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1. Introduction. Let A be a (bounded linear) operator on a Hilbert
space H. If A has closed range, then there is a unique operator A'
called the Moore-Penrose inverse or generalized inverse of A, which satis-
fies the following four identities [2, p. 321]:

AATA = A, AAA' = A", (A'A)* = A'A  and
(AAN* = AA",

We denote by (CR) the set of all operators on H with closed range (or
equivalently, that of all operators with Moore-Penrose inverses). For two
operators A and B in (CR), one problem is to find the condition under
which the product AB is in (CR). Bouldin [3] [5] gave a geometric charac-
terization of the condition in terms of the angle between two linear
subspaces, and recently Nikaido [16] showed a topological characterization
of it (for Banach space operators). Another problem is to represent the
Moore-Penrose inverse (AB)' in a reasonable form, that is, to generalize
the reverse order law (AB)™ = B'A™' for invertible operators. Many
authors [1], [4], [6], [9], [10], [18]-[20], etc. (some of them in the setting
of matrices) studied this problem. Barwick and Gilbert [1], Bouldin [4]
[6], Galperin and Waksman [9], etc. proved some necessary and sufficient
conditions which guarantee the “generalized” reverse order law (AB)' =
B'At holds.

In this paper we shall treat the product of two operators with closed
range. In Section 2 we shall show some norm inequalities for the product
to have closed range, which enable us to refine the results in [3] and
[16]. In Section 3, using our result in [12], we shall present an exten-
sion of the (generalized) reverse order law, and extend some main results
in [1], [4], [6] and [9].

Throughout this paper all operators are bounded linear. A projec-
tion is a selfadjoint idempotent operator, and it is an orthogonal projection
onto a closed linear subspace of H. For projections P and @ onto the
closed linear subspaces M and N, we write, in lattice theoretic notations,
P, PV Q and P A Q the projections onto the orthocomplement M* of
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M, the norm closure (M + N)~ of M + N and the intersection M N N,
respectively. For an operator A we shall denote by ker A and ran A

the kernel and the range, respectively. The lower bound v(A) of A
(A = 0) is defined by

¥(A) = inf {|| Az ||: x € (ker A)*, ||| = 1} .

It is well-known [2, p. 311] that A e(CR) if and only if v(4) >0, and
in this case [2, p. 325]

(L.1) v(4) = ||At]|™.

If Ae(CR), then A* ¢ (CR) and A*" = A'™ [2, p. 320] (A*” means (A%)%).
Moreover, A'A (=A*A*") and AA' (=A*PA*) are the projections onto
(ker A)* (=ran A*) and ran A (=(ker A*)'), respectively. For further
basic properties of Moore-Penrose inverses we refer to [2], [11] or [15].

We would like to express our thanks to the referee for his kind
advice.

2. The closedness of range of the product operator. An operator
A e(CR) is easily characterized as an operator satisfying AXA = A for
some operator X (cf. AA'A = A for such an A), i.e., a relatively regular
element of the operator algebra on H. Hence by [17, Result 3.1] (cf.
[14, Theorem 1]) on relative regularity we, at once, have the following
proposition, which shows that the problem on the closedness of ran AB
is reduced to that of ran A'ABB', the range of the product of two
projections.

ProproSITION 2.1. Let A, B€(CR). Then ABe(CR) if and only if
A'ABB' ¢ (CR).

The following result shows a norm characterization of the closedness
of ran PQ for two projections P and Q.

PROPOSITION 2.2. Let P and @ be projections. If PQ + 0, then

(2.1) PR+ |PQPVRHIP=1.
Hence (even if PQ = 0) PQe(CR) if and only if
(2.2) |PrQPVH|<1.

PrROOF. Since ran QP cCran Q(Q* V P)C (ran QP)~ = (ker PQ)*, we
have

(2.3) (ker P@)* = ran Q(Q* Vv P) .
Let xe(ker PQ)* and ||| =1. Then, since z = QQ* V P)x = Qx, we
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have |[PQz|*+ [[P'QPV @) = ||PQx|* + [ P'Qx| = |Qxz|*=1. By
definition, the infimum of ||PQx| is ¥(PQ). Hence we have v(PQ)* +
|PQP VvV Q")|*=1. To show the converse inequality, note v(PQ) <
| PQx| (x<(ker PQ)*, |x| =1). Hence v(PQ)+ ||P‘Qx|* < || PQx|?* +
|PQx|* = 1. Since the supremum of |[P‘Qz| is ||P*‘QP V QY)|, we
obtain v(PQ)* + || P'Q(P V @")|* < 1. Now, the equivalence PQ ¢ (CR) —
(2.2) (between PQ < (CR) and (2.2)) is clear if PQ # 0. If PQ =0, then
QP V Q*) =0 (say, by (2.3)), so that (2.2) is clear. q.e.d.

By (1.1) we easily see v(4) = v(4*) for an operator A # 0, in per-
ticular, v(PQ) = v(QP) (PQ # 0). Hence by (2.1) we have (even if PQ = 0)
(2.4) [PQPYV Q) =QPQV P .

Between two closed linear subspaces M and N we define the angle
a(M, N) (0 = a(M, N) < wn/2) as the arccosine of

sup {|(z, Y)|: |=|| = |yl =1, ze M, ye N},

and a(M, N) = n/2 when either M or N is {0}.

Suppose 4, Be (CR), and write P = A'A, @ = BB'. Then P*(PV Q') =
P- A (P A Q)* is the projection onto L:= ker AN (ker A N ran B):. If
neither L nor ran B is {0}, then

|PQP V)| =[QP(PV QY|
= sup {|(P*(P V @Yz, Qy)|: |lz] = |ly] = 1}
=sup{|(x, »)|: l|lz]| = ||yl =1,2e L, yeran B} .

Hence, by Propositions 2.1 and 2.2 we have the following result due to
Bouldin [3] (ef. [5]).

COROLLARY 2.3 [3, Theorem]. Let A, Be(CR). Then ABe(CR) if
and only if a(ker AN (ker A N ran B)', ran B) > 0.

For another characterization of the closedness of ran PQ, we have
PROPOSITION 2.4. Let P and @ be projections. If PQ + 0, then
(2.5) VPR zZ P+ Q=1 — [[PRPVE)).
Hence (even if PQ = 0) PQe (CR) if and only if P+ + Q<€ (CR).

Proor. Note first that (ker QP)* = ran P(P* V Q), (ker (P* + Q))* =
ran (P V @), and that both the subspaces are not {0}. Let z e (ker QP)*
and ||z|| =1. Then z = P(P* V Q)x = Px and

1QPe|l = [[(P* + @Px| = [|(P* + Q| =z v(P" + Q) .
The last inequality follows from the fact x = (P* V @)z € (ker (P* + Q))*.
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Hence we have v(QP) = v(P* + Q). Since v(PQ) = 7(QP), we have the
left hand side inequality of (2.5). Next, note (P* + Q)x, ) = (P*Q*P* +
Q)r, x) forany 2 € H and P*Q*P* + Q@ =1 — (@*P + PQ") + PQ*P. Hence,
if 2 =(P*V Q) and ||z| =1 then

(P + @2 =z (P + @2, 2) 21— 2Re (Q" P, x) + (PQ'Pr, )
=1-2QPr| +[|Q Pe|* = (1 — [|Q Pl
=1 - |QPEP V).

Hence v(P* + @) = (1 — ||@*P(Q Vv P*+)||)’. By (2.4) this implies the right
hand side inequality of (2.5). Now the equivalence PQ e (CR) = P* + Q¢
(CR) is clear by (2.5) and (2.2) if PQ = 0. If PQ =0, then ran (P* + Q) =
ran P:(1 + Q) = ran P*, so that P* + Q< (CR). q.e.d.

Before an application we remark that Ae(CR) if and only if
AA* e (CR). This is seen by the facts ran AA*Cran AcC(ran AA*)", and
ran A = ran A-(A'A)* = ran AA*A™ Cran AA* Cran A for Ac(CR).

The equivalence (1) <= (3) of the following corollary was shown by
Nikaido [16, Corollary 1].

COROLLARY 2.5. Let A, Be(CR). Write P= A'A and @ = BB'.
Then the following conditions are equivalent.

(1) ABe(CR).

(2) P+ Qe(CR).

(3) ker A + ran B is closed.

PrROOF. (1)< (2) By Propositions 2.1 and 2.4.
(2)=(3) We employ a technique in [7, Theorem 2.2]. Let T =
{5 QO} be a operator matrix on the product Hilbert space H@ H. Then

ran T = (ran P* + ran Q) @ {0} and ran TT* = ran (P* + Q) @ {0}. Hence
by the above remark we have the desired equivalence. q.e.d.

COROLLARY 2.6. Let P and Q be projections. Then ran P + ran @
18 closed if and only if || PQ(P- V QY| < 1.

Proor. By Corollary 2.5 and Proposition 2.4. q.e.d.

For a pair of two closed linear subspaces M and N, the gap g(M, N)
is defined (cf. [13, p. 219]) by
g(M, N) = inf {d(x, N)/d(x, MN N):x € M\ N},

where d(z, L) is the distance from z to L. We set g(M, N) =1 when
Mc N. Let P and Q be the projections onto M and N, respectively.
Then by a simple calculation we have g(M, N) = v(Q*P) (M ¢ N), or by
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(2.1) (even if MC N)
gM, N) = (1 — ||PQ(P* vV Q1) [ .

Clearly, Corollary 2.6 says that g(M, N) >0 if and only if M + N is
closed, which is a well-known result [13, IV, Theorem 4.3] (on a Banach
space).

3. The reverse order law. We state a result which we proved in
[12].

LemMMA 3.1 [12, Lemmas 2.1 and 3.2]. Let Ac(CR), and let R be a
projection commuting with A'A. Then ARe (CR),C:=1— ARA' + ARA*
18 1nvertible and

3.1) (AR)(AR)' = C*ARA* .
Using the above lemma we have

LEMMA 3.2. Let A, B,ABe(CR). Write P=A'A and @ = BB'.
Then C:=1— AP+ V Q)A' + A(P* V Q)A* is invertible, and
(3.2) (AB)(AB)t = C*A(P* v Q)A* .

PrROOF. Put R=P‘\VQ. Sinceran AB=ran AQCran ARC(ran AR) =
(ran AQ)~ = ran AB, we have ran AB =ran AR, i.e., (AB)(AB)'=(AR)(AR)".

Since R commutes with P = A'A, we have, by Lemma 3.1, the required
assertions. q.e.d.

COROLLARY 3.3. Let P and Q be projections. If PQ e (CR), then
(3.3) (PRYPA)Y = PP VQ), (PQPQ=QR VP.

We remark that the second identity of (3.3) can be also obtained
from (2.3).

For the Moore-Penrose inverse of (PQ)', we have the following result
which is considered as an extention of [10, Theorem 3].

LEMMA 3.4. Let P and Q be projections. If PQe(CR), then R :=
1—(PVQYHKA + PQ is invertible and

(3.4) (PQ)' = R'P(P*V Q).

PrROOF. Since R=1—(PV Q@' —P)Q=1—(PV Q)P'Q and since
(P V Q)HPQ| <1 by (2.1), we see that R is invertible. By (3.3) we
see (PV Q@HQ(PQ)' = (PQ)(PQ)(PQ) = (PQ)'. Hence we have

R(PQ)' = (PQ)' — (P V Q@")QPQ)' + PRQPQ) = (PQ)PQ)' = P(P* V Q) .
This implies the desired identity. q.e.d.
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Now we state the main theorem of this section.
THEOREM 3.5. Let A, Be(CR). If ABec(CR), then
(AB)' = (AB)(AB)-B'-(PQ)"- A" (AB)(AB)'
= f(B*, Q" V P)-B'-{1 - (PV Q")Q + PQ}™"
X (P+VQ)A-f(4, PV @),
where P = A'A, @ = BB" and f(S, T) = (1 — STS' + STS*)*STS*.
PrROOF. Note PQe(CR) by Proposition 2.1. The first identity is
obtained from the fact:
(AB)BY(PQ)'A'(AB) = A(A'ABB"(A'ABB"(A'ABB"B
= A(A'ABB"YB = AB.
The second identity is shown by (3.2), (3.4) and the identity (AB)'(AB) =
(B*A*)(B*A*)'. g.e.d.

In each of the following two corollaries, (AB)' is represented by a
rational function in A, Af, B, B' and their adjoints under a certain con-
dition which is satisfied for invertible operators. Hence our theorem is,
in a sense, a reasonable extention of the reverse order law.

COROLLARY 3.6. Let A, B,ABc(CR). If P:= A'A and Q:= BB'
commute, then

(AB) = f(B*, P)B'A'f(A, @) (f s defined in Theorem 3.5) .

PrROOF. Since P and @ commute, we see that PQ is a projection.
Hence (PQ)' = PQ (= QP), because R' = R for a projection R. Since
(AB)(AB)' = (AQ)(AQ)', and since @ commutes with A'A = P, we have,
by (3.1),(AB)(AB)' = f(4, Q). Similarly we have (AB)(AB) = f(B*, P).
Hence by the first identity of Theorem 3.5 we have the desired represen-
tation of (AB)'. q.e.d.

We remark that the assumption ABe(CR) is not needed in Corollary
3.6. For, if P and @ commute then PQ is a projection and PQ e (CR),
so that ABe(CR) (say, by Proposition 2.1).

COROLLARY 3.7. Let A, B, ABe(CR). IfP-VQ@=PVQ-=1,i.e.,
ker A and ran B are complementary, then
(AB)' = Bi(1 — Q + PQ)'At.
Proor. By assumption f(A4, PV Q)= f(A,1)=1—AA"+AA*)TAA*.
Since (1 — AA" + AA*)AA" = AA* (cf. A*AA' = A*), we have f(4,1) =
AA'. Similarly we have f(B* Q' \V P)= B'B. Hence by the second
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identity of Theorem 3.5 we have the required equation. q.e.d.

The following result was essentially shown in [16, Proposition 1]
(for Banach space operators).

COROLLARY 3.8. Let A, Be(CR) and let AB+ 0. Then
(8.5) V(AB) = 7(A)y(B)v(PQ) .

ProoF. If ABe (CR), then by Theorem 3.5 ||[(AB)'|| < || B'|| [|(PQ)'|| || AY]].
Hence by (1.1) we obtain (3.5). If AB¢(CR), then PQ¢ (CR). Hence
(8.5) is clear. q.e.d.

The next two propositions extend (or refine) Bouldin [4, Theorem
3.1] [6, Theorem 3.3], Barwick and Gilbert [1, Theorems 1 and 2],
Shinozaki and Sibuya [18, Propositions 3.2 and 4.3].

First we state a useful lemma for our discussion.

LEMMA 3.9 [8, Theorem 2]. Let T be an idempotent operator with
T £1. Then T is a projection.

PROPOSITION 3.10. Let A, B, ABe(CR). Then the following condi-
tions are equivalent.

(1) A'A commutes with BB*.

(2) (AB)'(AB) = B'A'AB.

(3) C:=1— A*"BB'A* 4+ ABB'A* s invertible, and

(AB)' = B'A*C.
PrROOF. (1)=(2) Since A* = A'AA* (and B* = B'BB*), we have
(AB)'(AB) = (AB)*(AB)'* = B*A*(AB)"* = B'BB*-A'AA*-(AB)"®
= B'A'ABB*A*(AB)"® = B'A'(AB)(AB)*(AB)'*
= B'A'(AB)(AB)'(AB) = B'A'AB.

(2)=1(3) We first show that P:= A'A and Q:= BB' commute.
Since AB = (AB)(AB)'(AB) — AB-B'A'AB, we have PQ = A'ABB =
A'-ABB'A'AB-B' = (PQ)*. Besides, clearly || PQ| < 1. Hence by Lemma
3.9 PQ is a projection, so that P and @ commute. Now by Corollary
3.6 we see (AB)' = f(B* P)B'A'f(A, Q). Since f(B*, P)= (AB)(AB) =
B'A'AB, and since f(A4, Q) = f(A, @)* = AQA*C™*, we have (AB)'=
B'A'ABB'ATAQA*C™' = BtA*C™.

(8)=(1) Let (AB)' = B'A*C™*. Then (AB)'C = B'A* or
(3.6) (AB)' — (AB)'A'"'QA* + (AB)'AQA* = B'A* .

Since (AB)(AB)'AQA* = ABB'A*, multiplying (3.6) by AB from the left,
we have (AB)(AB)' — (AB)(AB)'A"QA* + ABB'A* = ABB'A*. Hence
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3.7 (AB)(AB)! = (AB)(AB)IA"™QA* .

If we multiply (8.7) by (AB)' from the left, then we obtain (AB)' =
(AB)'A™QA*. Hence by (3.6) we see

(3.8) (AB)Y'AQA* = B'A* .
Now, if we assume that P and Q commute, then by (3.8)
PBB* = PQBB* = QPBB* = BB'A'ABB* = BB'A*A"* BB*

= B-(AB)'AQA*- A" BB* = B(AB)'AQA'ABB*

= B(AB)'(AB)B* .
This shows that PBB* is selfadjoint. Hence P and BB* commute, which
is the assertion (1). To see that P and Q commute, take the adjoints
in (8.7). Then we have (AB)(AB)' = AQA'(AB)(AB)!. Multiplying by AB
from the right, we have AB = AQA'AB. By this identity we easily see
PQ = (PQ)?, so that P and @ commute (cf. Proof of (2) = (3)). q.e.d.

Similarly to Proposition 3.10 we have:

ProrosITION 3.10'. Let A, B, ABc(CR). Then the following condi-
tions are equivalent.

(1) BB' commutes with A*A.

(2) (AB)(AB)' = ABB'A'.

(3) D:=1— B*A'AB*" + B*A'AB s invertible, and

(AB)' = D'B*A' .

PrROOF. Replace, in Proposition 3.10, A and B by B* and A* respec-
tively, and take the adjoints. q.e.d.

COROLLARY 8.11 [6, Theorem 38.3]. Let A, B, ABe(CR). Then the
Sollowing conditions are equivalent.

(1) A'A commutes with BB* and BB' commutes with A*A.

(2) (AB)'(AB) = B'A'AB and (AB)(AB)' = ABB'A".

(3) (AB)' = B'A".

Proor. The equivalence (1)« (2) is clear by Propositions 3.10 and
3.10'. If (2) is assumed, then A'A and BB' commute (cf. Proof of Prop-
osition 3.10 (2)= (3)). Hence (AB)' = (AB)'(AB)(AB)! = B'A'AB(AB)' =
B'A'ABB'A' = B'A!, which is the assertion (3). The implication (3) = (2)
is clear. q.e.d.

The following proposition is a Hilbert space version of a result due
to Galperin and Waksman ([9, Theorem 2]).

ProproSITION 3.12. Let A, B, ABec(CR). Then the following conditions
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are equivalent.

(1) ranB'A* = ran B*A* and ran A*"B = ran AB.

(2) (AB)' = B'(A'ABB")A".

ProoOF. Note first that B*A*, B'A*, A*"Be(CR), say, by Proposi-
tion 2.1. Write P = A'A and Q = BB', and let X = B'(PQ)'A". Then
clearly XABX = X, so that Xe(CR). Next we want to show

3.9) ran X = ran B'A* and ran X* = ran A*"B .

Since (PQ)'P = (PQ)" by (3.4), and since ran BY(Q* \ P) = ran B'P (cf.
Proof of Lemma 3.2), we have

ran X = ran BY(PQ)'A" = ran B'(PQ)'P = ran B'(PQ)'! = ran B'(PQ)'(PQ)
= ran BY(Q* VV P) = ran B'P = ran B'A* .

Similarly we have the other identity of (3.9). Now, if we assume (1),
then by (3.9) we obtain

(3.10) ran X = ran B*A* and ran X* =ran AB,
or equivalently
(3.11) XX'=(AB)(AB) and X'X = (AB)(AB)'.

Hence X = XX'XX'X=(AB)'(AB)-X-(AB)(AB)' = (AB)'(AB)(AB)' = (AB)',
which is the assertion (2). Conversely, if we assume (2), i.e., X = (AB)",
then clearly (3.11) and hence (3.10) are valid. Hence by (3.9) we have
the assertion (1). q.e.d.

We remark that the condition P VQ =PV Q' =1 (P= A'A, Q =
BB'") taken in Corollary 3.7 implies the assertion (2) (hence also (1)) of
the above proposition.

The following result adds to Corollary 3.11 another condition in order
that (AB)! = B'A' holds.

COROLLARY 3.13 (cf. [9, Theorem 3]). Let A, B, ABe(CR). Then
(AB)t = B'A' if and only if

(3.12) AtA and BB' commute, and (1) (or equivalently (2))
of Proposition 3.12 holds.

ProoF. If (AB)'=B'A' then (AB)'AB=B'A'AB, so that A'A and BB!
commute. Since (A'ABB")'= A'ABB'= BB'A'A, we have B'(A'ABB")'A'=
BtAt = (AB)', the assertion (2) of Proposition 3.12. Conversely, if (3.12)
is assumed then (AB)' = B'(A'ABB")'A' = B'BB'A'AA!' = B'A', as desired.

q.e.d.
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