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Consider the ordinary differential equation

(1) * = /(ί, x)

for a continuous function f(t, x) on / x Rn, I = [0, <*>). Then, the
following properties are well established for (1) (cf. [2], [4]), where x(t)
denotes an arbitrary solution of (1):

( i ) If there exists a continuous function L(t, s, r) on I 3 such that

(2) \ \ x ( t ) \ \ ^ L ( t , s , \ \ x ( s ) \ \ ) , s ^ t < T ,

as long as x(t) exists, then every solution of (1) is continuable up to

(ii) Conversely, if every solution is continuable up to t = T, then
there is an L(tf s, r) for which (2) holds.

(iii) Especially, the solution operator T(t, s) defined by x(t) —
T{t, s)x(s) (under the uniqueness) is completely continuous, that is, for
any bounded set BaRn, T(t, s)B is bounded if T(t, s) is defined on B.

(iv) If the solutions of (1) are uniformly ultimately bounded, then
they are uniformly bounded when the system (1) is autonomous.

It is quite natural to expect the same properties for functional
differential equations

( 3 ) x(t) = /(t, xt)

replacing x(s), \\x(s)\\ etc. in ( i ) ~ (iv) by xa, \\xs\\ = sup{||x(s + u)\\: —h<^
u <; 0} etc., respectively, where f(t,ψ) is assumed to be continuous on
/ x C([ — h, 0], Rn). However, in general, it turns out that none of them
are true for (3) without additional conditions on f(t, φ). A counterexample
to the assertion (i) for (3) is given by Yorke [3], while it turns out to
hold if f(t, φ) is completely continuous [1]. On the other hand, Henry
(cf. [1]) obtained a counterexample to (iii). The aim of this paper is to
present an autonomous scalar equation
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( 4 )

which is proved to be a counterexample to (iv) even though f(ψ) is
completely continuous on X = C([—1, 0], R1) and satisfies a local Lipschitz
condition there. Here, we note that (iii) implies (ii), while (ii) implies
(iv).

First of all, consider a series of functions:

τ X^X, [τ(φ)](s) = min {1, max{-l, φ(s)}} ,

μ:X-+R, μ{φ) = m i n ^ s ) : s e [ - 1 , 0]} ,

d .Xx (0, <*>)-> (0,1],

δ(φ, ε) = sup{5 ^ 1: \t - s\ ^ δ =» |<£(ί) - tf(β)| ^ e} ,

G,p:R~^ R, G(x) = max{0, x - 1}, p(x) = (max{0, x})2 ,

and set

F(φ; Δ.) = ΣG(ί5(ί t) - φit^)), g(φ; s) = sup F(φ; Δ.) ,

f{φ) = min{sf(r(^); 0),

where z/8 denotes a partition of the interval [s — 1, 0]

( 5 ) Δ8\ s - 1 ^ ί0 S ίi ^ ^ ί̂  ^ 0

for s e [0,1] and %Δ& — N for the partition Δ8 given by (5).
We shall state several lemmas. We omit the proofs of some of them

since they are trivial.

LEMMA 1. // \\φ - ψ\\ < ε/3 for an ε > 0, then δ(ψ9 ε) ^ δ(φ, ε/3).

LEMMA 2. // G(φ(tk) - φ{tk_x)) = 0 and G(φ(tk+1) - φ(tk)) = 0, then
F(φ; Δz) does not decrease by removing tk from the partition Δ8.

The partition Δ8 is said to be principal to φ if any two of {tk}k=Q

are not identical and if G(φ(tk) - φ{tk_x)) Φ 0 or G(φ(tk+1) - φ(tk)) Φ 0 for
any k = 0, 1, ---, N, where we understand t_x = ί0 and ί̂ +1 = ί̂ .

LEMMA 3. Lei Δ8 be principal to φ. Then, %Δ8 < 2/δ(φ, 1) + 1.

PROOF. Since G{φ{tk) - φ(tk^)) Φ 0 or G(φ(tk+1) - φ{tk)) Φ 0, we have
φ(tk) - φ(tk_γ) > 1 or φ(tk+1) - φ(tk) > 1, and hence tk - t^ > δ(φ, 1) or
**+i ~ ίfc > δ(^, 1). Therefore, tk+1 - tk_λ > δ(φ, 1) for all k, which yields
the conclusion. q.e.d.

L E M M A 4. For any φeX there exists a partition Δ8(φ)t which is

principal to φ, such that g(φ; s) = F(φ; Δ8(φ)).

PROOF. By Lemmas 2 and 3, we have
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ί>; s) = sup{2*X0; Δ8): Δ8 is principal to φ, # Δ8 <: N} ,

where N is the largest integer less than 2/δ(φ, 1) + 1. Let D =
{(<o, «i, , **) e i2*+1; β - 1 ^ ί0 ^ «i ^ ^ «* ^ 0}. Clearly D is compact.
For a fixed φeX and any f = (t0, t l f --,tN)eD set IΓ(£) = F(^; z/8), where
J 8 is the partition given by (5). Since H(ζ) is continuous on D, g(φ; s) =
sup{H(ί): £ e Z>} = H(ξ*) for a 5* = (t0*, *f, •• , β ) e ΰ . Then, J*: β - 1 ^
£o* ̂  ί* ^ ^ *J ^ 0 is a partition of [s — 1, 0], for which #(^; s) =
i ^ ; Δ*). By Lemma 2 there exists a partition 4,(0), principal to φ, such
that F ( β Δ*) ^ F(0; 4(^)) ^ sup J s JP(^; J.), that is, F(φ; Δ8(φ)) = g(φ; s).

q.e.d.

LEMMA 5. g(φ; s) is continuous in (φ, s) e X x [0, 1], non-increasing
in s and satisfies a local Lipschitz condition in φ.

PROOF. By Lemma 4 we have g(φ; s) = F(φ; Δ8{φ)) for a partition
Δs(φ) principal to φ, and set N(φ) = %Δ8(φ). Easily, we have g(φ; s) —

r; s) ^ F(φ; Δ8(φ)) - F(ψ; Δ8(φ)) ^ Σ K ) {I Φih) - ψ(tk) | +1 φ(tk^) - t(^-i) |} ^
- ψ\\. Similarly, g(φ; s) - g(ψ; s) ^ -2N(ψ)\\φ - ψ | |. On the

other hand, by Lemmas 1 and 3 we have N(φ) ^ 2/δ(φ, 1) + 1 ^ 2/δ(ξ, 1/3) +
liΐφeU(ζ) = {φ:\\φ-ξ\\< 1/3}. Therefore, \g(φ; s) - g(ψ; s)\ ^ L ( f ) | | ^ -
ψ\\ if φ,ψe U(ζ), where L(ζ) = 4/δ(f, 1/3) + 2, that is, g(φ; s) is locally
Lipschitz continuous in φ.

Since Δ8(φ) is also a partition of [t — 1, 0] for t <; s, we have #(^; ί) ^
F(^; Δ8(φ)) = βr(̂ ; s), that is, #(0; s) is non-increasing in s. Finally, let the
partition Δ8(φ) be given by (5), and set £* = max{£0, t — 1} for a given
ί ^ s. Since z/8(̂ ) is principal to φ, we must have φ(tt) — φ(t0) > 1 which
yields t, - t0 ^ δ(^, 1). Hence, if ί - β ^ δfe 1), then £* ^ ίx and J t : tf ^
ίi ^ ^ *Λ- becomes a partition of [ί — 1, 0]. Therefore, g(φ; s) ^ g(φ; t) ^
F(ψ; Δt) - F f o ΛW) + GWd - φ(tϊ)) - G{φ{Q - φ(t0)) ^ g(φ; s) - \φ{tf) -
Φ(to)\. From this it follows that \g(φ; t) - g(φ; s)\ < e if \t - s\ <
min{<5(0,1), δ(φ, ε)}, since |ί0* - ίo| ^ \t - s|. Thus, ^ s) is continuous
in s and, hence, in (φ, s). q.e.d.

LEMMA 6. f(Φ) is completely continuous and satisfies a local Lipschitz
condition. Moreover, f(φ) = —p(μ(φ)) when μ(φ) ;> 0, f(φ) = p(μ(—φ))
when μ(—φ) ^ 0, α?ιcZ /(^) ^ 0 if μ{φ) ^ 0.

PROOF. The first part immediately follows from Lemma 5, since
\\τ(φ) - τ ( f ) | | ^ | |^ - ψ\\ and \μ(φ) - μ(ψ)\ ^ | |^ - ^ | | . If μ(φ) ^ 0, then
1 ^ [τ(φ)](s) ^ 0 for all s e [ - 1 , 0]. Hence, ^(τ(^); 0) - 0 since [r(0)](t) -
[τ(^)](s) ^ 1 for all ί, s e [ - l , 0]. Similarly, ^(τ(^); 0) = 0 if /ι(-0) ^ 0.
Thus, the rest of the proof is also immediate. q.e.d.
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LEMMA 7. Let x(t) be continuous on [ — 1, α], 0 < a <̂  1, continuously
differentiable on [0, α], and suppose that x(t) ^ —M on [0, a]. Then,
9(τ(x0); t) ^ g(τ(xt); 0) ^ flr(τ(«0); ί) + M/2 + 2 /or t e [0, α].

PROOF. Let Jo: — 1 ^ ί0 <; tx <; ^ ^ ^ 0 be a partition of [—1, 0],
and choose n so that £%_2 ^ — £ ̂  tn_! for a given £ e[0, α ] c [ 0 , 1].
Then, Δt: t0 + t <: ίx + t ^ ^ £Λ_2 + ί is a partition of [£ - 1, 0], and
J: £„_! <; <̂  tN is a partition of [ — 1, 0]. Clearly, if Λ = Δt(τ(x0)) as
given in Lemma 4, then #(r(cc0); ί) = F(τ(x0); Δt) ^ iΓ(τ(α;ί); Δo) ^ flr(r(ά?t); 0).
On the other hand, if Jo •— Δ0(φ) for φ = τ(α?ί) mentioned in Lemma 4, then
g(φ; 0) = F(^; Λ) ^ ^(j(^0); Λ) + F(φ; Δ) + GC^ί^) - φ(tn^)) ^ g(τ(xQ); t) +
F(φ; Δ) + 1. Here, since — 1 ^ ^(s) ^ 1 for se[ — t, 0] and Jo is principal
to 0, 0(£fc) — 0(ίfc_i) takes different sign alternately for k — n, , iV and
(̂*if) ~ 0(*tf-i) > l Therefore, by setting m to be the largest integer

less than or equal to (N — n)/2, we have

F(φ; Δ) =
k

^ [2 + M±(tN_2k+1 - «*_»)]/2 ^ (2

The conclusion follows immediately. q.e.d.

Now, we shall go back to the equation (4). Then, we have the
following theorems.

THEOREM 1. The solutions of (4) are unique for the initial value
problem and continuable up to t = 00.

PROOF. By Lemma 6, the uniqueness is trivial, and any solution x(t)
is continuable unless \\xt\\ -> 00. Because (4) is autonomous, it is sufficient
to prove that the solution x{t) satisfying x0 = φ is continuable up to t =
1 for any φeX. Since μ(xt) <: | |^ | | for t <; 1, we have f{xt) :> -ρ(\\Φ\\)
{——M) as long as x(t) exists and t ^ 1. Hence, Lemma 7 shows that
g(τ(xt); 0) ^ flr(τ(Λ; 0) + M/2 + 2, and, therefore, \f(xt)\ ^ g(τ(xt); 0) +
p(\\φ\\) ̂  flr(r(^); 0) + Af/2 + 2 + M ( = ikf*) as long as x{t) exists and ί ^ 1.
Thus, 0(0) - ikPί ^ α (ί) ^ 0(0) + Af*ί,. which prevents \\xt\\ -> co in [0, 1],
and hence #(£) is continuable up to ί = 00. q.e.d.

THEOREM 2. The solutions of (4) are not uniformly bounded on a
finite interval.

PROOF. Put
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φ\t) =
(cos [1 - l/(2ί + I)2] , 12ί + 11 2= 1/fc

( c o s [ l - & 2 ] , |2ί +

for k^S and t e [-1,0]. Clearly, φk e X, \\φk\\ = l, τ(φk) = φk and g(φk; 1/2)^m*,
where mΛ = {¥ — l)/(2ττ) — 1. Let xk{t) be the solution of (4) satisfying
xQ = φk. Then, by Lemma 7 g(τ(xt); 0)^g(τ(φk); 1/2) ^ mΛ if 0 ^ t ^ 1/2,
and ρ(μ(xk)) = ρ(μ(-xk)) = 0 if 0 ^ ΐ ^ 1/2. Hence, &*(ί) is a solution of
x = 2x\ x(0) = φ\0) = 1, that is, x\t) = 1/(1 - 2ί) as long as ί < 1/2 and
\x\t)\ ^ -]/mk/2. This shows that there is a ί t 6 [0, 1/2) such that x\tk) =
l/mfc/2, which diverges as k —> co. Thus, the solutions of (4) are not
uniformly bounded. q.e.d.

LEMMA 8. Let x(t) be a solution of (4) starting at t = 0. Then,
either μ(xt) ^ 0 for all t ^ 3, or μ( — xt) > 0 /or all t ^ 3.

PROOF. Let <τ = inf{£ ^ 1: μ( — xt) ^ 0}. Note that if there is no such
σ, we have μ( — xt) > 0 for all t ^ 1 and we are done. Also note that
x(t)7>0 on [1, σ] by Lemma 6, since μ( — xt) ^ 0 implies μ(&t) 5^0. Suppose
that σ > 2. Then, μ( — xσ) = — a?(<τ) = 0, and x(t) < 0 on [1, σ). Moreover,
we can find an se[σ — 1, σ) so that 0 < μ( — xt) ^ μ( — xs) = — a?(s) < 1
for all ί e[s, σ). Hence, *(ί) = p(μ( — xt)) ^ p(μ( — xs)) = α (s)2 on [s, σ ) by
Lemma 6. Therefore, x(σ) ^ α?(s) + x(s)\σ — s) ^ α?(s) + #O)2 < 0, which
yields a contradiction. Thus, we have σ <; 2, and hence #(s*) ^ 0 for an
s* 6 [0, σ] c [0, 2]. Suppose that μ(xt) < 0 for all t 6 [s*, s* + 1]. Then,
especially there is an s e [s*, s* + 1] such that x(s) < 0. Since x(s*) ^ 0
and x(s) < 0, we can find a ί e [s*, s] so that a (t) < 0 and x(t) < 0, which
contradicts Lemma 6. Therefore, there exists an s e [s*, s* + 1] c [0, 3]
for which μ(x8) ^ 0. Suppose that μ(xt) < 0 for a t > s, that is, a(t*) <
0 for some t* > s. Then, we can find a t 6 (s, £*] so that &(t) < 0 and
i(ί) < 0, since x(s) ^ 0, which again contradicts Lemma 6. Thus, we
have μ{xt) ^ 0 for all t ^ s. q.e.d.

THEOREM 3. The solutions of (4) are uniformly ultimately bounded
with an arbitrarily small bound.

PROOF. Lemma 8 shows that any solution x(t) of (4) starting at
t = 0 satisfies μ(xt) ^ 0 (ί ^ 3) or μ(-xt) > 0 (t ;> 3). First of all,
suppose that (̂flcj ^ 0 for all t ^ 3. Then, by Lemma 6 we have x(t) =
-p(μ(xt)) ^ 0 for t ^ 3, and hence μfo) = xit) ^ 0 for all t ^ 4. There-
fore, x(t) satisfies x(t) = -x(t)\ that is, x(t) = »(4)/{l + a(4)(ί - 4)} for
all t ^ 4. Now, let it be the case that μ(-xt) > 0 for t ^ 3. From
Lemma 6 it follows that x(t) = p(μ( — xt)) ^ 0 there. Hence, μ(—xt) =
— α?(ί) > 0 for £ ̂  4, that is, i(ί) = x(tf. Therefore, we have x(t) =
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a?(4)/{l - a?(4)(ί - 4)} for t :> 4. In both cases, we have |a?(ί)| < ε if t ^
4 + 1/e, which completes the proof. q.e.d.
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