, %!, ---, ™) be the
canonical coordinate system on R+, N=(1,0, ---,0)and S=(—-1, 0,---, 0)
(n = 2). Let S™ be the unit sphere in R>*t' and g,2n) the canonical
metric on S induced by the Euclidean structure on R*+!. Let S '=
{0, w*, ---, u™)eS*}. Let (r,x), re(0, w), xcS* !, be a geodesic polar
coordinate system around N on S* — {N, S} with respect to g,(2n), that
is, x = (2%, ---, 2™ ") is a local coordinate on S*-' and » is the distance
from the north pole N. Let g,(2n — 1) be the metric on S** induced
by g,2n). Then its metric on S**~' has constant curvature 1. Let 7 be
a contact form on S*!, that is, » is a unit Killing form on (S,
do(2n — 1)). Then there exists a 1-form 7 on (S**, g,(2n)) such that

Tiew = (sinr)’np, on S — (N, S},

ﬁN =0 9 and 7’75‘ =0.
Here we regard 7, as a covector at (r, ) in S via the geodesic polar
coordinate.

DEFINITION 2.1. We define a deformation ¢g,(2n) (0 <t <o) of g,(2n)
as follows:

2.1) 9:2n) = g2n) + TR 7, (0=t <o0).
In particular, on S* — {N, S},
9:(2n) = (dr)* + (sin 7)%(g,(2n — 1) + t(sin )’ ® 1) .

We notice here that ¢g,2n — 1) =7 & n + 7*h(n — 1), where « is the
Hopf fibering S**~*— CP"*' and h(n — 1) is the canonical metric on
CP"*, Therefore on S* — {N, S}, we have
(2.2) {det g.(2n)}r, = (1 + t(sin 7)*){det go(2n)} (s, »

where we denote by g¢.2n) the coefficient matrix of g¢,(2n) with respect
to the coordinate (r, x) for any t [0, «). Let & = (&) be the dual vector
field of 7 on (8™, gy(2n — 1)). Then ¢ is a unit Killing vector field on
S*-1,  Therefore the inverse matrix ¢,(2n)* of ¢.2n) with respect to
the coordinate (r, z) is of the following form on S* — {N, S}:

-1 1 0
(2.3) gi2n)~t = <0 (sin 7)~%g#*(@2n — 1) — t(1 + t(sin 1*)2)"5"5"> .

LEMMA 2.2. Let P4dsn be the Laplacian on S*™ defined by g.(2n) and
Adgem—1 the Laplacian on S™ ' defined by ¢g,(2n—1). Then, on S*™—{N, S},
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® hson = (0%/0r?) + [(2n — 1)(cos r)(sin 7)?
+ t(sin r)(cos 7){1 + t(sin )?}~](0/or)
+ (sin ) 4ga—1 — {1 + t(sin »)*} £~ ,
where & is a unit Killing vector field on S*™ ' and <~ is the Lie deri-
vation with respect to &.

PrOOF. We denote the geodesic polar coordinate (», 7%, - -, 2" ")by
@', +--, v™) and set 6 = (det g,(2n))"* with respect to (v*, ---, v**). Then
D Agen = 0~1(0/0v7)(093(2n)(0/ov")) .
Therefore by (2.2) and (2.3), we have '
(2.4) Pdgn = (0%/07%) + [(2n — 1)(cos r)(sin »)~*
+ t(sin 7)(cos 7){1 + t(sin 7)%}~1](0/or) + (sin 7)2dgen—
— t{1 + t(sin r)*}"(det g,(2n — 1))~2
X (0/0x"){(det go(2n — 1))/*&'€(3/0x7)} .
As 7 is a coclosed form on (S*7, g(2n — 1)), we have 0=—i7n=
I'tet + (0&'/ox'), where 6 is the co-differentiation of (S**-, ¢g,(2n — 1)) and
I'i, is the Christoffel’s symbol on (S*™!, g,(2n — 1)). Therefore the last

term on the right hand side of (2.4) coincides with —¢(1+
t(sin 7)) F. q.e.d.

3. The estimate of the first eigenvalue. We first consider the
eigenfunctions of 4dgn. Let A, be the k-th eigenvalue of 4g» and V, be
the vector space of eigenfunctions corresponding to »,. Then on
(8™, go(m)) (et [2]),

M=ktk+m-—-1), =0,
dim V;, = 10 — mt1-2Cizr b=2,
dmV,=1, dmV,=m + 1.

As ¢ is a unit Killing vector field on S** (n = 2), & commutes
with 4g.-1 and induces a linear endomorphism on V,. We define an
inner product <, > on smooth functions on S™ as follows:

9y = | fadvol (s, g (m)),

for any f, g € C*(S™), where dvol(S™, g,(m)) is the volume element with
respect to g,(m). By Stokes’ theorem, & induces a skew-symmetric
linear endomorphism on V, with respect to the above inner product.
Tanno [7] gave a decomposition of V, with respect to the action of
L.
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LemMMA 8.1 (Tanno [7]). On (8™ g,2n — 1)), (n = 2), we have
V.= Vk,o + Vk,1+ R Vk,[k/z] ’

for any integer k=0, where [k/2] is the integer part of k/2, and for
any fe€V,, 0=p=I[k2], LAf+ (k- 2p)f=0.

Now let f be a non-zero eigenfunction of “4g. corresponding to .
Then we can regard f as f(r, ) € C*((0, ) X S**'). Let {pi k=0, 0
p <[k/2], 1 £1<dim V,,)} be a complete orthonormal basis on the space
of square integrable functions on S**-! with respect to g¢,(2n — 1),where
@i, € Vip We set

at. () = |

Then aj,,€C¥|0, 7]). Note that there exist some k&, », ¢ such that
ai, #=0.
Now as dgm—1 and £~ are self-adjoint with respect to (, ), ai (7)
must satisfy the following equation:
3.1) [(@?*/dr®) + [(2n — 1)(cos r)(sin 7)™
+ t(sin 7)(cos 7){1 + t(sin )3} |(d/d7) + [ — k(k + 20 — 2)(sin 7)~2
+ tk — 2p)41 + t(sin»)} 'l =0, on (0, 7).
LeEMMA 3.2. When N <2n — 2 and k=1, (8.1) has no mnontrivial
solution in C*([0, x]) for any p, 0 < p < [k/2], and t = 0.
PrOOF. By A <2n — 2 and k=1, we see that on (0, ),
N — k(b 4+ 2n — 2)(sin )~ + t(k — 2p)*{1 + t(sin»)} < 0 .

Let ¢ € C*[0, x]) be a solution of (3.1). Multiply both sides of (8.1) by
(sin r)* and take the limits as » — 0 and » —=x. Then 9(0) = ¢(z) = 0.
Therefore by Rolle’s theorem, there exists »,€(0,7z) such that
(dp/dr)(r,) = 0. For any r,€(0, n) satisfying (d@/dr)(»,) = 0, we have

(d*@/dr*)(r))= —[N — k(k + 2n — 2)(sin 7,)~* + t(k — 2p)*{1 + t(sin 7,)*}*1@(7,) .

If we assume @ is a non-trivial solution, then by the uniqueness of a
solution for an initial condition, @(») = 0. So (d’@/dr®)(r,) > 0 if @(r,) >0
and (d*@/dr*)(r,)<0 if o(r,)<0. This contradicts the fact @(0)=p(x)=0.

q.e.d.

Next we consider the case of k=0 in (8.1). Set z=-cosr. If
y(cos ) is a solution of (3.1), then the function %(z) must be in C*(—1, 1)
and satisfy the following equation (3.1"):

B1) A —2"—[2n +tQ — 2H{L + t(1—2)}" Yy + Ay =0 on (—1,1),

f(r, )Pt (x)dvol(S™~, gy(2n — 1)) .

s2n—1
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where y’(z) (resp. y”’(z)) denotes (dy/dz)(z) (resp. (d*y/dz*)(z)). Set y(z) =
Siizo @;#° formally. Then we obtain 2a,= —\a,, 6(1 + t)a, = {2n — \) +
(2n + 1 — \)t}a, and

(3.2) X + (I + 2)(J + Day. — (I + 2)* + 2n — 4)(J + 2) — 2(2n — 2)—\}a;

=1+ i — Da; — t{5* + 2n — 4)j — 2(2n — 2) — \Ma;,
+ @nj —Na;, j=2.

The function y is well-defined by (3.2), that is, >;.,a;2’ is absolutely
convergent on (—1,1). It is classical that (3.1) is equivalent to (3.1').
By (3.2), we can choose y, = 3,5, and ¥y, = >);2.0,;—,2% " as a funda-
mental system of (3.1").

LeMMA 3.3. Let aj=—1 and a,=1. Then a; >0 (7=1) 1f 0 <A<
2n.

Proor. We first consider a,;. By a,=—1 and a, = \/2, we have
121 + t)a, — t{4* + 4@2n — 4) — 2@2n — 2) — \}a, = 2a, + (4n — N)a, > 0.
Therefore a, > 0. We assume a; > 0 for any even integer j, 4<j=<m
for some even integer m. Set b, = (1 + t)(§ + 2)(J + La;, — t{(F + 2)*+
2n — 4)(J + 2) — 2(2n — 2) — N}a;. Then by (3.2), b; = b;—, + (2nj — \)a;.
By our assumption, b,, = b,—, + @nm — \N)a, > by > -+ > b, > 0. Thus
Aty > 0.

Next we consider a,;—,. By a,=1 and a, = 67[{2n + 2n + 1)t}(1+
t)* — 2] >0, we have b; = (2n — \) + (6n — N)a; > 0. In the same way
as in the case of a,;, we obtain a; > 0 for any odd integer j > 0. q.e.d.

LEMMA 3.4. When 0 <\ <m, (3.1') has no nontrivial bounded solu-
tion in C*—1,1) for any t = 0.

ProOF. We first consider y,. By (8.2),

@yipo = tA + )25 + 2)° + Cn — 4)(25 + 2) — 2(2n — 2) — A}
x{(25 + 225 + D)ay; + (L + 627 + 25 + D}~
X {Za2 + é 4nt — )»)az,} .
When 0<Ax<n and 1=<i=<j, we have 4ni— \N>3ni. When
0<x»<mn, n=2and j =3, we have
{27 + 2)* + (2n — 4)(27 + 2) — 2(2n — 2) — AH{(25 + 2)(27 + L)}
= (2§/25 + 2)[1 + (4ng — 25 — M{25(27 + 1)}'] > (25/25 + 2) .

By Lemma 8.3, we have a; >0 (=1) when 0 <A <mn, q=—1 and
a, = 1. Thus there exists a positive constant K such that a, > (K/2)a,,
a, > (K/4)a, and a; > (K/6)a,, We assume a,; > (K/2j)a, for 3 < j < m.



432 H. MUTO

Then as n =2 and m = 3, we have
Oomss > (/1 + t)(2m/2m + 2)(K/[2m)a, + {(1 + t)2m + 2)2m + 1)}

X g (3nj/2§)Ka,
> t/1 + t)(K/2m + 2a, + /1 + t)(K/2m + 2)a, = (K/2m + 2)a, .

Therefore y,(z) > —1 + (K/2)a,{log(1 — 2*)~'}, when 2z #0. Thus y,(2) is
unbounded on (—1,1). Similarly we can show that y,(z) is unbounded
on (—1,1). Since {y, y.} give a fundamental system of (3.1’), we obtain
the desired result. q.e.d.

THEOREM 3.5. There exists a continuous deformation g, (0 <t <o)
of the camonical metric g, on S™ (n = 2) such that

Mi(ge)VOL(S™, go)'" — o (T — o) .

Proor. Set g, = ¢,(2n). Then Lemmas 3.2 and 3.4 imply \,(9,) =n
for any ¢ = 0. By (2.2), we have

vol(S*, g:) = vol(§**~, g,(2n — 1>)Sﬂ(1 + t(sin 7)*)"(sin 7)™ ~'dr

— o (f—00). q.e.d.
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