EXPOSED POINTS AND EXTREMAL PROBLEMS IN H^1 , II

TAKAHIKO NAKAZI*

(Received March 21, 1984)

ABSTRACT. If $\phi \in L^{\infty}$, we denote by T_{ϕ} the functional defined on the Hardy space H^1 by

$$T_{\phi}(f) = \int_{-\pi}^{\pi} f(e^{i\theta}) \phi(e^{i\theta}) d\theta/2\pi$$
.

Let S_{ϕ} be the set of functions in H^1 which satisfy $T_{\phi}(f) = ||T_{\phi}||$ and $||f||_1 \leq 1$. If S_{ϕ} is not empty and weak*-compact, a description of S_{ϕ} was given in the first part of this paper. In this paper, the structure of S_{ϕ} is studied generally. Moreover, we give a characterization of exposed points, that is, g in H^1 such that $S_{\phi} = \{g\}$ for some ϕ .

1. Introduction. Let U be the open unit disc in the complex plane and let ∂U be the boundary of U. If f is analytic in U and $\int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta$ is bounded for $0 \leq r < 1$, then $f(e^{i\theta})$, which we define to be $\lim_{r \to 1} f(re^{i\theta})$, exists almost everywhere on ∂U . If

$$\lim_{r\to 1}\int_{-\pi}^{\pi}\log^+|f(re^{i\theta})|d\theta| = \int_{-\pi}^{\pi}\log^+|f(e^{i\theta})|d\theta|,$$

then f is said to be in the class N_+ . The set of all boundary functions in N_+ is denoted by N_+ again. For $0 , the Hardy space <math>H^p$ is defined as $N_+ \cap L^p$. If $1 \leq p \leq \infty$, it coincides with the space of functions in L^p whose Fourier coefficients with negative indices vanish. If h in N_+ has the form

$$h(z) = \exp\left\{\int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log |h(e^{it})| dt/2\pi + i\alpha\right\} \quad (z \in U)$$

for some real α , then h is called an outer function. We call q in N_+ an inner function if $|q(e^{i\theta})| = 1$ a.e. on ∂U . Each nonzero f in H^1 has a unique factorization of the form f = qh, where q is an inner function and h is an outer function.

If $\phi \in L^{\infty}$, we denote by T_{ϕ} the functional defined on H^1 by

$$T_{\phi}(f) = \int_{-\pi}^{\pi} f(e^{i heta}) \phi(e^{i heta}) d heta/2\pi$$

^{*} This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

T. NAKAZI

The norm of T_{ϕ} is $||T_{\phi}|| = \sup\{|T_{\phi}(f)|: f \in S\}$. Let S_{ϕ} denotes the set of all $f \in S$ for which $T_{\phi}(f) = ||T_{\phi}||$, where $S = \{f \in H^1: ||f||_1 \leq 1\}$.

DEFINITION. $g \in H^1$ with $||g||_1 = 1$ is called an exposed point of S if $S_{\phi} = \{g\}$ for some ϕ .

de Leeuw and Rudin [2, Theorem 8] pointed out that if g is an exposed point of S, then it is an outer function and that for every a with $|a| \leq 1$ the function $g/(z-a)(1-\bar{a}z)$ fails to be in H^1 . We can ask whether the converse is valid. Hayashi [1] gave an example which shows the converse is not true. In this paper we give a characterization for exposed points of S which is related to the sufficient condition of [2] above. From this it follows that the converse is true in some special cases. If g and g^{-1} belong to H^1 , then $g/||g||_1$ is an exposed point of S. A more elaborate example of exposed points of S is $g/||g||_1$ in H^1 with a nonnegative real part [5, Theorem 3].

Let C denote the space of continuous functions on ∂U and set $A = H^{\infty} \cap C$. Then $H^1 = (C/zA)^*$. The author [4, Theorem 2] obtained a complete description of S_{ϕ} if S_{ϕ} is weak*-compact. In this paper, we give a general structure theorem for S_{ϕ} from which the description of S_{ϕ} in [4, Theorem 2] follows.

Most of the work in this paper was done while the author was visiting the University of Iowa. He would like to take this opportunity to thank the members of the Department of Mathematics for their hospitality. In particular, he would like to thank P. Muhly and R. Curto for helpful discussions.

2. Exposed points. Suppose S_{ϕ} is nonempty and set $S_{\phi}^{0} = \{f \in S_{\phi}: f/(z-a)(1-\bar{a}z) \in H^{1} \text{ for some } a \in \bar{U}\}$. Set $S^{1} = \{f \in H^{1}: ||f||_{1} = 1\}$. The following lemmas are known:

LEMMA 1. (cf. [2, Theorem 1]) If k, $h \in S^1$ and $k \neq h$, then (k + h)/2 is not an outer function

LEMMA 2. (cf. [2, p. 478]) Assuming f and g in S^1 , f and g belong to the same S_{ϕ} if and only if $\arg f(e^{i\theta}) = \arg g(e^{i\theta})$ a.e. on ∂U .

Although the following is essentially in [2, Theorems 8 and 9], we give a simpler proof.

PROPOSITION 1. Suppose S_{ϕ} is nonempty. Then S_{ϕ}^{0} is empty if and only if $S_{\phi} = \{f\}$ for some f in H^{1} .

PROOF. If $S^0_{\phi} \neq \emptyset$, then $(z-a)(1-\bar{a}z)g \in S_{\phi}$ for some $a \in \bar{U}$ and some $g \in H^1$. Since $(z-a)(1-\bar{a}z)/(z-c)(1-\bar{c}z) \ge 0$ for any $c \in \bar{U}$ on

266

 $\partial U, \gamma(z-c)(1-\bar{c}z)g$ belongs to S_{ϕ} for some $\gamma > 0$ and $c \neq a$ by Lemma 2. Thus $S_{\phi} \neq \{f\}$ for any f in H^1 . If there exist f and k in S_{ϕ} such that $f \neq k$, then by Lemma 1 $(f+k)/2 \in S_{\phi}$ is not an outer function. So we can write (f+k)/2 = qh for a nontrivial inner function q and an outer function h. Since $\bar{q}(q-q(0))(1-\bar{q(0)}q) \geq 0$ a.e. on $\partial U, \gamma(q-q(0)) \times (1-\bar{q(0)}q)h$ belongs to S_{ϕ} for some $\gamma > 0$ by Lemma 2. This implies $S_{\phi}^0 \neq \emptyset$. q.e.d.

LEMMA 3. If S°_{ϕ} is nonempty, then $||T_{z\phi}|| = ||T_{\phi}||$, $zS_{z\phi} \subset S_{\phi}$ and $S^{\circ}_{\phi} = \{\gamma(z-a)(1-\bar{a}z)k \in S^{1}; \gamma > 0, |a| \leq 1, k \in S_{z\phi}\}.$

PROOF. Since S°_{ϕ} is nonempty, from the first part of the proof of Proposition 1 it follows that there exists $k \in S^1$ with $zk \in S^{\circ}_{\phi}$. Then $k \in S_{z\phi}$, because $T_{\phi}(zk) = ||T_{\phi}||$ and $||T_{z\phi}|| = ||T_{\phi}||$. Hence $S^{\circ}_{\phi} = \{\gamma(z-a)(1-\bar{a}z)k \in S^1: \gamma > 0, |a| \leq 1 \text{ and } k \in S_{z\phi}\}$ and $zS_{z\phi} \subset S_{\phi}$. q.e.d.

PROPOSITION 2. If S^0_{ϕ} is not empty, then S_{ϕ} is the L¹-closure of S^0_{ϕ} .

PROOF. If $f \in S_{\phi}$ and f = qh, where q is a nontrivial inner function and h is an outer function, then there is a positive constant γ_{α} such that $\gamma_{\alpha}(q-\alpha)(1-\bar{\alpha}q)h \in S_{\phi}$ for any complex number α . By a theorem of Frostman in [3, p. 119], there is a sequence $\{\alpha_n\}$ such that $\alpha_n \to 0$ and $q - \alpha_n$ has zeros in U. So if we set $F_n = \gamma_n(q-\alpha_n) \times (1-\bar{\alpha}_n q)h$ and $\gamma_n = \gamma_{\alpha_n}$, then $F_n/(z-\alpha_n)(1-\bar{\alpha}_n z) \in H^1$ for some $\alpha_n \in U$, hence $F_n \in S_{\phi}^{\circ}$. Since $\alpha_n \to 0$, we have $(q - \alpha_n)(1 - \bar{\alpha}_n q) \to q$ a.e. on ∂U and $\gamma_n \to 1$. Thus f can be approximated by functions in S_{ϕ}° . When $f \in S_{\phi}$ is an outer function, there is $g \in S_{\phi}$ with $g \neq f$ by Proposition 1 because $S_{\phi}^{\circ} \neq \emptyset$. Then $\lambda f + (1-\lambda)g$ belongs to S_{ϕ} for $0 < \lambda < 1$, it is not an outer function by Lemma 1 and it can be approximated by functions in S_{ϕ}° by what was just proved. On the other hand, f can be approximated by $\lambda f + (1-\lambda)g$ as $\lambda \to 1$ and hence the proposition follows. q.e.d.

COROLLARY 1. If S_{ϕ} is weak*-compact and S_{ϕ}^{0} is nonempty, then $S_{\phi}^{0} = S_{\phi}$.

PROOF. By Lemma 3, $S_{\phi}^{\circ} = \{\gamma(z-a)(1-\bar{a}z)k \in S^1: \gamma > 0, |a| \leq 1 \text{ and } k \in S_{z\phi}\}$. Since $zS_{z\phi} \subset S_{\phi}$ and S_{ϕ} is weak*-compact, $S_{z\phi}$ is weak*-compact, too. We shall show that S_{ϕ}° is closed in the L^1 -topology. Then $S_{\phi}^{\circ} = S_{\phi}$ by Proposition 2. If $\|\gamma_j(z-a_j)(1-\bar{a}_jz)k_j-f\|_1 \to 0$ as $j \to \infty$, where $\gamma_j > 0$, $|a_j| \leq 1$, $k_j \in S_{z\phi}$ and $f \in S_{\phi}$, then $\gamma_j(s-a_j) \times (1-\bar{a}_js)k_j(s) \to f(s)$ for any s in U. There are subsequences a_{jn} and k_{jn} of a_j and k_j such that $a_{jn} \to a$ and $k_{jn} \to k$ in the weak*-topology as $n \to \infty$. Hence $\gamma_{jn} \to f(s)/(s-a)(1-\bar{a}s)k(s)$ for any s in U such that $(s-a)(1-\bar{a}s)k(s) \neq 0$. Since $k \not\equiv 0$, we have $\gamma_{jn} \to \gamma$ as $n \to \infty$. Thus $f = \gamma(z-a)(1-\bar{a}z)k$ and $f \in S_{\phi}^{\circ}$.

If q is a singular inner function and $\phi = \overline{q}$, then $q \in S_{\phi}$ but $q \notin S_{\phi}^{0}$. Hence S_{ϕ}^{0} may be a proper subset of S_{ϕ} . Now we shall give a characterization of exposed points of S.

THEOREM 3. Let g be a nonzero function in H^1 with $||g||_1 = 1$. g is an exposed point of S if and only if g cannot be approximated by any k in H^1 which satisfies the following conditions: (1) $\arg k(e^{i\theta}) = \arg g(e^{i\theta})$ a.e. on ∂U and (2) $k/(z-a) \times (1-\bar{a}z)$ belongs to H^1 for some $a \in \bar{U}$.

PROOF. If g is an exposed point of S, then $S_{\phi} = \{g\}$ for some ϕ by definition. Thus $S_{\phi}^{0} = \emptyset$ by Proposition 1. Hence the proof of the "only if" part follows. If g is not an exposed point of S, then S_{ϕ}^{0} is dense in S_{ϕ} in the L¹-topology with $\phi = |g|/g$ by Proposition 2. Hence the proof of the "if" part follows. q.e.d.

We can give a simpler characterization of exposed points of S under some condition. Suppose g is a nonzero function in S such that S_{ϕ} is weak*-compact for $\phi = |g|/g$. Then g is an exposed point of S if and only if $g/(z-a)(1-\bar{a}z)$ fails to be in H^1 for any $a \in \bar{U}$. The "only if" part is known in [2]. For the "if" part, use Corollary 1.

3. The description of S_{ϕ} . Let us denote by Z_+ the set of all nonegative integers. The structure of S_{ϕ} for $\phi = \overline{z}^n$ $(n \in Z_+)$ is known completely as follows. We omit the proof, since it is straightforward.

$$S_{ar{z}^n}=\{\gamma\prod{(z-a_j)(1-ar{a}_jz)\in S^1}:\gamma>0$$
, $a_j\inar{U}\}$.

In this section we consider S_{ϕ} in general. For any $\phi \in L^{\infty} ||T_{\phi}|| \ge ||T_{z\phi}|| \ge ||T_{z\phi}|| \ge \cdots$.

THEOREM 4. Let n be Z_+ . Suppose $S_{z^{l_{\phi}}} \neq \emptyset$ for any $l \in Z_+$ with $0 \leq l \leq n$. Then the following are equivalent.

 $(1) ||T_{\phi}|| = ||T_{z^{n_{\phi}}}||.$

(2) S_{ϕ} is the L¹-closure of the set of all $f \in S^1$ of the form $f = \gamma ph$, with $\gamma > 0$, $p \in S_{\overline{z}^n}$ and $h \in S_{z^n \phi}$.

PROOF. (2) \Rightarrow (1). If $h \in S_{z^{n_{\phi}}}$ then $z^n h \in S_{\phi}$ because $z^n \in S_{\overline{z}^n}$, hence $||T_{\phi}|| = ||T_{z^{n_{\phi}}}||$. (1) \Rightarrow (2). The proof is by induction on n. If n = 0 then (1) \Rightarrow (2) is true trivially. Assume (2) follows from (1) for n. We shall prove (1) \Rightarrow (2) for n + 1. If $||T_{z^{n_{\phi}}}|| = ||T_{z^{n+1_{\phi}}}||$ then $zS_{z^{n+1_{\phi}}} \subset S_{z^{n_{\phi}}}$, hence $S_{z^{n_{\phi}}}^{\circ} \neq \emptyset$. By Lemma 3 $S_{z^{n_{\phi}}}^{\circ} = \{\gamma p_1 k: \gamma > 0, p_1 \in S_{\overline{z}} \text{ and } k \in S_{z^{n+1_{\phi}}}\}$ and by Proposition 2 $S_{z^{n_{\phi}}}$ is the L^1 -closure of $S_{z^{n_{\phi}}}^{\circ}$. This and the hypothesis of induction show that S_{ϕ} is the L^1 -closure of the set of all $f \in S^1$ of the

form $f = \gamma p_1 p_n h$, with $\gamma > 0$, $p_1 \in S_{\bar{z}}$, $p_n \in S_{\bar{z}^n}$ and $h \in S_{z^{n+1}\phi}$. Hence (2) follows because $\gamma' p_1 p_n \in S_{\bar{z}^{n+1}}$ for some $\gamma' > 0$. q.e.d.

COROLLARY 2. Let n be in Z_+ . Suppose $S_{z^{l_{\phi}}} \neq \emptyset$ for any $l \in Z_+$ with $0 \leq l \leq n$. Then the following are equivalent.

(1) $||T_{\phi}|| = ||T_{z^{n_{\phi}}}||$ and $S_{z^{n_{\phi}}} = \{g\}.$

(2) S_{ϕ} consists of all $f \in S^1$ of the form $f = \gamma pg$ with $\gamma > 0$, $p \in S_{z^n}$ and an exposed $g \in S_{z^{n_{\phi}}}$.

COROLLARY 3. (cf. [4, Theorem 1] and [1]) If $\phi = \overline{z}^n |g|/g$ $(n \in \mathbb{Z}_+)$ and $g/||g||_1$ is an exposed point of S, then S_{ϕ} consists of all $f \in S^1$ of the form $f = \gamma pg$ with $\gamma > 0$ and $p \in S_{\overline{z}^n}$.

From Corollary 3 the description of S_{ϕ} follows in case S_{ϕ} is weak^{*}-compact [4, Theorem 2]. If $||T_{\phi}|| > ||T_{z^{n_{\phi}}}||$ for some $n \in \mathbb{Z}_{+} \setminus \{0\}$ then S_{ϕ} is nonempty and S_{ϕ} is weak^{*}-compact (see [4, p. 228]).

References

- [1] E. HAYASHI, Strong outer solutions to an H^1 extremal problem, preprint.
- [2] K. DE LEEUW AND W. RUDIN, Extreme points and extremum problems in H¹, Pacific J. Math. 8 (1958), 467-485.
- [3] P. KOOSIS, Introduction to H^p Spaces, London Math. Soc. Lecture Notes 40, Cambridge Univ. Press, London and New York, 1980.
- [4] T. NAKAZI, Exposed points and extremal problems in H^1 , J. Functional Anal. 53 (1983), 224-230.
- [5] K. YABUTA, Some uniqueness theorems for $H^p(U^n)$ functions, Tôhoku Math. J. 24 (1972), 353-357.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE (GENERAL EDUCATION) HOKKAIDO UNIVERSITY SAPPORO 060, JAPAN