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0. Introduction. It is well known that a symmetric bounded domain
in a complex Euclidean space possesses the following two curvature
properties of the Bergman metric:

(i) The sectional curvature is non-positive.

(ii) When the domain is irreducible, the curvature operator has at
most two distinct eigenvalues.

The latter is shown in Calabi and Vesentini [6], and Borel [3]. Re-
cently, it was shown in D’Atri and Miatello [10] that symmetric bounded
domains are characterized by the property (i) in the category of homo-
geneous bounded domains. The main purpose of this paper is to show
that symmetric bounded domains are characterized by the property (ii)
in the category of irreducible, homogeneous bounded domains (Theorem
7.2). A theorem of this type was obtained by Itoh [15]: A compact,
Kahler, simply connected homogeneous space with the second Betti number
b, = 1 is Hermitian symmetric if and only if the curvature operator has
at most two distinet eigenvalues. Several characterizations of symmetric
bounded domains in the category of homogeneous bounded domains are
discussed also in [11], [12].

Our proof of Theorem 7.2 is based on the theory of normal j-algebras.
After studying curvature properties of a normal j-algebra in §§3-6, we
shall prove Theorem 7.2 in §7. The proof is divided into two steps as
follows: Let (g, j) be a normal j-algebra corresponding to an irreducible,
homogeneous bounded domain D with at most two distinet eigenvalues
of the curvature operator, and let g = D, M + Dacs TMap + Dua Moy b€
its root space decomposition. We first show that dimn, = n,, for every
pair (a, b) with ¢ < b, and that dimn,, = n,, for every a (Lemma 7.5).
This means that D is quasi-symmetric in the sense of Satake [23] (cf.
[10]). We next conclude that D is symmetric, by means of a criterion
of Dorfmeister [12] for a quasi-symmetric bounded domain to be symmetrie
(Proposition 7.8).

Several by-products of our argument are given in §§8-9. Denote by
HSC the holomorphic sectional curvature of the Berman metric ¢ on a
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homogeneous bounded domain D, and denote by A\, the minimum of
eigenvalues of the curvature operator of g. Then min HSC, max HSC,
and A, are biholomorphic invariants, and A, < 0. Set v, = —2/A;,. When
D is symmetric the following hold (Theorem 8.4, Corollary 8.5):

—1 = minHSC = -2/7, £ —2/dimD + 1),
max HSC = —2/7,R, £ —1/dim D,

where R, is the rank of D.
Let B, and C, be the Finsler metrics on a bounded domain D of

Bergman and Carathéodory, respectively. It is well known ([4], [5], [13],
[14]) that

Cp, < B, on T(D)— {the zero section}

for every bounded domain D, where T(D) is the holomorphic tangent
bundle over D. If we assume the domain to be homogeneous or sym-
metric, we get more precise inequalities as follows: For every homo-
geneous bounded domain D,

203 < B on T(D)

(Theorem 9.1); and for a symmetric bounded domain D,
7pCh = By < 7p,RCh, on T(D)

(Theorem 9.2). Furthermore, these three inequalities are sharp.

The author would like to express his thanks to Professors T. Kuroda
and A. Kodama for valuable discussions during the preparation of the
present paper. The author would also like to thank the referee for
helpful suggestions.

1. Curvature operator of the Bergman metric. Let D be a bounded
domain in the complex Euclidean space C* of dimension » with the co-
ordinate system (2%, ---, 2"), and set 0, = 9/02* (@ =1, ---,n). Let g be
the Bergman metric on D,i.e., for every point pe D, g is a C-bilinear
form on the complexification T'S(D) = TH(D) @ C of the real tangent space
THD) at p, given by g =2 g dz*-d?z’, g5 = 8.0, log k, where k is the
Bergman function of D. Denote by T,(D) the holomorphic tangent space
at p. Thus TS(D) = T,(D) + T,(D) (direct sum). The restriction of g to
THD)x T{(D) is a Hermitian Kahler metric (cf. [19]). Let R be the C-
bilinear extension of the Riemannian curvature tensor of this Hermitian
Kahler metric, and set R,z = g(R(3., 0,)0s 9.). Since g is Kahlerian, it
follows that

(1.1) Rs.i = R Riia = Rag ;
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explicitly,

1.2) Riei = 0,04 9a — by U CRIECRYE
where (g*) is the inverse matrix of (g;). We also note
(1.3) Ria = Rus .

For pe D, we denote by Si(D) the 2-symmetric tensor product of the
space T,(D). For brevity we set e, = (0.), @ (0s), and fo = (0,),° (0), =
(€as + €30)/2€ SE(D). Then every element of S;(D) has the form 3 &%,
where £®eC with £ = g and the set {f,,; @ < b} is a basis of SiD).
Put R¥ = —3,,0%"R;; and given X = 3, £%,, € SAD) set Q,(X) =
Sia Care B (D)e*)es. Then, @Q,(X)e Si(D) by (1.1). The endomorphism
Q, of the space SiD) is called the curvature operator of the Bergman
metric g. The space S%D) is endowed with a Hermitian inner product
(,), inherited from g, given by

(1 4) (E Eabeab’ Z vwecd)p = Z Sabﬁcdga_c(p>gbi(p)

Since @, is self-adjoint with respect to (, ) by (1.3), every eigenvalue
of @, is real (cf [6], [15]).

LEMMA 1.1. Let + be a biholomorphic mapping from a bounded
domain D onto another one D', and let pe D. If & is an eigenvalue of
Q,, then it is also an eigenvalue of Qy p.

ProOF. The assertion follows from the fact that « is an isometry
with respect to the Bergman metrics of D and D’.

LEMMA 1.2. The matrix representing Q, with respect to the basis

(FulV 2, [V 25 * s JaalV 2, fioy fosy =+ +y Fin) 18 given by
[(R ()i (4 —Z—Rii(p))ia}
(V2RED)S @Rim)S |
PrROOF. Let a =<b. It follows from the definitions that
Q,(far) = (1/2)@,(ear + €1a) = (1/2) Edl (Rai(p) + Rii(p))e.q
=2 Ri0)ew = X Bi(0)fee + 2 3 Bel(0)f i
which yields the desired assertion.

We denote by SC the scalar curvature of the Bergman metrie, i.e.,
SC = -2 ¢™g*Rs.;. Then by Lemma 1.2 we have the following:

LeEmMMA 1.3. For pe D, SC(p) = 2 trace Q,.
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For pe D, set

Ap(p) = the minimum of the eigenvalues of @,

1.
(15) to(p) = the maximum of the eigenvalues of @, .

Then the functions A, and g, are biholomorphic invariants by Lemma 1.1.
Furthermore, the following holds.

PROPOSITION 1.4. Let D, be a bounded domain in C (¢ =1, 2), and
let (p, q) € D, x D,.

(1) Npyxp,(P, @ = min{hp (D), Mp, (@)}, Uoyx0,(Py @) = max{ey, (D), £0,(9)}-
(i) The curvature operator of the Bergman metric on D,x D, pos-
sesses 0 as an eigenvalue with multiplicity at least nm,.

PROOF. The assertions follow from the fact gP1*P2=p¥g”1+ p*gP2, where
g” means the Bergman metric on a bounded domain D and p,: D, x D,— D,
(1 =1, 2) are the natural projections (cf [16; Theorem 3.2]).

We denote by HSC(p; X) the holomorphic sectional curvature of the
Bergman metric g in the direction X e T,(D) — {0}, i.e.,
(1.6) HSC(p; X) = —9(R(X, X)X, X)/9(X, X)*
(When D is one-dimensional the function HSC on D is called the Gaussian
curvature of g).

PropoSITION 1.5. HSC(p; -) = np(p) on T,(D) — {0} for every pe D,
and min HSC(p; +) = np(p) of and only if

(1.7) there exists X e T,(D) such that X*e€ S;(D) is an eigenvector of @Q,
subordinate to the eigenvalue \p(p).

PROOF. Let X = 3. £%0,), € T,(D) — {0}. By the definitions as well as
(1.4) we have

HSC(p; X)9(X, X)* = — X Raa(p)e®de8 = 3 Ri(p)e*8'6°E9.:5(p)9:a(p)
= (Q,(X?), X9, = M(®)(X?, X%, = Mp(0)9(X, X)* .
In the above inequality, equality holds if and only if @Q,(X?) = \,(p)X*.
The proof is complete.

The Bergman metric g¥ on the unit disk U ={z€C; |z| <1} in C is
called the Poincaré metric and given by g” = 4dz-dz/(1 — |z[*)?, since the
Bergman function of U is 1/z(1 — |z[?)?. It follows from (1.2) and (1.6)
that the Gaussian curvature of gV is identically —1.

2. Normal j-algebras. Suppose that a bounded domain D is homo-
geneous, i.e., the group Aut(D) of all biholomorphic transformations of
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D acts on D transitively. Aut(D) is a Lie group. A Lie group is called
triangular if its Lie algebra ) is triangular in the sense that it is solvable
and every eigenvalue of ad x is real for every x€ ). Let G be a maximal
triangular analytic Lie subgroup of Aut(D), and let g be its Lie algebra.
It is well known (Vinberg [25]) that G acts on D simply transitively, i.e.,

for every p e D, the mapping @: G > f+ f(p) € D becomes a diffeomorphism,
and that

(2.1) every maximal triangular analytic Lie subgroup of Aut(D) is con-
jugate to G.

Fix a point pe D. Then we get two R-linear isomorphisms p: gsx+x, €
T.(G) and @,: T,(G) — TXD), where T,G) is the tangent space at the
identity mapping ee€ G, and get the unique endomorphism 5 € End(g) of g
such that (@,00)oj = Jo(®,°p0), where J € End(TH(D)) is the complex struc-
ture tensor of D at p. Set {zx, y) = 9(@,00(x), D,00(p)) for x, y € g, where
g is the Bergman metric on D (see §1). Then {, ) is a j-invariant inner
product on g. Let k£ eg* be the form (called the Koszul form) on g given
by

(2.2) £(x) = (1/2) trace (ad jo — joad x) , rEQ.

Then it is known (Koszul [21]) that {(z, ¥) = k([jz, y]) for =, yeg.

The Lie algebra g over R with complex structure j obtained in the
above manner possesses the following three properties:

(j1) g is a finite dimensional triangular Lie algebra.

(2) gz, 5y] = jliz, y] + Jlx, 5y] + [x, y] for o, yeg.

(33) There exists a form weg* such that w([jz, j¥]) = o(z, y]) (x,
yeg) and w(jz,x]) >0 (xeg— {0}), i.e., such that <z, ¥>, = w(jz, y])
is a j-invariant inner product on g.

DEFINITION 2.1 (Pyatetskii-Shapiro [22; p. 51]). A Lie algebra g over
R with complex structure j is called a normal j-algebra if (g, ) satisfies
the above three conditions (j1)-(j3), and a form w in (j3) is called admis-
sible. We say that a normal j-algebra (g, ) is isomorphic to another
one (g, j/) if there exists a Lie algebra isomorphism + from g onto ¢
such that «roj = 7oqr.

By (2.1) there corresponds, up to isomorphism, a unique normal j-
algebra to every homogeneous bounded domain. In fact, this correspon-
dence gives the bijection from biholomorphic equivalence classes of homo-
geneneous bounded domains in C™ onto isomorphic equivalence classes of
normal j-algebras of dimension 2n (cf. [22; pp. 66-T73]).

Now, let (g, 7) be a normal j-algebra.
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DEFINITION 2.2 (Takeuchi [24; pp. I-37, 1-38]). An element xz€g — {0}
is called an idempotent if [jx, ] = . An idempotent x is called primitive
if the 1-eigenspace {y €g; [jz, ¥] = y} of ad jx coincides with Rx.

DEFINITION 2.3. Let PI be the set of all primitive idempotents. It
is known that PI is a finite set (cf. (nl) below). Put

a :a,;le” , n=][g,4ql,

n(a) = {xen; [h, 2] = ak)r (hea)l for aca*.
Then, [n(a), n(B)]cnla + B) for a, Bea*. The cardinality of PI is called
the rank of (g, 7), or the rank of the corresponding homogeneous bounded
domain. Every element of 4 = {a € a*; n(a) # {0}} is called a root.

The following properties (nl)-(n3) are fundamental (cf. [22; Theorem
2, p. 61] together with [24; p. I-38]):

(n1) The set PI is non-empty and linearly independent. Further-
more, a is an abelian subalgebra of g and g is a direct sum of a and n
(as vector space). In particular, n = >,.,n(a) (direct sum).

(n2) Let 4,C4 be the dual basis of a* of the basis jPI = {jx; x € PI}
of a. Then the following hold:

4c{(a + B)/2; a, Be 4} U{(a — B)/2; a, BE 4y ¢ # BYU{t/2; € 4},
(e + B)/2) = n((a — B)/2) + n((B — a)/2) for a, B 4, with a # 8, and

m@)ca, ju(a/2) = n(@/2) for aed,.
In particular, dimn(a) = 1 for every a € 4,.

(n3) For a, B, 7 € 4, the following hold:

a # B implies (o — B)/2¢4 or (B— a)24¢4, and
(@—PB)/2, (B—7)/2ed imply (a— 7)/2€4.

Let R be the rank of (g, 7), which is positive by (nl), and let PI =
{ry -+, rg} with 4, = {e, +--, €z}, i.e., &,(47) = 0,5. By (n3) the relation
(@ — B)/2€ 4U{0} for a, B€ 4, defines an order on 4,. So, renumbering

7y, +++, rg, if necessary, we may assume that
(2.3) (e, — &)/2€ 4 implies a <b.

DEFINITION 2.4 Put & = 3, e (@ + B)/2), Z = ues(@/2). Fur-
thermore, fix a numbering », ---, r, of PI so that (2.3) holds, and set

Mgy = n((ea + 55)/2), MWy = n(sa/z) (ay b € {1’ tt Yy R})' ThuS, LK = ZlSasbsR Mgy,
U = DF My JL =0+ Dicocrsr JMapy § = &£ + 1L + % (direct sums),
and jZ% = %.

Set r=3%,crix=>.%,7, € & and denote by g(¢) the ¢-eigenspace of ad jr
in g. Then, [g(¢), a(¢)]cg(e+¢&). The following is easily shown by (n2).
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LEMMA 26, & =g(), Zz = 61/2), and j ¥ = g(0). In particular,
(£ L +7]={0, [# iLlcs % wcF % jLIc#, and
1= i Llcjz

From Lemma 2.5 and (j2) it follows that
2.4)  [=, ju]l = gl=, w], [5u, jv]l =[u,v] for zejLA u,vez .

LEMMA 2.6 ([22; Lemma 2, p. 60], [24; item (vi), P. I-33]). For be
{1, ---, R} and xzenla) with a € 4,

. —x, a=(E,+ &)2 for some a with a <b
[74, 5] = .
0, otherwise.

PROOF. Let a = (¢, + ¢,)/2 for some a with a < b. It follows from
(32) that [jrby jx] = j[j’rbr x] + j['rb’ jx] + [rb’ x]' Since [’rb’ fl?] = 0, [j/rbr x] =
(0ap + D)x/2, and [j7,, j2] = (0 — 1)j2/2, we have [r,, jx] = —x. When
aecd—{, +¢&)2;a=1,-.--,b} we have jren(B) for some Bed—
{(e,—&)/2;0=1, -+, b—1}. Since ¢, + B4 4 by (n2), we have [r,, j2] =0;
therefore, the proof is complete.

We shall show the following.

PrOPOSITION 2.7. A form + €g* is admissible if and only if
(2.5) "l"'j.?‘ﬂu+j(j.§fﬂn)+7/ — 0, a’ﬂd "#‘(x) > 0 fO’I’ 1Y GPI .

ProOF. We first note 7.2 N1 = Dcs iy and j(7TZNN) = Sucp Nupe
Let + be an admissible form, and let a€{l, ---, R}. For every z¢
S e (g + gng,) + 1., we have [j7,, 2] = /2. Then by (j3) and Lemma
2.6, y(@) =29 ([g7,, x]) = —29([r,, 52]) = —2¢(0) = 0. Furthermore, y(r,) =

W([77, r.]) >0 by (38). Thus, (2.5) holds. The “if” part of the assertion
is contained in the following lemma.

LEMMA 2.8. If 4 €g* satisfies (2.5) and {, Yy is defined by <{x, Y)y =
(52, 1), then

(i) (g, jy] — [=, y]) = 0 for x, y €g; therefore {, )y is a symmet-
ric j-invariant bilinear form on g;

(ii) the decomposition § = Dlugs Map + Diags JWap + Due Max 18 0rthogonal
with respect to {, Yy; and

(iii) ([jz, x]) > 0 for xeg — {0}.

Proor. (i) Let 2,y and u,veZ. Since [z,y] =[x, u] =0,
from (j2) and (2.4) we get

52, jy] — [z, ¥] = [ix, jyle j&£ Nn,
[z, 57y] — [, j¥] = =, J¥] + [=, Jiy]) € 3G Nw) ,
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liz, ju] — [=, u] = [jx, jul€e %, and
5%, jv] — [u, v] =0 ;

therefore, the desired assertion follows from (2.5).

(ii) Since [&£ & +Z] = {0}, for z,ye & and ue % we see (jy,
©y =y([—y, 2]) = ¥(0) = 0, (u, )y = ¥([ju, z]) = ¥(0) =0, and {jz, u)y =
P([—2, u]) =4(0) = 0; therefore, the subspaces &, 7<%, and % are mutually
orthogonal. Furthermore, for xen, and yen, with a <b,¢c =d, and
(a: b) * (C, d); we ha‘ve <.7x! ]y>¢ = <$’ y>3/’ = '11"([.71:9 y]) € "l’(aab(aac + 3ad)ncd +
(1 = 0ap)03ettaq + (1 — 04s)03ate.) = {0}; therefore, jun, (a = b) (resp. n, (@<b))
are mutually orthogonal. On the other hand, for u en,, and v €n,, with
a #b we see {u, vyy = ([ju, v]) € ¥(n,) = {0}; therefore, n,, are mutually
orthogonal. Thus, (ii) follows.

(iii) Let xeg — {0}. To prove the assertion, by (i) and (ii) we may
assume x €n,, (@ < b) or x €n,,. We can then find £ € R such that [jz, z] =
ér,. Taking an admissible form w, we get cw(r,) = w([jx, x]) > 0 by (j3).
Since w(r,) >0, we see &> 0. So, ¥([jx, x]) = gy(r,) > 0, as desired.
The proof is now complete.

COROLLARY 2.9 ([22; Lemma 2, p. 60], [24; Corollary 1, p. I-41]). For
every admissible form w, the decomposition § = Dlu<s Moy + Dvaxs TMap + Duallas
18 orthogonal with respect to the inmer product {,>,. In particular, the
subspaces &, 1., and Z are mutually orthogonal with respect to {, ),.

From this corollary we also get the following.

COROLLARY 2.10 (D’Atri [7; p. 407]). Let w and @' be admissible
forms. Then {,>, = {, Yo tf and only if wl|;, = @

PrROOF. For z, y en(a) with a € 4, we have {z, ¥>., = o([jz, y]) with
[7z, y] € ja, while {jr,, jr.). = w(r,) with r, € ja. So, the desired assertion
follows from Corollary 2.9.

Now, given an admissible form w, set
(2.6) w,=wr,) @=1,---,R).

Corollary 2.10 says that R positive parameters w,, - - -, @ determine {, ),,
uniquely. With respect to the Koszul form £ of (2.2), by Lemma 2.6 it
is shown ([24; p. II-37]) that

2.7) £a =1+ (1/2) 3 Mo + (1/4)00s

for any a =1, ---, B, where

(2.8) Mgy = dim 1ty , Mgy = dim 1, .
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3. Levi-Civita connection of an invariant Kahler metric. Let D
be a homogeneous bounded domain, (g, 7) be the corresponding normal j-
algebra, and G be the analytic Lie subgroup of Aut(D) whose Lie algebra
is g (see §2). Then for every admissible form w, there exists a unique
G-invariant Hermitian metric “g on D such that

3.1) &, Yo = “9(Dyo0(x), Dyop(y)) for x,yeg,

where @ and o are mappings given in §2. The metric “g is K&dhlerian,
because the closedness of the Kahler form “y(X, Y) = “9(X, JY) (X, Ye
X(D)) is directly shown by (8.1). Of course, the Kahler metric *g with
respect of the Koszul form £ coincides with the Bergman metric on D.

We denote by “V.,y (x,y<cg) the bilinear mapping on gxg into g
induced from the Levi-Civita connection V of the Kahler metric “g via
D00, ie., (D,00)“V.Y) = Vio.0ysP«(y) for z,ycg. It is given by

3.2) °V.y = ([2, y] — (ad x)*y — (ad v)“x)/2 ,

where (ad x)” is the adjoint operator of ad x with respect to {, >,. The
formula (3.2) is equivalent to the following two properties:

3.3 VY, 2o = —<Y, “Va2)o
(3.4) V.Y — Ve =[z,¥] .
The Kahlerian property of “g is equivalent to
3.5) V.Y = J°V.Y .

LEMMA 8.1. For xe % the following hold:
(i) *v,, = (ad jxr — (ad jx)*)/2 on & + %;
(ii) (ad j2)° L CF, (@d jo)°'% C#%';

(iii) *V, L CF VU .

PrROOF. Let ye ¥ + %, and z€g. Then we have {(ad y)*jzx, 2), =
Gz, [y, 2] = 0 (Lemma 2.5, Corollary 2.9); therefore, (ad y)°jz = 0. So,
(i) follows from (8.2). Furthermore, {(ad jx)*y, 2), = <y, [J%, 2]), = 0 when
ye ¥ and z€ ¥ + Z, or when ye€ Z and z€ j.&¥ + . Thus, (ii) holds.
Lastly, (iii) follows from (ii) together with Lemma 2.5. The proof is
complete.

COROLLARY 3.2 (D’Atri [7], [8]). “V, =0 for hea.

Proor. To prove the assertion, it is sufficient by Lemma 3.1 (i) and
(8.5) to show adh = (ad h)® on ¥ + Z for every hea. But, for ye
() and zeg we have
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w _ BaﬁB(h)<y! z>w ’ FAS n(B)
(ad Wy, 29, = {0’ s
and
_ (Oap(R)<Yy 20, zEN(B)
{(ad h)y, 2>, = {0 ’ zea,
as desired.

LEMMA 3.8. For x,ye & and ue %, the following hold:

(i) *V,=jo(ad jx + (ad jx)*)/2 on ¥ + %,

(ii) vV, L i VN v U, VN L CU;

(iii) “V,y = *V,x, “V,o = “V,u;

(iv) V& = j°V,2.

Proor. Let ze . + %Z. Since [x,2] =0 (Lemma 2.5), we get
*°V,z = *V,x by (3.4). So, (iii) holds. From (3.5), (3.4), and Lemma 3.1
(i), we have “V,iz=°Va= —j°Vjo= —j(“V,2 + [2, jz]) = j(ad jo +
(ad jx)*)z/2; therefore, (i) holds. Lastly, (ii) follows from Lemma 3.1 (ii),
and (iv) follows from (iii) and (8.5). The proof is complete.

COROLLARY 3.4. For z,yen, with a < b, the following hold:
(ad jo)°y = <&@, Yu1/@y, (@d J2)Y = <&, Y)uTa/ D ;
wvjzy = (’ra/zwa - ’rb/zwb)<x1 y>w ’ wvxy = (j’ra/zwa + j’rb/wb)<x7 y>w
(see (2.6)).

Proor. The first two formulas are easily shown by definition. The
last two formulas follow from Lemma 3.1 (i) and Lemma 3.3 (i).

LEMMA 3.5. For u, ve %, the following hold:

(i) *V, ==z, + jx,, where z, = [u, v]/2, x, = [ju, v]/2 € &;

(ii) *V;v = —3°V,0.

ProoF. We first note (ad u)*vej <~ Indeed, for ye &£ + Z we

have {(ad u)*v, ¥, = @, [u, ¥]), = 0 (Lemma 2.5, Corollary 2.9), as desired.
It follows from (3.2) and (3.5) that

V0 = [u, v)/2 — ((ad w)*v + (ad v)“u)/2
Vo = —5°Vgv = —jlu, jv]/2 + j((ad u)*jv + (ad jv)“u)/2

Comparing the &- and j.%-components of “V,», we have (adw)“v +
(ad v)°u = jlu, jv] = —jlju, v] (by (2.4)). So, (i) follows. The assertion
(ii) follows from (i) and (2.4). The proof is complete.
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By Lemmas 3.1, 3.3, and 3.5 we obtain the following (see also (3.5)).

PROPOSITION 3.6. For every pair of  and y in £ Uj¥ UZ,
the subspace, where the element “V,y belongs, is given by the following

table:
y .
\ ¥ 1 /4
x

¥ |j¥ £ w
1< ¥ &£ w
w v w FL+i&

For example, if x€ ¥ and if y€ <, then °V,yej L.

4. Riemannian curvature tensor of an invariant Kihler metric
(1). Given an admissible form w, denote by “R the bilinear mapping on
gxg into End(g) induced from the Riemannian curvature tensor of the
Kahler metric “g via @,00 (see §§2-3), i.e., for 2,y eg,

(4°1) ‘"R(x, y) = [wvxi wvy] - wV[z,v] .
It follows from (3.5) that
(4.2) °R(jx, jy) = “R(®, y) , Jjo“R(x, y) = “R(x, y)oJ .

We now extend {, >, to a unique complex symmetric bilinear form on the
complexification g¢ = g X C of g, and extend “V to the complex bilinear
mapping on g¢x g€ into g¢. Thus, (4.1) is valid also for z, y€g® as an
endomorphism of g¢ (ef. [19]). Observe that the space g° = {z€g°; jz =
12}, where j is extended to a complex linear endomorphism of g¢, corre-
sponds to the holomorphic tangent space T,(D) via @,00 (see §2), and
denote by X the mapping from g onto g“°, given by

4.3) L(x) = (x — 152)/2 , rEQ.
Given 2z,€g (¢ =1, 2, 3, 4), set

"Ry = CRAUxy), X)X (@), X)) -
Since X(jx) = iX(x) for xeg, we have

ijzlgzzya = imR:clx_zz3z_4 ) szlj—xgm32_4 = _imRzlz_zxsa ) etc'
Using (4.2) we get
(4.4) 4°R, 500, = “S(@s @,y X3y @) + 1°S(,, L2y X4y J,)

= “S(,, &3y X3y ) + 1°S(@y, JX,, Ty )
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where
“S(&,, 2y T3y L) = “R(Ts) BToy T8 —  B(%3y JB) ]2y T -
By (3.3) and (4.1) we have
(4.5)  “R(xs, 2%, T
= <mV23x29 mvz4x1>¢u - <wvx‘x2, wvc3x1>w - <wv[z3,x4]x2’ x1>w .
LEMMA 4.1. For y,€ % and w, € %, the following hold:
(i) “R,uyu, =0;
(ii) vaﬁzvsﬂ = 0;
(iii) “R.z,.m = 0.
PrOOF. Since [, 7] = {0} (Lemma 2.5), it follows from (4.5) that
CRYsy Uz, Yo = Vil Vo ¥Dw — Vs “Vy¥Du
<0R(y3’ ju4)ju2’ y1>w = <wvyaju27 wvju4y1>w - <wvju‘ju2! wvy3y1>w .

By (3.5), Lemma 3.3 (iv), and Lemma 3.5 (ii), the right hand sides of
both formulas above coincide; therefore, “S(y,, ., ¥s; %,) = 0, which also
yields “S(¥,, %z Y3, jus) = 0. Thus, (i) holds. Next, by (4.5) we have

<mR(y89 y4)u2’ y1>w = <wvy3u2’ wvn'yl)w - <0)V1“’M2, mvyayl>w
and

<‘”R(y3r jy4)ju29 y1>w = <‘"V”3ju2, wvjv4y1>w - <mvj1/‘ju2r wV13y1>w
- <wV[v3,jv4]juzy yl)w .

Since [y, j¥.) € & (Lemma 2.5), every term on the right hand sides of
the above two formulas vanishes (Corollary 2.9, Proposition 3.6). So,
*S(Yyy Uzy Ys» Ys) = “S(Yyy Jts Y5, ¥) = 0, which imply (ii). Similarly, we
have (“R(ys, u) Uy, ), = 0 and  °S(uy, s, Ysy Us) = “S(y, Jthe, Yoo %) = 0,
which yield (iii). The proof is complete.

LEMMA 4.2. For y,€ &, the following two formulas hold:

(1) 4°R,5, = <3°Vile Yy JYD0 + {3V W Y10 + {5°Vy0,,
(ad JY)°Y2) v

(ii) 4wRy1172113174 = <iju3y2y [7%0 v. Do + <mvjy3y1r (ad J¥)%:00 — ¥y,
(mv[iva,:ixq] + jwv[jyg.u4])y2>w-

PrROOF. Proposition 3.6 together with Corollary 2.9 implies

S Yo Ysr Y = {*Viglor Yy, + 5V )00
- <wvy3yu (wvh - jmvjy4)y2>w + <y19 jmv[va,jv4]y2>w
and “S(y,, 5% ¥» ¥) = 0. But, from Lemmas 3.1 and 3.3, we get “V,, —
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J*V,, = ad jy, “V;, + 3°V,, = —(ad jy)* on <. We thus obtain (i). Simi-
larly, we have
wS(jy” jyzy jyar jy4) = <wvjy3y2; (wv;i“ - jwvy4)y1>w
- <mVj1/3y1(ijy4 + jwvy4)y2>w - <y1, (wv[jys,jyd
+ jwV[iy3,y4])y2>w

and “S(jy., ji¥. JYs» J¥) = 0. Since °R, ;.5 = “Rj, 7,ivs7, the same argu-
ment as above shows (ii). The proof is now complete.

COROLLARY 4.3. For y,e & with jy,ca, it holds that 4°R, 3,5 =
51 3Y)s 1), ¥2)ol2 — [G[¥sr GYa), Yals Y ul2 + [313Ys ¥, Bi)s U2 ur

Proor. The assertion follows from Lemma 4.2 (ii) and Corollary 3.2,
since [j¥s Jy] = Jl3¥s Y] + JlUs Jy), and since Vi, ,0 + Vi =
—(ad jljys w.D* on &

LEMMA 4.4. For w,€ %, it holds that
4°Ry puge, = 2(“Vuay Voo + Vaglhy “ViU)w)
+ 2i({GVaulhe “Vilh)o + JVausy “ViUDw)
Proor. By (3.5) and Lemma 3.5 (ii), we have
CS(Usy Uy Ugy W) = 2V oy OV, %100 — {(“Vingugths) = J*Viug jugthe)s Un)w +
But, since [Z, Z]1C <, by Lemma 3.5 (i) we have
Viugughe = JViug jugthe = “Vo, ([0t ug] — Jlus, Ju))) = 2°V,V,u, .
So, (3.3) implies
Sty Ugy Usy Uy) = 2(C* Vo hay “Vi U)o + {Viglhy Vo u00)
which yields the desired assertion.

COROLLARY 4.5. If w,en,, for every b, then 4°R, z,.z, = ((Ug, Up) oWy,
Uo T (s U)Wy Us),)/20, (see (2.6)).

PRrROOF. Since [uy, %] = {ty, jUs)o7e/®,, the desired assertion follows
from Lemmas 3.5 and 4.4.

5. Riemannian Curvature tensor of an invariant Kahler metric (2).
In this section we examine when “R,;,; vanish.

LEMMA 5.1. Let a,be{l, --+, R} with a £b. For yeun,, with s = d,
and for y'emn, with s<t, if °R,5,7 #0, then (c,d) = (s, t) = (a, b).
Furthermore, if 4, ¥y €n,, then

4mRr¢—1;rb;' = (1 + aab)<y! y’>m/2 .
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PRrOOF. Since [7, j¥'] = —0,y’ (Lemma 2.6), and since [jry, ¥'] =
(03 + 04)¥'[?, Corollary 4.3 implies that
4era;r,,17' = 8b530t<y! y,>w/2 + 5bt<[jy,v y]r 'ra>w/2 .
From Jacobi’s identity we have

o [V, Do = &, 370 YDo + Y [570 YD
= (aac + 3ud + Bas - 8at)<y7 y’>w/2 .
Thus,

4‘"Rra;rbl;—' = (23515“ + 6bt(aau: + 6«14 + 5415 - Bat)) <y1 y,>w/4 .

So, “R, iy # 0 implies (y, ¥’ # 0; therefore, (¢, d) = (s, t) and 4°R, 5,7 =
(Oss0aa + 03a0ac)<Y, Y')u/2. Since 8,0, + 0. = 0 implies (¢, d) = (a, b), all
the desired assertions follow.

LEMMA 5.2. Let a,be{l, ---, R} with a <b, and let m, m"en,,. For
yen, with ¢ £d, and for y' en,, with s <t, if “R,yny # 0, then one of
the following three cases occurs:

(i), (¢, d) = (a,a) and (s,t) = (b, D),

(i) (¢, d) = (b,d) and (s, t) = (a, a),

(ii) (e, d) = (s, t) with d = b, ¢ < b.

Furthermore, if y, y' €n,, then
4°Rpimry = M/, Y)olm, Yo + {m/, Y ulm, ¥).)/20,
— {m, m") oY, Y ul20,
(see (2.6)).

To prove Lemma 5.2, we need the following well-known fact (cf. [22;
p. 63)).

LEMMA 5.3. If x, 2’ € ju, with a < b, and if ¥, ¥’ € S Fpi(W, + JM,) +
N, then

(o, y], [, ¥ Do + =, ¥'], [@, yDo = &, 2D Y, YD/, -

Proor or LEMMA 5.2. Let m, m'en,, yen, and ¥’ € n,,. By Lemma
4.2 (i) we have

(6.1) 4°Rpymy = {3Vl [m, Y’ Du + 3°Vay, [m, 59’ Du
+ {J°V,m, (ad j¥ )Y, -

Since “V,.m = (jr./2w, + jr,/2w,){m, m'), (Corollary 3.4), by Lemma 2.6
we have

(5.2) | GOV mm, (ad JY) Yo = — 0ut/20, + 04/2005) My M) oY, Yo -
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On the other hand, it follows from Lemma 3.3 (i) that

(6.3) {GVay, [m, jy'De = GV, [m, jy'D.
= <[mlr J?/]v [m’ jy,]>w/2 - <m’9 [jyr [mr jy’]]>w/2 .
Substituting (5.2) and (5.3) into (5.1), we have

(5.4) 4°Rpimy = {[m', 3yl, [m, j9'Du/2 — </, [y, [m, j¥'1])./2
+ LIm, gyl, [m', 3¥'D./2 — {m, 3y, [m', 591D ./2
— (0at/20, + 0ue/2a0){m, M"Y, Yo -

We divide the proof into four cases.
(a) Suppose s =t, and let ¥’ = r,. Then (5.4) becomes

(5'5) 4me;m';s = —(5“ + 3bs)(<[m,! Jy]’ m>w + <[m, jy]! m,>m)/2
— (0as/20, + 05,/ 2w05) (e, M) oYy 70 -

If s+#a and s # b, then “R,,;.-; = 0. So, suppose s =a or b. It then
follows from (5.5) that

(5.6) 4°R imri; = — [/, jyl, m)o/2 — {[m, 5y, m")./2

— (m, m") (Y, 1) o/20, .
Since [m/, jy] and [m, jy] belong to n((e, + & + &, — €,)/2), if ¢ # d then
“R,ym+; Vanishes. So, in addition, suppose ¢ =d, and let y = »,. Then,
(5.6) gives

4me;cm’;8 = (040 + 0pe — 5cs)<mr m’>w/2 ’

therefore, “R,;..7, # 0 implies that (s, ¢) = (a, b) or (b, a).

(b) Suppose s<t ts+a, and t*b. Then, [m, j¥'] =[m/, j¥']1 =0
because n((e, + & + &, — €,)/2) = {0}. So, (5.4) implies “*R,;n5 = 0.

(¢) Suppose s <t =a. Since [m, j¥'], [m', ¥l en,, (s <b), the ele-
ments [jy, [m, j¥']] and [jy, [m’, 7¥']] belong to the subspace o, +
(1 — 8,4)04,t,, and are orthogonal to m’ and m, respectively. So, by (5.4)
we have

4me;m’f = <[m,7 Jy]r [m: Jy’]>w/2 + <[m’ Jy], [m” Jy’]>w/2
— (my, MY, Y ol20,

When (¢, d) # (s, a), we have {[w’, jy], [m, jy'D. = {Im, 5y, [m’, j¥'D. =0
.and (¥, ¥, =0, which imply “R,;,.7 = 0; while when (¢, d) = (s, @) it
follows from Lemma 5.4 that “R,;,.; = 0.

(d) Suppose s <t="b. Since [m, j¥'], [m', j¥'] en,, the elements
5y, [m, 9’11 and [5y, [m', j¥']] belong to d.tte, + (1 — 0ua)(Gaattes + Oactlca)
and are orthogonal to m' and m, respectively. So, by (5.4) we have
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(5.7) 4Ry = [m', 3y, [m, Y’ Du/2 + {m, 5y, [m', §¥'] /2
— {m, M) oY, Y o205 .

Thus, if (¢, d) + (s, b) then “R,;.;» =0 as in case (¢). This completes
the proof of the first assertion. The second assertion follows from (5.7)
together with Corollary 3.4. The proof is now complete.

Now, we recall the mapping F: ' x% — £° ([22; p. 68]) given by
(5.8) F(u, v) = [ju, v]/4 + i[u, v]/4 for wu,veZ.
We get the following formula by Lemmas 3.5 and 4.4:
(5.9) 4°R 5wy = 8KF (W', v), F(u, v'))o + <F(W', v"), F(u, v)),)

for u, w’, v, v'e %, where (,), is extended to a complex bilinear form
on g° (see §4).

LEMMA 5.4. Suppose that u,en(a./2) (a,€4,) satisfy “R,zua, # 0.
Then one of the following cases occurs:

(i) ay=as#a, = a,,

(ii), a,=a, # a, = a,,

(ii), a,=a, # a, = a,,

(i) a,=a,=a, = a,.

PrOOF. Since F(u, v) € né, for every (u, v) € n,, Xy, and since {z, w),=
0 for every (z, w) € né, x n&; with {a, b} + {c, d}, it follows from (5.9) that if
“Ryjipug, # 0 thena, + @, = a, + ayor @, + a, = 3 + a,. This yields that
at least one of the following holds: (a, a,) = (a,; @), (a;, ay) = (a,, a,),
(a,, ;) = (a,, ;). So, the assertion follows.

6. Splitting of the curvature operator. In this section we shall
study the endomorphism @ of the 2-symmetric tensor product S*g’) of
the space g"° (see §4), induced from the curvature operator Q, of the
Bergman metric on D via @,0p (see §2). We call Q the curvature operator
of (g, 7). We thus deal only with the Koszul form x as the admissible
form of (g, 7), and use the simple notation {, ), V, ete., instead of ¢, >,
*V, ete. Let X:g—g"° be the mapping given by (4.3). Then we have
direct sum decompositions

(6.1) g’ =X+ XZ);
ML) = 5 Aow), UZ) = 3 Ama)

where R is the rank of (g, j). Since A(x), X(»)) = <&, y>/2 for every
x, y€g, it follows from Corollary 2.9 that
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(6.2) the decompositions (6.1) are orthogonal with respect to the Her-
mitian inner product (-, -> on g’

The following is an immediate consequence of Lemma 1.2.

LEMMA 6.1. Let x,, -+, x,, j&, -+, j2, be an orthogonal basis of g
with respect to {, >.__ Then the mg{m’x representing @, with respect to the
bas’is (hll/l‘ 2 ’ h’22/1/ 2 y ° %% hnn/]/ 2 ’ h12’ h23; Y hln)! Where hab=x(xa) 'x(xb) €
S%(g™"), is given by

[(RZE a V2R
(V2 Redye<e 2 Rt
where
R = —R, 50,5,/ X(@s), X(wy)) <X(xa), X(xa))
= _4Rzaz_bzc;:;/<xby xb> <xdr xd> .

Let E be a Q-invariant C-subspace of S*@g"°). Then the orthogonal
complement of E with respect to (,”) is also Q-invariant. If E= E, +
<+« + E, is a direct sum decomposition of E into Q-invariant subspaces,
then we say that the curvature operator Q| on E splits into E,, ---, Ey.

By observing Lemma 6.1 and (6.2), we obtain the following from
Lemma 4.1.

PROPOSITION 6.2. The curvature operator of (g, j) splits into the
three subspaces X(£)?, X(L)-X(Z), and X(% ).

Similarly, by Lemmas 5.1 and 5.2 we get the following Propositions
6.3 and 6.4.

PROPOSITION 6.3. The curvature operator on the imvariant subspace
(L) splits into 2R subspaces

(%) = x(naa)2 (a = 1’ 0 R) ’
(£ = 3% (Ut Xaw) + X)) b=2- R,

(&) = 3 k@) - X(1a); (a, b) # (¢, d), (a, ¢) # (b, d)} .

PROPOSITION 6.4. The curvature operator of (g, 7) has —1/k, +--,
—1/k, as eigenvalues, with eigenvectors X(r)?, .-+, X(rz), respectively (see

2.7).

For every a,befl, ---, R} with a <b and with N = n, > 0, let m,,
.++, my be an orthogonal basis of n, normalized by [jm., m.] =7, (¢ =
1, --+, N). Thus, (m, m) = K.5. Put fi = X(ro)-X(ry), X(m )y 2, =+,
X(my)' V' 2, X(m,)-X(my), X(ms)-X(my), + -, X(my) X (my)), a basis of A(n,,):
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X() + X(n,)%, and consider (1 + N + N(IN — 1)/2)-square matrix

0 AN 2)ey 0
My = —k;* (1/1/7)tezv Iy — (k3/2)Ey 0 ’
0 0 Iyw-vre

where ey = (1, -+, 1) (N-times), Ey = (&, with ¢, =1(s, te{l, -+, N}),
I, is the identity matrix of order N, etc., and «{ = k,/k,. When n, =
0, let f,, be a single element (X(r,)-X(r};)), and M,, be a (1, 1)-matrix (0).
Then Lemmas 5.1 and 5.2 together with Lemma 6.1 and (6.2) imply the
following.

PROPOSITION 6.5. For every ke{2, ---, R}, the matrix L, represent-
ing the curvature operator on the invariant subspace (F*) in Proposition
6.3, with respect to the basis (fu, for, ***y Jior), has the form

M koL, 1k
1k 2k k—1,k

k k
Ek M2k cete L?s-—l,k

Lk:

o Lgtt e My
where L% is a (1 4+ na(n, + 1)/2, 1 + 1,0, + 1)/2)-matric whose com-
ponents of the first row and the first column are all zero.
From Lemma 5.4 we conclude the following.

PROPOSITION 6.6. The curvature operator on the invariant subspace
X(Z)? splits into 1 + R(R — 1)/2 subspaces (Z ) = DE. X(n,,)* and (Z,,) =
X(n,,)  X(,,) (@ < b) (some of which may be {0}).

For every kef{l, ---, R}, let uf, ---, uf, jut, ---, j_u_ii(h = 7n,4) be an
orthonormal system of (w,,, {, ), and set f, = AWV 2, -+, XW)N'2,
() - X(uk), -, X(u?)-A(uk), a basis of X(n,)’. Furthermore, for every
pair (k,1) with k#1, we consider an (N, (s + 1)/2, N(n + 1)/2)-
matrix
(Bugiugs)e (V—Z—Rua;cu,,:c)qu
(I/-E-R"aa"aa Z<d (2Rua”_c“b';:i Zi% ,
where u, and v, mean u! and ¥, respectively. Then Lemma 5.4 together
with Lemma 6.1 and (6.2) implies the following (see also Corollary 4.5).

6.3) Lk = —4[

PROPOSITION 6.7. The matrix L representing the curvature operator
on the invariant subspace (Z7,) in Proposition 6.6, with respect to the

basis (f, -+, fr), 18 given by
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—k7 Ly, L} eoo LY

| Lt el - L
Lr Lf e =k,

where H, = n,,.(n,, + 1)/2.

7. Characterization of symmetric bounded domains by the curvature
operator. A homogeneous bounded domain in C* is called irreducible if
it is not biholomorphically equivalent to a product of any two homogeneous
bounded domains of lower dimension. In the case of symmetric bounded
domains the irreducibility in the above sense coincides with the irredu-
cibility as a Riemannian manifold, with respect to the Bergman metric.

In this section we shall show the following main theorem of this
paper.

THEOREM 7.1. Suppose that the curvature operator of the Bergman
metric on a homogeneous bounded domain D in C" has at most two dis-
tinct eigenvalues. Then D is irreducible symmetric, or D is biholomorphic
to a product of several balls of the same dimension.

By combining Theorem 7.1 with the result of Calabi and Vesentini
[6; Chap. 3, §2] and Borel [3; Proposition 3.4], we get the following.

THEOREM 7.2. An irreducible homogeneous bounded domain D in C*
18 symmetric if and only if the curvature operator of the Bergman metric
on D has at most two distinct eigenvalues.

Now, let D be a homogeneous bounded domain of rank R, and let
(g, 7) be the corresponding normal j-algebra with the Koszul admissible

form k. To prove Theorem 7.1 we employ the following Lemmas 7.3 and
7.4

LeEMMA 7.8 (D’Atri and Miatello [10; Proposition 3]). The domain D
1s irreducible, quasi-symmetric in the sense of Satake [23] if and only
if R=1, or ng=mn,>0 for every a,b with a <b and n,, = N, for
every a (see (2.8)).

Put End(%, j) = {f € End(%); jof = foj}, and define a linear mapping
p: ¥ —End(7, j) by

AUp@)w), Xw))/2 = (E(w, v),y) for w,veZ,yeF
(see (4.3), (5.8)), or

(7.1) (PWu, vy = {ju, v}, ) for w,veZ,ye L.
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Denote by ¢°: ¢ — End(%, j) the complex linear extension of @, i.e.,
P (x + tY)u = P@)u + je(y)u for x, ye ¥ and uez (cf. [9; p. 41]).

LEMMA 7.4 (Dorfmeister [12; Satz 3.4, p. 95]). When D is quasi-
symmetric in the sense of Satake [23], D is symmetric if and only if
@ (F(v, u))v = 0 for every pair (4, v) € Ny, Xy, with a #* b.

Now, suppose that
(7.2) the curvature operator of (g, 7) has at most two distinct eigenvalues

(see §6).
If R=1, then D is a ball ([22; p. 52]); therefore the conclusion of
Theorem 7.1 trivially holds. So, suppose
(7.3) R=2.

LEMMA 7.5. Assumptions (7.2) and (7.3) imply kK, = --+ = kx and
Nap = Ny, fOr every pair (a, b) with a < b. Moreover, the curvature operator
has precisely two distinct eigenvalues —1/k, and n,/2k,.

PROOF. Let us denote by V the set all eigenvalues of Q. By Pro-
position 6.4, {—1/k,, ---, —1/kz}C V; while by assumption (7.2) the car-
dinarity #V of Vis 1 or 2. Put
—1/151 ’ #V =1
the value in V —{-1/k}, 2V =2.

Then the matrix M representing @ satisfies

E:

(7.4) M — (—k*+ &M — ek’ I=0.

So every matrix L, (b =2, ---, R) in Proposition 6.5 also satisfies the
equation (7.4) with L, instead of M; in view of the (1, 1)-component of
the a-th diagonal block of this equation for every aef{l, ---, b — 1}, we
have

(7.5) Nar/2Ka — E[K, = 0 ;

therefore, £ = 0 by (7.3). This implies $V =2 and £, = --+ = kz. Once

more by (7.5) we have n,, = 2k¢ for every a,b with a <b. The proof
is now complete.

PROPOSITION 7.6. Assumptions (7.2) and (7.3) imply that D s irre-
ducible and quasi-symmetric in the sense of Satake [23], or D is a pro-
duct of R copies of an (n,, + 1)-dimensional ball.

PrOOF. From Lemma 7.5 together with (2.7) it follows that =, =
n,, for every (a, b) wite a < b, and that n,, = n,, for every a. First,
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suppose 7., = 0. Then g is a direct sum of R mutually isomorphic j-
ideals u,, + jn,, + ., (@ =1, ---, R). Since the normal j-algebra n, +
jn, + n, corresponds to an (n,, + 1)-dimensional ball B, we have D =
Bx +«++ X B (R-times) (cf. [22; pp. 52, 64]). Next, suppose n, > 0. Then
Lemma 7.3 implies that D is irreducible and quasi-symmetric in the sense
of Satake [23]. The proof is complete.

LEMMA 7.7. When D is quasi-symmetric in the sense of Satake [23],
the following four conditions are mutually equivalent (see (5.8), (7.1)):

(s1) D is symmetric.

(s2) @°(F(v, w)v = 0 for wen,,, ven,, with a # b.

(83) (F(v,w), Flv, u)) = 0 for u, u’ €y, v €Wy, with a # b.

(s4) R,z =0 for u, ' en,,, veEm, with a #bH.

PrROOF. Lemma 7.4 asserts the equivalence (s1)=(s2). By (7.1) we have
(P°(F'(w, w)v, w') = Re(F (v, w), F(v, w)) ,
(P (Fw, w)v, ju") = Im (F(v, u), Fv, w'))

for every u,u’,ve%; therefore, the equivalence (s2) = (s3) follows.

Lastly, the equivalence (s3) = (s4) follows from (5.9). So, the proof is
complete.

We now show the following, which proves Theorem 7.1 completely
by Lemma 7.7.

PropPOSITION 7.8. Assumptions (7.2) and (7.3) imply the assertion
(s4) in Lemm 7.7.

PrROOF. We consider the matrix L given in Proposition 6.7 with
K, =k, H, = H, for every a =1, ---, R. Since —1/k, and & = n,/2k, are
all eigenvalues of the curvature operator (Lemma 7.5), the matrix L
satisfies the equation (7.4) with L instead of M; in view of the k-th
diagonal block of this equation, we get

(SLLETE + 6Ly ) + (=87 + Q7L — 617, = 0,

or 3,.; L¥*LF = 0. This implies that L* = 0 for every (k, a) with a # k.
It follows from (6.3) that R,;,z = 0 for u, u’ €n,,, v, v €y, with a #* b,
as desired.

8. Holomophic sectional curvature of the Bergman metric. Let D be
a homogeneous bounded domain. Then the scalar curvature SC of the
Bergman metric on D is identically —2n (cf. [16; Theorem 4.1]), and both
M and g, in (1.5) become constant functions by Lemma 1.1. Further-
more, the constant A, is negative (Lemma 1.3). Set
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(8.1) Tp= —2/np (>0)
(cf. [6; p. 499], [3; p. 508]). We first note the following.

PROPOSITION 8.1. Let D be an trreducible symmetric bounded domain
of rank R in C™ with mormal j-algebra § = Diac Map + Diags JMab + Dua Maxce
Then dimn,, = n, > 0 (@ < b) and dimn,, = n,, =2m (@ =1, -+, R) pro-
vided that R = 2, and the following hold:

(i) When R =1 the eigenvalue of the curvature operator of the
Bergman metric is N, = —1/k;; while when R = 2 the eigenvalues are
precisely np, = —1/k;, and n.,/2k,.

(ii) The condition (1.7) holds.

(iii) The invariant v, s an integer between 2 and n + 1; 7, =2
if and only if D is a disk in C, and v, =n + 1 of and only if D is a
ball.

(iv) RvYp = 2n, and the equality holds if and only if m = 0, t.e., D

18 biholomorphic to a Siegel domain of the first kind (cf. [22]).

ProoF. We first employ Theorem 7.2. Then Lemma 7.5 implies (i),
and Proposition 6.4 implies (ii). It follows from the definition of 7, and
from (2.7) that

2+ R —-1Dn,+m, R=2
®.2) D_[Z—i-m, R=1.
By observing the dimensions in the decomposition (6.1) we get
R + R(R — 1)n,/2 + Rm , R=2
R + Rm , R=1.
From these formulas we obtain the assertions (iii) and (iv). The proof
is complete.
It is well known (cf. [3], [6]) that
(8.4) for every triple (n, v, R) of positive integers, there exists, up to
biholomorphic equivalence, at most one irreducible symmetric boun-
ded domain D such that
(dim D, 7p, rank D) = (n, 7, R) .

PROPOSITION 8.2 For every triple (n, ny,, m) € NXNXZ,, there exists,
up to biholomorphic equivalence, at most one irreducible symmetric boun-
ded domain D such that rank D = 2 and (dim D, dim n,, dim n,,) = (n, n,,
2m).

PrROOF. Let R =rank D = 2. It follows from (8.3) that

(8.3) n = {
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MR+ 2 — Ny +2m)R — 20 =0 .

Since there exists at most one integer R = 2 satisfying the above
quadratic equation, the desired assertion follows from (8.2) and (8.4).

PROPOSITION 8.3. A symmetric bounded domain is irreducible if and
only if 0 is not an eigenvalue of the curvature operator of the Bergman
metric.

PROOF. The “only if” part follows from Proposition 8.1 (i), and the
“if” part from Proposition 1.4 (ii).

THEOREM 8.4. The holomorphic sectional curvature HSC of the Berg-
man metric on a symmetric bounded domain D of rank R, satisfies

max HSC = \,/R, = —2/R,7,
(see (8.1)).

ProOF. Proposition 8.1 (ii) together with Proposition 1.4 (i) implies
that the condition (1.7) holds also for D not necessarily irreducible. There-
fore, Proposition 1.5 yields min HSC = \,. But, it is well known (cf.
[17; p. 41]) that HSC is negative and min HSC = R, max HSC. So, the
proof is complete.

COROLLARY 8.5. Under the motation of Theorem 8.4 the following
hold:

(i) maxHSC £ —1/dim D, and the equality holds if and only if D=
D, x --+x D, where every D, is an irreducible symmetric bounded domain
bikolomorphic to Siegel domain of the first kind, and v, =7, (1 =1,
e D).

(ii) min HSC = —1, and the equality holds if and only if D is a
disk U in C, or D is a product of U and a symmetric bounded domain.

(iii) min HSC = —2/(dim D + 1), and the equality holds if and only
of D is a ball.

PrOOF. When D is irreducible, the assertions follow from Theorem
8.4 together with Proposition 8.1 (iii) and (iv). Let D, (# = 1, 2) be sym-
metric bounded domains. Then, ¥, = min{7,, 75} (Proposition 1.4 (i))
and R, .y, = Ry, + Rp,. From these we obtain the assertions also for D
reducible.

Combining Theorem 8.4 with (8.4), we get the following.

COROLLARY 8.6. Let D and D’ be irreducible symmetric bounded
domains of the same dimension. If min HSC? = min HSC? and max HSC? =
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max HSC?, then D s biholomorphic to D’'. Here, HSC? means the holo-
morphic sectional curvature of the Bergman metric on D, etc.

REMARK 8.7. Among the domains D(r) = {2€C? |2!| < 1, |[2*P < (1 —
[2'[))} (0 =7 < +c0), the same characterization as in Corollary 8.6 holds
(1], [2D: If 7, 7" €][0, + o), inf HSC?™ = inf HSC?"", and sup HSC?" =
sup HSC?"”, then » = 7.

9. Carathéodory and Kobayashi metrics. In this section a Finsler
metric on a bounded domain D stands for a non-negative real valued
function F' on the holomorphic tangent bundle T(D) of D satisfying

(f1) F(X) = |¢| F(X),

(f2) F(X)=0 implies X=0
for every Xe T(D) and £e€C. We do not assume F' to be continuous.
Let B, be the Finsler metric induced from the Bergman metric g on D,
i.e., By(X) = g(X, X)* for Xe T(D). For the unit disk U = {z€C; |z| <1},
we have

By(£0/02) =1V 2|¢|/1 — |2, (2,£)e UXC
(see §1). Let C, be the Finsler metric of Carathéodory on D (or, simply,
the Carathéodory metric on D), i.e.,

Cn(X) = sup {By(fLX)V'2; f e Hol(D, U)}
fox X e T(D), where Hol(D,, D,) means the set of all holomorphic mappings
from D, into D,. Let K, be the Finsler metric of Kobayashi on D (or,
simply, the Kobayasht metric on D), i.e.,

KyX) = inf {B{(Y)V'2; Ye T(U), feHol(U, D) with f,Y = X}
for Xe T(D). These definitions of C, aE(_i K, coincid_e_ with the usual ones
([4], [5], [18], [14]); while in [18; §2],1v"2C, and V' 2 K, are used as the
definitions of C, and K,. From the Schwarz lemma to the effect that
f*By < By for every feHol(U, U), it follows that C, < K,. It is im-
mediately seen from the definitions that for a Finsler metric ' on D.
9.1) C,<F if and only if f*B, <V 2F for every fecHolD, U),
and
9.2) F<K, if and only if V2 f*F < B, for every feHol(U, D).

Now, the following is well known (Hahn [13], [14], Burbea [4], [5]):
9.3) Cp, < B, on T(D)— {the zero section}

for every bounded domain D. When D is homogeneous (resp. symmetric),
we get a more precise result than (9.3), as in the following Theorem 9.1
(resp. Theorem 9.2).
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THEOREM 9.1. It holds that 2C} < B} for every homogeneous bounded
domain D. Furthermore, this imequality is sharp, i.e., there exist a
homogeneous bounded domain D and X e T,(D) — {0} such that 2C3(X) =
B3(X).

THEOREM 9.2. For a symmetric bounded domain D, it holds that
K,=C, and 7,C% < B3 < 7,R,C%, where Y, is the imvariant in (8.1)
and R, is the rank of D. For every such domain each imequality ts
sharp, t.e., for every such D, there exist X, X,€ T,(D) — {0} such that

7oCh(X)) = Bi(X,) and Bj(X;) = VpR,CH(X).

To prove the above two theorems, we use a result in the previous
section as well as the following two results.

LEMMA 9.8 (Yau [26; Theorem 2]). Let (M, g*) be a complete Kahler
manifold whose Ricei curvature is bounded from below by a constant
—a. Let (N, g¥) be a Hermitian manifold whose holomorphic bisectional
curvature is bounded from above by a megative constant —B. Suppose
that there exists a mon-constant holomorphic mapping from M into N.
Then a = 0 and f*g" < (a/B)g* for every f e Hol(M, N).

LemMMA 9.4 (Kobayashi [17; Theorem 4.1, p. 42]). Let D be a sym-
metric bounded domain with the Bergman metric g° whose holomorphic
sectional curvature is bounded from below by a megative comstant —a.
Let (N, g™) be a Hermitian manifold whose holomorphic sectional curva-
ture is bounded from above by a megative constant —B. Then f*g* <
(a/B)g® for every f e Hol(D, N).

ProOF OF THEOREM 9.1. (The first assertion.) Let D be a homoge-
neous bounded domain. Then the Riececi curvature of the Bergman metric
on D is identically —1 ([16; Theorem 4.1]). Furthermore, the holomorphic
bisectional curvature of the Bergman metric on the unit disk U coincides
with its Gaussian curvature, and is identically —1, as was seen in §1.
So, Lemma 9.3 implies that f*B, < B, for every f € Hol(D, U); therefore,
by (9.1) we obtain the first assertion of Theorem 9.1.

PROOF OF THEOREM 9.2. Let D be a symmetric bounded domain. It
is well known ([17; p. 52]) that K, = C,. The following is also known
(Koranyi [20]): There exists @ > 0 such that for every Xe T,(X) there
corresponds surjectively a non-negative real vector (&, ---, &z) € R¥ of
dimension R = R, with the properties By(X) = a3, &))" and C,(X) =
max{g, + -, &}. From this it follows that

(9.4) a’Cy < B} < RpaCy on T(D)
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and that each inequality is sharp. We shall show a* = 7,. By Theorem
8.4 the holomorphic sectional curvature HSC of the Bergman metric on
D satisfies

(9.5) HSC = —2/7,,
(9.6) HSC = —2/Ry7, .

By (9.5), Lemma 9.4 implies that v,f*B% < 2B for every f e Hol(D, U).
So, by (9.1) we have v,C3 < B3. From the sharpness of the first in-
equality of (9.4) it follows that v, < a®. Similarly, Lemma 9.4 together
with (9.2) and (9.6) shows B} < R,7,K% = R,7,C3. Combining this with
the sharpness of the second inequality of (9.4), we have v, = a?; therefore
a® = 7,, as desired.

PrOOF OF THEOREM 9.1. (The second assertion.) We shall show the
sharpness of the inequality in Theorem 9.1. For this it is sufficient
(Theorem 9.2) to find a symmetric bounded domain D so that v, =2, or
min HSC = —1 (Theorem 8.4). The unit disk U, or the product of U and
a symmetric bounded domain possesses the desired property (Corollary
8.5 (ii)). Thus, Theorem 9.1 is completely proved.
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