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ABSTRACT. If ¢€L~, we denote by Ts the functional defined on the
Hardy space H' by

To=|_fenpenszn .

Let Sy be the set of functions in H* which satisfy Ts(f)=|Tsl and | fI,<1.
If Sp is not empty and weak*-compact, a description of Sy was given in
the first part of this paper. In this paper, the structure of Ss is studied
generally. Moreover, we give a characterization of exposed points, that is,
g in H* such that Sg={g} for some ¢.

1. Introduction. Let U be the open unit dise in the complex plane and
let 0U be the boundary of U. If f is analytic in U and log*| f(re*)|d6

is bounded for 0 < r <1, then f(eY), which we define to be lim,_, f(re¥),
exists almost everywhere on oU. If

lim | 1og*| fire®) o = " log*ifte”)1ds ,

then f is said to be in the class N,. The set of all boundary functions
in N, is denoted by N, again. For 0 < p £ «, the Hardy space H” is
defined as N, NL?*. If 1<p <L, it coincides with the space of functions
in L? whose Fourier coefficients with negative indices vanish. If % in
N, has the form

h(z) = exp {S: z: —_‘— z log | h(e®)|dt/2m + ia} (ze U)
for some real «, then # is called an outer function. We call ¢ in N,
an inner function if |g(e¢)| =1 a.e. on 0U. Each nonzero f in H' has
a unique factorization of the form f = qh, where ¢ is an inner function
and % is an outer function.

If g€ L», we denote by T, the functional defined on H' by

T,(f) = |_feieanjen .
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The norm of Ty is || Ty|| = sup{| T4(f)|: f €S}. Let S; denotes the set of
all fe8 for which T,(f) = ||T,||, where S ={feH" | f|, =<1}

DEFINITION. g€ H' with ||g]|, =1 is called an exposed point of S if
S; = {g} for some ¢.

de Leeuw and Rudin [2, Theorem 8] pointed out that if g is an
exposed point of S, then it is an outer function and that for every a
with |a| £ 1 the function ¢/(z — a)(1 — @z) fails to be in H:. We can
ask whether the converse is valid. Hayashi [1] gave an example which
shows the converse is not true. In this paper we give a characterization
for exposed points of S which is related to the sufficient condition of [2]
above. From this it follows that the converse is true in some special
cases. If g and g~ belong to H', then g/||g|l, is an exposed point of S.
A more elaborate example of exposed points of S is g/||g|, in H' with
a nonnegative real part [5, Theorem 3].

Let C denote the space of continuous functions on éU and set A =
H~NnC. Then H'= (C/zA)*. The author [4, Theorem 2] obtained a
complete description of S; if S, is weak*-compact. In this paper, we
give a general structure theorem for S, from which the description of
S, in [4, Theorem 2] follows.

Most of the work in this paper was done while the author was
visiting the University of Iowa. He would like to take this opportunity
to thank the members of the Department of Mathematics for their
hospitality. In particular, he would like to thank P. Muhly and R. Curto
for helpful discussions.

2. Exposed points. Suppose S; is nonempty and set S} = {feS,:
flz — a)1l — az)e H* for some ac U}. Set §'={feH" | f|,=1}. The
following lemmas are known:

LEMMA 1. (cf. [2, Theorem 1]) If k, heS*' and k + h, then (kK + h)/2
18 not an outer fumction

LEMMA 2. (cf. [2, p. 478]) Assuming f and g in S', f and g belong
to the same S, if and only if arg f(e’) = arg g(e*) a.e. on dU.

Although the following is essentially in [2, Theorems 8 and 9], we
give a simpler proof.

PROPOSITION 1. Suppose S; is nonempty. Then S) is empty 1f and
only if Sy = {f} for some f in H'.

ProoF. If S+ @, then (¢ —a)(l —az)geS; for some ac U and
some ge H'. Since (z — a)(1 — @2)/(z — ¢)(1 —¢z) =0 for any ce U on
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oU, 7(z — ¢)(1 — ¢z)g belongs to S, for some ¥ >0 and ¢ # a by Lemma 2.
Thus S; # {f} for any f in H'. If there exist f and k in S, such that
f # k, then by Lemma 1 (f + k)/2€ S, is not an outer function. So we
can write (f + k)/2 = gk for a nontrivial inner function ¢ and an outer
function k. Since g(g—q(0))(1—q(0)g)=0 a.e. on dU, v(g—q(0)) x (1 —q(0)g)h
belongs to S, for some ¥ >0 by Lemma 2. This implies S+ @. q.e.d.

LEMMA 3. If S is monempty, them | Tl = |Tsl, 2S.,<S; and
Sy ={vz—a)l —a2keS; v>0, |a| =1, keS,,).

PrROOF. Since S; is nonempty, from the first part of the proof
of Proposition 1 it follows that there exists keS' with zkeS;.
Then keS,;, because T,(2k) = ||T4|| and || T4l =|Ts|l. Hence S;=
vz —a)1 —a@az)keS:v>0,]a| =1 and ke S,;} and zS,,CS;. q.e.d.

ProPOSITION 2. If S is mot empty, them S, is the L'-closure of S;.

Proor. If feS, and f = qh, where ¢ is a nontrivial inner function
and A is an outer function, then there is a positive constant 7, such that
7.9 — @)1 — aq)h e S; for any complex number a. By a theorem of
Frostman in [3, p. 119], there is a sequence {a,} such that a, — 0 and
q — a, has zeros in U. So if we set F, =7,0q — a,) X1 — @,9)h and
Yo = Yo, then F./(z—a,)1 — a@,2)€ H' for some a,c U, hence F,eS;.
Since a, — 0, we have (¢ — a,)1 — &@,9) >q a.e. on 9U and 7, —»1. Thus
f can be approximated by functions in S}. When feS, is an outer
function, there is ge S, with g # f by Proposition 1 because S # @.
Then \f + (1 —\)g belongs to S; for 0 <A <1, it is not an outer function
by Lemma 1 and it can be approximated by functions in S} by what was
just proved. On the other hand, f can be approximated by Af + (1 —\)g
as A — 1 and hence the proposition follows. q.e.d.

COROLLARY 1. If S; is weak*-compact and S; is momempty, then
Sg - S¢.

PrOOF. By Lemma 3, S = {v(z — a)1 — az)keS:v>0, |a|<1 and
keS,}. Since zS,,CS; and S, is weak*-compact, S,, is weak*-compact,
too. We shall show that S} is closed in the L'-topology. Then S} =S,
by Proposition 2. If |7,z —a,)A — @;2)k; — f|l, >0 as j— o, where
v; >0, la;| £1, k;e8S,4 and feS;, then 7;(s — a;)x (1 — @;8)k,(s) — f(s)
for any s in U. There are subsequences a;, and k;, of a; and k; such
that a;, —a and k;, —k in the weak*-topology as n — o. Hence v,, —
f(8)/(s — a)(1 — @s)k(s) for any s in U such that (s — a)(1 — @s)k(s) # 0.
Since k #0, we have 7;,,»7 as n > . Thus f= 7z — a)(1 — @z)k and
feSs. q.e.d.
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If ¢ is a singular inner function and ¢ =@, then geS; but g¢S;.
Hence S; may be a proper subset of S,. Now we shall give a charac-
terization of exposed points of S.

THEOREM 3. Let g be a nonzero function in H' with ||g|,=1. ¢
is an exposed point of S if and only if g camnot be approximated by
any k in H' which satisfies the following conditions:

(1) arg k(e?®) = arg g(e”) a.e. on oU and (2) k/(z — a)x (1 — @z) belongs to
H* for some acU.

ProOF. If g is an exposed point of S, then S, = {g} for some ¢ by
definition. Thus S} = @ by Proposition 1. Hence the proof of the “only
if” part follows. If g is not an exposed point of S, then S} is dense in
S, in the L'-topology with ¢ = |g|/g by Proposition 2. Hence the proof
of the “if” part follows. q.e.d.

We can give a simpler characterization of exposed points of S under
some condition. Suppose g is a nonzero function in S such that S; is
weak*-compact for ¢ = |g|/g. Then g is an exposed point of S if and
only if g/(z — a)(1 — @z) fails to be in H* for any ac U. The “only if”
part is known in [2]. For the “if” part, use Corollary 1.

3. The description of S;. Let us denote by Z, the set of all
nonegative integers. The structure of S, for ¢ =2" (n€Z,) is known
completely as follows. We omit the proof, since it is straightforward.

Spn={7T1(z—a;)1 —a;z)eS:v>0,a;eU}.
In this section we consider S, in general. For any g€ L= || T,|| = || T.4ll =
| Tog || = - - -

THEOREM 4. Let m be Z,. Suppose S, = @ for any leZ, with
0=l mn. Then the following are equivalent.

(1) [Tl = || Tengll-

(2) S; is the L*-closure of the set of all f€S* of the form f = Yph,
with v > 0, pE S;n and he Szn¢-

Proor. (2)= (). If heS,.; then z"heS; because 2"€S;s, hence

| Tyll = || Tangll. (1)=(2). The proof is by induction on n. If » = 0 then
(1)=(2) is true trivially. Assume (2) follows from (1) for n. We shall
prove (1)=(2) for » + 1. If || T\ns|| = || Ten+14|| then 2S,s+15,CS,s4, hence

Sirg # @. By Lemma 3 S = {vpk:7 >0, p,€S; and ke S,x+y4} and by
Proposition 2 S,., is the L'-closure of Sl»;. This and the hypothesis of
induction show that S; is the L'-closure of the set of all feS*' of the
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form f = vpp,h, with v>0, p,eS;, p,€S;» and he S,s+1;,. Hence (2)
follows because 7'p,p, € S;»+1 for some ¥’ > 0. q.e.d.

COROLLARY 2. Let m be in Z,. Suppose S,u; + @ for any leZ,
with 0 <1 < n. Then the following are equivalent.

(1) [Tl = | Tengll and Sins = {g}.

(2) S; comsists of all feS* of the form f= vpg with v >0, p€ S;n
and an exposed g € S;ny.

COROLLARY 3. (cf. [4, Theorem 1] and [1]) If ¢ =2z"|gl/g (ne€Z,)
and g/||g|l, 18 an exposed point of S, then S, consists of all feS* of the
form f = vYpg with v >0 and p € S;.

From Corollary 3 the description of S; follows in case S, is weak*-
compact [4, Theorem 2]. If ||T,|| > || T.ng|l for some ne Z,\ {0} then S;
is nonempty and S; is weak*-compact (see [4, p. 228]).
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