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0. Introduction. It is well known that a symmetric bounded domain
in a complex Euclidean space possesses the following two curvature
properties of the Bergman metric:

( i ) The sectional curvature is non-positive.
(ii) When the domain is irreducible, the curvature operator has at

most two distinct eigenvalues.
The latter is shown in Calabi and Vesentini [6], and Borel [3]. Re-

cently, it was shown in DΆtri and Miatello [10] that symmetric bounded
domains are characterized by the property (i) in the category of homo-
geneous bounded domains. The main purpose of this paper is to show
that symmetric bounded domains are characterized by the property (ii)
in the category of irreducible, homogeneous bounded domains (Theorem
7.2). A theorem of this type was obtained by Itoh [15]: A compact,
Kahler, simply connected homogeneous space with the second Betti number
b2 = 1 is Hermitian symmetric if and only if the curvature operator has
at most two distinct eigenvalues. Several characterizations of symmetric
bounded domains in the category of homogeneous bounded domains are
discussed also in [11], [12].

Our proof of Theorem 7.2 is based on the theory of normal j-algebras.
After studying curvature properties of a normal j-algebra in §§3-6, we
shall prove Theorem 7.2 in §7. The proof is divided into two steps as
follows: Let (g, j) be a normal j'-algebra corresponding to an irreducible,
homogeneous bounded domain D with at most two distinct eigenvalues
of the curvature operator, and let g = Σα^δ nβ6 + Σα^i in«* + Σα n«* be
its root space decomposition. We first show that dimnαδ = n12 for every
pair (α, 6) with a < 6, and that dimna* = n^ for every a (Lemma 7.5).
This means that D is quasi-symmetric in the sense of Satake [23] (cf.
[10]). We next conclude that D is symmetric, by means of a criterion
of Dorfmeister [12] for a quasi-symmetric bounded domain to be symmetric
(Proposition 7.8).

Several by-products of our argument are given in §§8-9. Denote by
HSC the holomorphic sectional curvature of the Berman metric g on a
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homogeneous bounded domain D, and denote by XD the minimum of
eigenvalues of the curvature operator of g. Then min HSC, max HSC,
and XD are biholomorphic invariants, and XD < 0. Set ΎD = —2/XD. When
D is symmetric the following hold (Theorem 8.4, Corollary 8.5):

- 1 ^ min HSC = -2/ΎD ^ -2/(dimZ> + 1) ,

max HSC = -2/ΎDRD ^ - I/dim D ,

where RD is the rank of D.
Let BD and CD be the Finsler metrics on a bounded domain D of

Bergman and Caratheodory, respectively. It is well known ([4], [5], [13],
[14]) that

CD < BD on T(D) - {the zero section}

for every bounded domain D, where T(D) is the holomorphic tangent
bundle over D. If we assume the domain to be homogeneous or sym-
metric, we get more precise inequalities as follows: For every homo-
geneous bounded domain D,

2Cl^Bl on T{D)

(Theorem 9.1); and for a symmetric bounded domain D,

vDCh ^Bj,^ ΊDRDCl on T(D)

(Theorem 9.2). Furthermore, these three inequalities are sharp.
The author would like to express his thanks to Professors T. Kuroda

and A. Kodama for valuable discussions during the preparation of the
present paper. The author would also like to thank the referee for
helpful suggestions.

1. Curvature operator of the Bergman metric. Let D be a bounded
domain in the complex Euclidean space Cn of dimension n with the co-
ordinate system (z1, , zn), and set 3α = d/dza (a = 1, , n). Let g be
the Bergman metric on D, i.e., for every point peD,g is a C-bilinear
form on the complexification Tξ(D) = Tζ(D) ®C of the real tangent space
Tp(D) at p, given by g = 2^Qa-bdza'dz\ g^b - 3<A log&, where k is the
Bergman function of D. Denote by TP(D) the holomorphic tangent space
at p. Thus T£(D) = fjD) + TP(D) (direct sum). The restriction of g to
Tf(D)xT*(D) is a Hermitian Kahler metric (cf. [19]). Let R be the C-
bilinear extension of the Riemannian curvature tensor of this Hermitian
Kahler metric, and set Ra-bc-d = g(R(de, dJ3^, dα). Since g is Kahlerian, it
follows that

(l l) Rάbcd = Rcbad > Robed = Radcb \
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explicitly,

(1-2) Raia = ded~d-ga-b - Σ g~8t(dc'9ai)(d~d'gti),
8,t

where (g8t) is the inverse matrix of (gai). We also note

(1 3) Rabcd — Hbadc

For p e D, we denote by SP(D) the 2-symmetric tensor product of the
space TP(D). For brevity we set eab = (3«)p® (db)p and fab = (3JP (36)p =
(βα6 + O/2eSί(Z>). Then every element of Sί(Z>) has the form Σ£ β δe.*,
where ξabeC with £αδ = ξha, and the set {/α6; a <: 6} is a basis of SP

2(Z)).
Put Rbaϊ= -Σ*s,t97b9τdRa-8C-t, and given I = Σ Λ c e S p

2 ( ΰ ) set Q,(Z) =
Σ M (Σα,c Λiί (p)ΓKd. Then, QP(X) e SP

2(D) by (1.1). The endomorphism
Qp of the space S%(D) is called the curvature operator of the Bergman
metric g. The space S}(D) is endowed with a Hermitian inner product
(, )p inherited from g, given by

(1.4) ( Σ ξaheah, Σ VcdeaX = Σ ξabVcd9a-c(p)gb-d(p) .

Since Qp is self-ad joint with respect to (, )p by (1.3), every eigenvalue
of Qp is real (cf [6], [15]).

LEMMA 1.1. Let ψ be a biholomorphic mapping from a bounded
domain D onto another one D', and let peD. If ζ is an eigenvalue of
Qp, then it is also an eigenvalue of Qir{p).

PROOF. The assertion follows from the fact that ψ is an isometry
with respect to the Bergman metrics of D and D'.

LEMMA 1.2. The matrix representing Qp with respect to the basis

f ' 'ffnJvT, /12, fi&f , /iJ is given by

_(\/TRc

a

da(p))c

a

<d (2 Rlί(p)Ya<ί _

PROOF. Let a ^ 6. Jί follows from the definitions that

Q,(Λ») = (l/2)Q,(ββft + β6α) = (1/2) Σ (Rlίiv) + Rlί(p))ecd
c,d

= Σ Rlί(p)eci = Σ RΆWe. + 2 Σ JB
c,d c c<d

which yields the desired assertion.

We denote by SC the scalar curvature of the Bergman metric, i.e.,

SC = -2ΣffV β δ."ieϊ . Then by Lemma 1.2 we have the following:

LEMMA 1.3. For peD, SC(p) = 2 trace Qp.
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For peD, set

(χD(p) = the minimum of the eigenvalues of Qp
(1 5)

(/*() = "the maximum of the eigenvalues of Qp .

Then the functions λ^ and μD are biholomorphic invariants by Lemma 1.1.
Furthermore, the following holds.

PROPOSITION 1.4. Let Dt be a bounded domain in Cnί (i = 1, 2), and
let (p, q)eD1xD2.

( i ) λ2,lXjDί(p, q) = min{XDl(p), XD2(q)},, μDlXD2(p, q) = maxf/^p), μD2(q)}.
(ii) Tλβ curvature operator of the Bergman metric on DxxD2 pos-

sesses 0 as an eigenvalue with multiplicity at least nxn2.

PROOF. The assertions follow from the fact gDιχD*=p*gDi+pξg*2, where
gD means the Bergman metric on a bounded domain D and pi\D1xD1-^Di

(i = 1, 2) are the natural projections (cf [16; Theorem 3.2]).

We denote by HSC(p; X) the holomorphic sectional curvature of the
Bergman metric g in the direction Xe TP(D) — {0}, i.e.,

(1.6) HSC(p; X) = -g(R(X, X)X, X)/g(X, Xf

(When D is one-dimensional the function HSC on D is called the Gaussian
curvature of g).

PROPOSITION 1.5. HSC(p; •) ̂  xD(p) on TP(D) - {0} for every peD,
and minHSC(p; •) = XD(p) if and only if

(1.7) there exists Xe TP(D) such that X2eSp(D) is an eigenvector of Qp

subordinate to the eigenvalue XD(p).

PROOF. Let X = Σ f ( 4 e TP(D) - {0}. By the definitions as well as
(1.4) we have

HSC(p; X)g{X, Xf - - Σ RάUp)ζa~ζhξΨ = Σ Λ?.(p)r

== (QP(X2), X\ ^ XD(P)(X\ X% =

In the above inequality, equality holds if and only if QP(X2) = XD(p)X2.
The proof is complete.

The Bergman metric gu on the unit disk U = {z 6 C; \ z \ < 1} in C is
called the Poincare metric and given by ^ = 4dz dz/(l — |z|2)2, since the
Bergman function of U is l/τr(l - |z|2)2. It follows from (1.2) and (1.6)
that the Gaussian curvature of gu is identically — 1.

2. Normal j-algebras. Suppose that a bounded domain D is homo-
geneous, i.e., the group Aut(D) of all biholomorphic transformations of
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D acts on D transitively. Aut(D) is a Lie group. A Lie group is called
triangular if its Lie algebra Ij is triangular in the sense that it is solvable
and every eigenvalue of ad x is real for every x e ί). Let G be a maximal
triangular analytic Lie subgroup of Aut(D), and let g be its Lie algebra.
It is well known (Vinberg [25]) that G acts on D simply transitively, i.e.,
for every p e D, the mapping Φ: G 3 f^f(p) e D becomes a diffeomorphism,
and that

(2.1) every maximal triangular analytic Lie subgroup of Ant(D) is con-
jugate to G.

Fix a point peD. Then we get two /ί-linear isomorphisms p: g 3 x i—• xe e
Te(G) and Φ*: Te(G)-+T£(D), where Te(G) is the tangent space at the
identity mapping e e G, and get the unique endomorphism j 6 End(g) of g
such that (Φ*op)oj = Jo(φ^op)f where JeEnd(T?(D)) is the complex struc-
ture tensor of D at p. Set <#, y> = g(Φ*°ρ(x), Φ*op(p)) for #, # e g, where
g is the Bergman metric on D (see §1). Then < , > is a j-invariant inner
product on g. Let K 6 g* be the form (called the Koszul form) on g given
by

(2.2) tc(x) = (1/2) trace (ad jx - jozd x) , x e g .

Then it is known (Koszul [21]) that (x, y) = ιc([jx, y]) for x, ye$.
The Lie algebra g over R with complex structure j obtained in the

above manner possesses the following three properties:
(jl) g is a finite dimensional triangular Lie algebra.
CJ2) [jx, jy] = j[jχ, y] + j[χ, jy] + [x, y] for x, y e g.
(j3) There exists a form ω e g* such that ω([jx, jy]) — ω([x, y]) (x,

yeg) and ω([jx, x\) > 0 (#eg-{0}), i.e., such that (x, y)ω = ω([jx, y])
is a j-invariant inner product on g.

DEFINITION 2.1 (Pyatetskii-Shapiro [22; p. 51]). A Lie algebra g over
jR with complex structure j is called a normal j-algebra if (g, j) satisfies
the above three conditions (jl)-(j3), and a form ω in (j3) is called admis-
sible. We say that a normal j -algebra (g, j) is isomorphic to another
one (g\ j') if there exists a Lie algebra isomorphism ψ from g onto g'
such that ψoj = jΌψ.

By (2.1) there corresponds, up to isomorphism, a unique normal j -
algebra to every homogeneous bounded domain. In fact, this correspon-
dence gives the bijection from biholomorphic equivalence classes of homo-
geneneous bounded domains in Cn onto isomorphic equivalence classes of
normal j-algebras of dimension 2n (cf. [22; pp. 66-73]).

Now, let (g, j) be a normal '̂-algebra.
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DEFINITION 2.2 (Takeuchi [24; pp. 1-37,1-38]). An element x e g - {0}
is called an idempotent if [jx, x] = x. An idempotent x is called primitive
if the 1-eigenspace {y e g; [jx, y] = y) of ad j# coincides with Rx.

DEFINITION 2.3. Let PI be the set of all primitive idempotents. It
is known that PI is a finite set (cf. (nl) below). Put

α = Σ Rjx , it = [g, g] ,
ore P I

π(α) = {xen; [h, x] — a(h)x (h e a)} for aea* .

Then, [tt(α), n(/3)]cn(α + /S) for α, βeα*. The cardinality of PI is called
the rank of (g, j), or the rank of the corresponding homogeneous bounded
domain. Every element of J = {aea*; n(a) Φ {0}} is called a root.

The following properties (nl)-(n3) are fundamental (cf. [22; Theorem
2, p. 61] together with [24; p. 1-38]):

(nl) The set PI is non-empty and linearly independent. Further-
more, α is an abelian subalgebra of g and g is a direct sum of α and π
(as vector space). In particular, rt = Σ«ejΠ(α) (direct sum).

(n2) Let ΔoaΔ be the dual basis of α* of the basis j'PI = {jx; xeVΪ]
of α. Then the following hold:

Jc{(α + β)/2; a,βe Δo)U{(a - β)/2; a, βe Jo, a Φ β}U{a/2; α e J J ,

M(a + β)/2) = n((α - /S)/2) + n((/3 - α)/2) for α, β e Jo with α Φ β, and

jπ(α)cα , jn(a/2) = n(α/2) for α e zf0 .

In particular, dim n(α) = 1 for every a e Ao.
(n3) For α,/3,7G Jo, the following hold:

α ^ /3 implies (a - /3)/2 $ J or (β - α)/2 $ J , and

(α - /S)/2 , (β - 7)/2 e Δ imply (α - 7)/2 6 Δ .

Let i? be the rank of (g, j), which is positive by (nl), and let PI =
{r19 , rR) with Δo = {el9 , εR}, i.e., εa(jrb) = δα6. By (n3) the relation
(a — β)/2 e Δ U {0} for a, βeΔ0 defines an order on Δo. So, renumbering
rίf * ,^Λ, if necessary, we may assume that
(2.3) (eβ - εb)/2 e Δ implies a < b .

DEFINITION 2.4 Put £f = Σ«^β^otι((α + β)/2), ̂  = Σαe^π(α/2). Fur^
thermore, fix a numbering rlf -—,rR of PI so that (2.3) holds, and set
παδ = n((e. + εh)/2), rtα* = π(e./2) (α, b e {1, , J?}). Thus, jSf = Σ i ^ α ^ ^ ^ ,
^ = Σf=i« *, i ^ 7 = β + Σ i ^ < 5 ^ Λ , 9 = ^ + i«5^ + ^ (direct sums),
and

Set r=Σa?6Pi^=Σf=i^α € .S27 and denote by Q(ξ) the f-eigenspace of adjr
in g. Then, [g(f), g(f')]cg(f+f') The following is easily shown by (n2).
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LEMMA 2.5. & = g(l), ^ =-8(1/2), and j£? = g(0). 7w particular,
= {0}, [ j ^ ί ^ f ] c j ^ , [^, ^ ] c j ^ , [^, }££>\ςi<2ί, and

From Lemma 2.5 and (j2) it follows that

(2.4) [x, ju] = j\x, u] , [ju, jv] = [u, v] for x

LEMMA 2.6 ([22; Lemma 2, p. 60], [24; item (vi), P. 1-33]). For b e
{1, , R} and x e π(α) with a e Δ,

\ — x 9 oc — (εα + eb)/2 for some a with a ^b

(O , otherwise.

PROOF. Let a = (εα + εδ)/2 for some a with a ^ 6. It follows from
(j2) that [jrδ, i#] = j[jrb, x] + i[rδ, jx] + [rb, x]. Since [rδ, x] = 0, [jrδ, x] =
(δab + l)a?/2, and [irδ, jx] = (<5αδ — l)jx/2, we have [rδ, ;?#] = — as. When
α e J - {(εα + εδ)/2; a = 1, , b} we have jx e n(β) for some βeJ —
{(εσ-εδ)/2; α = 1, , b -1}. Since εδ + β $ J by (n2), we have [rδ, jx] = 0;
therefore, the proof is complete.

We shall show the following.

PROPOSITION 2.7. A form ψeg* is admissible if and only if

(2.5) Ψly^n«+i(î n«)+ar = 0, and iK&) > 0 /or a e P I .

PROOF. We first note jJϊfΠxt = Σa<&iπaδ and j(j^f(λvi) = Σa<δtfa&
Let 'f be an admissible form, and let αe{ l , ••-,#}. For every a;6
Σf=α+i (παδ + jnab) + nαs|{, we have [jra, x] = x/2. Then by (j3) and Lemma
2.6, ψ(x) = 2ψ([jra, x)) = - 2 f ([rα, jx)) = -2*^(0) = 0. Furthermore, ψ(rβ) =
Ψ([in, r j ) > 0 by (j3). Thus, (2.5) holds. The "if" part of the assertion
is contained in the following lemma.

L E M M A 2 .8 . If ψeQ* satisfies (2.5) and < ,}ψ is defined by {x, y)ψ =

rKiJXf y\)f t>ΐien

( i ) ψ([j%> jy] — [%> y]) — 0 for x, y e g; therefore < ,)ψ is a symmet-
ric j-invariant bilinear form on g;

(i i) the decomposition g = Σ α ^ n α > + ^a^bjnab + Σo^α* is orthogonal
with respect to < , ><̂ ; and

(iii) ψ([jx, x]) > 0 for x e g - {0}.

PROOF, (i) Let x, y e£f and u>vz*U. Since [#, y] = [x, u] = 0,
from (j2) and (2.4) we get

[jχ> jy] - [x, y] = tiχ> jy)
ΓΛΛ n nnι\ _ _ Γ/y /1Ί/I ~
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[jx, ju] — [x, u] = [jx, ju] 6 ^ , and

[jn, jv] - [u, v] = 0

therefore, the desired assertion follows from (2.5).
(ii) Since [£f, Sf +%f] = {0}, for x, yeSf and ue^f we see (jy,

x)ψ = ψ([-y, x]) = α/r(0) = 0, <w, #>^ = f([ju, x]) = ψ(0) = 0, and (jx, u)ψ =
^([—x, u]) =ψ(0) = 0; therefore, the subspaces ,Sf, jj£f, and ^ are mutually
orthogonal. Furthermore, for xextab and yextcd with α ^ 6, c ^ d, and
(α, 6) Φ (c, d), we have O'a?, ii/>^ = <a?, y)ψ = ψ([jx, y]) e ψ(dab(δac + δαd)πcd +
(1 - Sα6)S6cttαd + (1 - δab)δbdnac) = {0}; therefore, iπα 6 (α ^ 6) (resp. πα6 (a^b))
are mutually orthogonal. On the other hand, for uena* and v eπ65fί with
a Φb we see <w, v>^ = ψ ([iw, v]) e f (n a i ) = {0}; therefore, πα5lί are mutually
orthogonal. Thus, (ii) follows.

(iii) Let xe$ — {0}. To prove the assertion, by (i) and (ii) we may
assume x e nab (a 5j b) or x e tτα5iί. We can then find ξ e R such that [jx, x] —
ζra. Taking an admissible form α), we get ζω(ra) = ω([jx, x]) > 0 by (j3).
Since ω(ra) > 0, we see ξ > 0. So, ψ([jx, x]) = ζf(ra) > 0, as desired.
The proof is now complete.

COROLLARY 2.9 ([22; Lemma 2, p. 60], [24; Corollary 1, p. 1-41]). For
every admissible form ω, the decomposition Q = Σα^δtW + Σα :̂?ttα& + Σ Λ *
is orthogonal with respect to the inner product < , >ω. In particular, the
subspaces £f, j£f, and ^ are mutually orthogonal with respect to < , >ω.

From this corollary we also get the following.

COROLLARY 2.10 (DΆtri [7; p. 407]). Let ω and ω' be admissible
forms. Then < , >ω = < , >ω, if and only if ω\ja = ω'\iu.

PROOF. For x, y e xt(a) with a e Δ, we have (x, y)ω = ω([jx, y\) with
[JKj y] e iα» while (jra, jra)ω = ω(ra) with ra e ja. So, the desired assertion
follows from Corollary 2.9.

Now, given an admissible form ω, set

(2.6) ωa = ω(ra) (a = 1, , R) .

Corollary 2.10 says that R positive parameters ωlf , ωR determine < , >w

uniquely. With respect to the Koszul form K of (2.2), by Lemma 2.6 it
is shown ([24; p. Π-37]) that

(2.7) κa = 1 + (1/2) Σ nab +
bψΣ
bψa

for any a = 1, , R, where

(2.8) nab = dim nab , na* = dim πtt5|
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3. Levi-Civita connection of an invariant Kahler metric. Let D
be a homogeneous bounded domain, (g, j) be the corresponding normal j-
algebra, and G be the analytic Lie subgroup of Aut(D) whose Lie algebra
is g (see §2). Then for every admissible form ω, there exists a unique
G-invariant Hermitian metric ωg on D such that

(3.1) {x, y)ω = ωg(Φ*op(χ), Φ*op(y)) for x, y e g ,

where Φ and p are mappings given in §2. The metric ωg is Kahler ian,
because the closedness of the Kahler form ωψ(X, Y) = ωg(X, JY) (X, Ye
X(D)) is directly shown by (3.1). Of course, the Kahler metric κg with
respect of the Koszul form K coincides with the Bergman metric on D.

We denote by ωVxy (x, y eg) the bilinear mapping on g x g into g
induced from the Levi-Civita connection V of the Kahler metric ωg via
Φ*opf i.e., {Φ*op)(»vxy) = V{Φ*op){x)ΦΛy) for x, ye$. It is given by

(3.2) »Vxy = ([x, y] - (ad x)»y - (ad »)-a?)/2 ,

where (ad x)ω is the adjoint operator of ad x with respect to < , >ω. The
formula (3.2) is equivalent to the following two properties:

(3.3) < - V , Ϊ , « ) . = -<y,ωvxz)ω

(3.4) ωVxy - ωVyx = [x, y] .

The Kahlerian property of ωg is equivalent to

(3.5)

LEMMA 3.1. For xe£f, the following hold:
( i ) »vix = (ad jx - (ad jx)ω)/2 on £? + ^
(ii)
(iii)

PROOF. Let ye£f + <%ί, and z e g. Then we have <(ad y)ωjx, z)ω —
[V> A)ω = 0 (Lemma 2.5, Corollary 2.9); therefore, faάy)ωjx — 0. So,

(i) follows from (3.2). Furthermore, <(ad jx)ωy, z)ω = (y, [jx, z])ω = 0 when
y e Sf and z e }£? + ^ , or when y e <%/ and z e $£f + &. Thus, (ii) holds.
Lastly, (iii) follows from (ii) together with Lemma 2.5. The proof is
complete.

COROLLARY 3.2 (DΆtri [7], [8]). ωVh = 0 for he a.

PROOF. TO prove the assertion, it is sufficient by Lemma 3.1 (i) and
(3.5) to show adΛ = (β,dh)ω on & + ^ for every he a. But, for ye
tt(α) and 2eg we have
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[8a,β(.hKv, z>. ,

and

(δaβa(h)(y, z)ω , zen(β)

as desired.

<(adA)y,«>.=

LEMMA 3.3. For x,ye£f and ue%f, the following hold:
( i ) "V* = yo(ad jx + (ad jx)ω)/2 on
(ii) ωVx£? c j&, ωVx^T c ^ , ω

(iii) ωVxy = ω V y α, ω V w # = ω V ^ ;

( iv) ~Vί%z = j*V%%.

PROOF. Let z e =5P + ^ . Since [α?, 2;] = 0 (Lemma 2.5), we get
«Vxz = ωVzx by (3.4). So, (iii) holds. From (3.5), (3.4), and Lemma 3.1
(i), we have wVxz = ωVzx = -jωVzjx = -j(ωVjxz + [z, ix]) = i(adia; +
(ad j#)ω)z/2; therefore, (i) holds. Lastly, (ii) follows from Lemma 3.1 (ii),
and (iv) follows from (iii) and (3.5). The proof is complete.

COROLLARY 3.4. For x, ι/enαδ with a ^ 6, ίfee following hold:

(ad ia;)ωi/ = <a?, y)ωrb/ωb , (ad jaj)y = (xf y)ωrjωa

ωVixι/ = (ra/2ωa - rhfiωhKx, y}ω , *V9y = (jrβ/2ωβ + jnlωb)(x, y)ω

(see (2.6)).

PROOF. The first two formulas are easily shown by definition. The
last two formulas follow from Lemma 3.1 (i) and Lemma 3.3 (i).

LEMMA 3.5. For u, ve%S, the following hold:
( i ) ωVuv = x1

Jr jx2, where x1 — [u, v]/2, x2 = [ju, v]/2 e £f\
(ii) ωVjuv= -jωVuv.

PROOF. We first note (ad u)ωv e j^Sf. Indeed, for y e Sf + ^ we
have <(ad u)ωv, y)ω = (v, [u, y])ω = 0 (Lemma 2.5, Corollary 2.9), as desired.
It follows from (3.2) and (3.5) that

(ωVuv = [u, v]/2 - ((ad u)ωv + (ad v)ωu)\2

\ωVuv = -jωVJv = -j[u, jv]/2 + j((aάu)ωjv + (s,djv)ωu)/2

Comparing the £f- and i^-components of ωVttt;, we have (ad u)ωv +
(ad v)ωu = j[u, jv] = —j[ju, v] (by (2.4)). So, (i) follows. The assertion
(ii) follows from (i) and (2.4). The proof is complete.
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By Lemmas 3.1, 3.3, and 3.5 we obtain the following (see also (3.5)).

PROPOSITION 3.6. For every pair of x and y in £? U j£f U ^ ,
the subspace, where the element ωVxy belongs, is given by the following
table:

y

For example, if xe£? and if ye£f, then ωVxy

4. Riemannian curvature tensor of an invariant Kahler metric
(1). Given an admissible form ω, denote by ωR the bilinear mapping on
gxg into End(g) induced from the Riemannian curvature tensor of the
Kahler metric ωg via Φ*°p (see §§2-3), i.e., for x,yeg,

(4.1) «R(x, y) = [*VX, -V,] - ωV[x,y] .

It follows from (3.5) that

(4.2) »R(jx, jy) = «R(x, y) , jo«R(x, y) - »R(x, y)oj .

We now extend < , >ω to a unique complex symmetric bilinear form on the
complexification gc = g (x) C of g, and extend ωV to the complex bilinear
mapping on g c xg c into gc. Thus, (4.1) is valid also for x,y£Qc as an
endomorphism of gc (cf. [19]). Observe that the space g1>0 = {zegc; jz =
iz), where j is extended to a complex linear endomorphism of gc, corre-
sponds to the holomorphic tangent space T9(D) via Φ*°p (see §2), and
denote by X the mapping from g onto gM, given by

(4.3) X(x) = (x - ijx)/2 , x e g .

Given xa e g (α = 1, 2, 3, 4), set

Since X(jx) = %X{x) for x e g, we have

ωE> _ _ — jωTD _ _ ω D _ _ _ — / ω D - _
-Li/jXl^2xSx4 ί C l a ; 2 ί C 3 : r 4 ' %l3x2x3x4: X1X2X3X4: f

Using (4.2) we get

(4.4) AωRXl72H7, = ωS(x1, x2,xz, x,) + i ω S ( ^ , x2, xz, j

= ωb\X19 X29 Xζ9 XJ + ^ ^ ( ^ i > J%2>
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where

ωS(xlf x2, a?8, xύ = <ω

By (3.3) and (4.1) we have

(4.5) (°>R(x3, Xt)x2, xt}ω

LEMMA 4.1. For ya££f and ube%f, the following hold:

( i ) Λ n w 4 = 0;
(ii) " Λ f A f Λ = 0;

(iii) - Λ . Λ f Λ = 0.

PROOF. Since [ ^ %r] = {0} (Lemma 2.5), it follows from (4.5) that

By (3.5), Lemma 3.3 (iv), and Lemma 3.5 (ii), the right hand sides of
both formulas above coincide; therefore, ωS(ylf u2, yz, u4) = 0, which also
yields ωS(ylf u2, yz, ju4) = 0. Thus, (i) holds. Next, by (4.5) we have

and

Since [y3, jy^eJzf (Lemma 2.5), every term on the right hand sides of
the above two formulas vanishes (Corollary 2.9, Proposition 3.6). So,
ωS(ylf u2, ys, y,) = ωS(ylf ju2, yZJ y4) = 0, which imply (ii). Similarly, we
have (ωR(ys, u^)u2y uX = 0 and ωS(u19 u2, yz, u,) = ωS(uίf ju21 yz, uA) = 0,
which yield (iii). The proof is complete.

LEMMA 4.2. For ya e £f, the following two formulas hold:

(ad i2/4)
ω2/2>ω;

( i i ) 4-Λtι7lf,74 = (ωVjV3y2, [jy,f Vl])ω + (ωVjyzyίy (ad jy,)ωy2)ω -

PROOF. Proposition 3.6 together with Corollary 2.9 implies
ωS(ylf y2, yZJ y,) = <ωVy^2, (ωV,4 + j'V^vX

and •"Sd/i, j2/2,2/3,2/4) = 0. But, from Lemmas 3.1 and 3.3, we get ωVdn —
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j»Vy4 = ad jVt, ωViy4 + jωVy4 = - ( a d jy4)
ω on £f. We thus obtain (i). Simi-

larly, we have

ωS(jylf jy2, jy» jy4) = <ωViV32/2, ( V,,4 - jωVn)Vl)ω

and ωS0Vi, ϋ»2, ilh, 3Vd = 0. Since " J S ^ ^ = ωRj9ιπ»9&A, the same argu-
ment as above shows (ii). The proof is now complete.

COROLLARY 4.3. For yae£f with jydea, it holds that Aw

PROOF. The assertion follows from Lemma 4.2 (ii) and Corollary 3.2,
since [jyZ9 jy,] = i[j?/3, j/J + j[?/3, JVJ, and since ωVάUyz^ + iωV[il/3,y4] =
-(adi [ j » 8 ,»J) on

LEMMA 4.4. For ua€i&, it holds that

PROOF. By (3.5) and Lemma 3.5 (ii), we have
ωS(ux, u2, us, u4) = 2{ωVUzu2y ω V , ^ ) . - <(ωV[U3,tt4]w2) - iωV[lt3,

But, since [^, ^ ] c ^ by Lemma 3.5 (i) we have
ωv[tt3,M4]M2 - iωv[ t t3, i t t4^2 = ωvtt2([^3, wj - i K jwj) = 2ωvtt2

ωvtt

So, (3.3) implies

-S(ttlf Wί, Ma, M4) = 2«WVU3^2, - V ^ ) . + <ωVU3u4, -V^tO J ,

which yields the desired assertion.

COROLLARY 4.5. // uh eitβ # /or ever̂ / δ, l 2 3 4

n,)ω + <^3, Vn}ω(u19 u2)ω)/2ωa (see (2.6)).

PROOF. Since [telf u2] = <t6χ, ju2)ωrjωaf the desired assertion follows
from Lemmas 3.5 and 4.4.

5. Riemannian Curvature tensor of an invariant Kahler metric (2).
In this section we examine when ωRXlx2X3x4 vanish.

LEMMA 5.1. Let α, 6 e {1, , R} with a ^b. For y ened with s ^ d,
and for y' exιst with s ^t, if ωRr^np Φ 0, then (c, d) = (s, ί) = (α, b).
Furthermore, if y, y' e nab, then

, y')J2 .
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PROOF. Since [r6, jy'] = — δbty' (Lemma 2.6), and since \jrb, y'\ =
(δb8 + δbt)y'/*, Corollary 4.3 implies that

4ωRrayrbp = δbadat(y, y')J2 + δbt([jy', y], rα)J2 .

From Jacobi's identity we have

<rα, [jy', y])ω = (y'9 [jrα, y])ω + {jy, [jrα, jy'])ω

= («.. + δαd + δα8 - δαt)(y, y')J2 .

Thus,

4ωRrjrbP = (2δb8δαt + δπ(δαc + δαd + δα8 - δαt))(yt y')J± .

So, ωRrαyrbp Φ 0 implies <τ/, yf> Φ 0; therefore, (c, d) = (s, ί) and 4ωJ?r^r^- =
(δbeδαd + δbdδαc)(y, y')J2. Since δbcδαd + δ6Λβ ^ 0 implies (c, d) = (α, 6), all
the desired assertions follow.

LEMMA 5.2. Lei α,be{l, , iϋ} wΐ£Λ α < 6, α^d ieί m, m' 6 πα6. For
7/ encd with c <^d, and for y' en s ί ί^ift s ^ t\ if ωRmym>? ̂  0> ^ ^ °^e °/
fΛe following three cases occurs:

( i )i (c, d) = (a, a) and (s, t) = (6, 6),
( i )2 (c, d) = (b, b) and (s, ί) = (α, α),
(ii) (c, d) = (s, t) with d = b, c <b.

Furthermore, if y, yf e nab, then

±ωRmy-m>y- = « m ' , ?/>ω<m, i/'>ω + <m', ]/'>ω<m, y)ω)l2ωa

- (m, m')ω(y, y')J2ωb

(see (2.6)).

To prove Lemma 5.2, we need the following well-known fact (cf. [22;
p. 63]).

LEMMA 5.3. // x, x' e jnab with a <b, and if y, y' e Σf=6+i(«δc + j^bc) +

PROOF OF LEMMA 5.2. Let m, m' e nah, y e ncd, and yf e nβt. By Lemma
4.2 (i) we have

(5.1) 4ωi2^mv = {j"Vm,y, [m, jy'])ω + <jωVmy, [m'f jy'])ω

Since ωVm,m = (jra/2ωa + jrb/2ωb)(m, m'>ω (Corollary 3.4), by Lemma 2.6
we have

(5.2) O'ωVm,m, (ad jY)ωi/>ω = -(δα ί/2ωα +
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On the other hand, it follows from Lemma 3.3 (i) that

(5.3) (jωVm,y, [m, jy'])ω = <iωVym', [m, jy'])ω

= <[m', M [m, jV]>β/2 - <m', [jt/, [m, i»']]>./2 .

Substituting (5.2) and (5.3) into (5.1), we have

(5.4) ±ωRm-ym>? = <[m', jy], [m, jV]>β/2 - <m', [jy, [m, ίV]l>./2

+ <[m, jy], [m', jy'])J2 - <m, [jy, [m', jV]]>β/2

- (Sαt/2ωα + δJ2ωhKm, m')ω(y, y')ω .

We divide the proof into four cases.
(a) Suppose s = t, and let y' = r8. Then (5.4) becomes

(5.5) 4ωi?m-,w,r- = - ( δ β . + δ j « [ m ' , M m>ω + <[m, jy], m'>J/2

- (δas/2ωa + δJ2ωb)(m, m')ω{y, rs)ω .

If s =£ α and s Φ b, then ωi2m^m'r~ = 0. So, suppose s — a or 6. It then
follows from (5.5) that

(5.6) 4-Λ^.v- = -<[m', jy], m>ω/2 - <[m, j»], m'>ω/2 '

- <ra, m')ω(y, r8)J2ω8 .

Since [m', jt/] and [m, jy] belong to n((eβ + εb + εc — εd)/2), \ί c Φ ά then
ωHmym^8 vanishes. So, in addition, suppose c — d, and let 2/ = fβ. Then,
(5.6) gives

4ωiC>'r- = (δαc + δbc - δC8)<m, m'>ω/2

therefore, ωRmvcm>78 Φ 0 implies that (s, c) = (a, b) or (6, α).
(b) Suppose 8 <t,t Φa, and ί Φ b. Then, [m, jy'] = [m', jj/f] = 0

because n((eβ + ε6 + e, — εt)/2) = {0}. So, (5.4) implies ωRmym'P = 0.
(c) Suppose s < t = a. Since [m, jy'], [m', J Y ] enβ 6 (s < 6), the ele-

ments [jy, [m, jy']] and [;?V, [m', jy']] belong to the subspace δcdn8b +
(1 — δcd)δd8ncb and are orthogonal to m' and m, respectively. So, by (5.4)
we have

4-Λ»ϊ v - <[mf, i»], [m, J V ] > . / 2 + <[m, i»], [m', jV]>β/2

- <ra, m'>ω<?/, y')J2ωa .

When (c, d) ^ (s, α), we have <[m', i?/], [m, jy'])ω = <[m, JV], [m', jY]>ω = 0
and <y, y')ω — 0, which imply ωRmym>7' = 0; while when (c, d) = (s, α) it
follows from Lemma 5.4 that ωRmym>p — 0.

(d) Suppose s < t = b. Since [m, J V ] , [m', jy']ena§, the elements
[i», [m, jy']] and L?V, [m', J V ] ] belong to δcdna8 + (1 - δc,)(δdαttcs + δ,8nCα)
and are orthogonal to m' and m, respectively. So, by (5.4) we have
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(5.7) 4»Rm-ym,p = <[m', jy], [m, jy'])J2 + <[m, jy], [m'f jy']>J2

- <ra, m')ω(y, y')J2ωb .

Thus, if (c, d) Φ (s, b) then ωRm~ym>p = 0 as in case (c). This completes
the proof of the first assertion. The second assertion follows from (5.7)
together with Corollary 3.4. The proof is now complete.

Now, we recall the mapping F: ^x^T —• eSfc ([22; p. 68]) given by

(5.8) F(u, v) = [ju, v]/A + i[u, v]/4 for w , v e ^ .

We get the following formula by Lemmas 3.5 and 4.4:

(5.9) 4-ΛΛ,.- = 8 « W , v), F{u, v'))ω + (F(u'f v'), F(u, v))ω)

for u, u', v, vf e ^ , where < , >ω is extended to a complex bilinear form
on gc (see §4).

LEMMA 5.4. Suppose that ua e n(aJ2) (αα e Jo) satisfy ωRulΰzu^ Φ 0.
Then one of the following cases occurs:

( i ) a, = az Φ a2 = α4,
(ii)2 ax = a2 Φ as = a4,
(ii)2 a, = α4 Φ a2 = α3,
(iii) αx = α2 = α3 = α4.

PROOF. Since i^(ϋ, v) 6 n^ for every (u9 v) e πα5f: x tι&s|£, and since (z, w)ω=
0 for every (z, w) ε tt£6xr& with {α, 6} ^ {c, d}, it follows from (5.9) that if
β ^ i«2«3«4 ^ ° t h e n «i + «4 = «2 + «3 or ^ + α2 = «3 + «4. This yields that
at least one of the following holds: (a19 α4) = (α3, α2), (alf α3) = (α2, α4),
(av α2) = (α4, α3). So, the assertion follows.

6. Splitting of the curvature operator. In this section we shall
study the endomorphism Q of the 2-symmetric tensor product S2(g1)0) of
the space g1>0 (see §4), induced from the curvature operator Qp of the
Bergman metric on D via Φ*°p (see §2). We call Q the curvature operator
of (9, i ) . We thus deal only with the Koszul form K as the admissible
form of (g, j), and use the simple notation < , >, V, etc., instead of < , X,
*V, etc. Let X:g—•g1'0 be the mapping given by (4.3). Then we have
direct sum decompositions

(6.1)

= Σ
b

) ΣW
α = l

where R is the rank of (g, j). Since (X(x), X(y)) = (x, y)/2 for every
fie, y € g, it follows from Corollary 2.9 that
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(6.2) the decompositions (6.1) are orthogonal with respect to the Her-

mitian inner product <• , •> on gM.

The following is an immediate consequence of Lemma 1.2.

LEMMA 6.1. Let xlf , xn, jxlf , jxn be an orthogonal basis of g
with respect to < , >. Then the matrix representing Q, with respect to the
basis (hJ\/Ύ, hjVΎ, , hjVΊΓ, h12, h23, , hln), where hah = X(xa) X(xb) e
S2(g1>0), is given by

(2Rld

bya<
d

bya<b

where

Let E be a Q-invariant C-subspace of S2(gM). Then the orthogonal
complement of E with respect to < ,~> is also Q-invariant. If E = E1 +
• + EN is a direct sum decomposition of £7 into Q-invariant subspaces,
then we say that the curvature operator Q\E on E splits into Elf , EN.

By observing Lemma 6.1 and (6.2), we obtain the following from
Lemma 4.1.

PROPOSITION 6.2. The curvature operator of (g, j) splits into the
three subspaces X{£?)\ TL(5f )-!{&), and 1{^)\

Similarly, by Lemmas 5.1 and 5.2 we get the following Propositions
6.3 and 6.4.

PROPOSITION 6.3. The curvature operator on the invariant subspace
splits into 2R subspaces

(<* = 1, < • , B) ,

2 ) (6 - 2, . . , R) ,
α = l

= Σ {Z(nJ Z(nJ; («, 6) ^ (c Φ, («, c) ^ (6, d)}.

P R O P O S I T I O N 6.4. The curvature operator of (g, j) has —ljκu •••,

— 1/«Λ a s eigenvalues, with eigenvectors Xir^f, •••, X(rBf, respectively (see

(2.7)).

For every a, b e {1, , i2} with a < & and with N = nab> 0, let m^
• , mN be an orthogonal basis of τxah normalized by [jme, mc] = ra (c =
1, , tf)j_ Thus, <mc, m,> = β ^ . Put /β 6 = (Z(rJ χ(n), ZίmJ/i/Y, ,
X(mNYlv/2,X(m1)'X(m2), X(m2) X(ms), •• •,X(m1) χ(mN)), a basis of Z(«J
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Z(ΠM) + X(nabf, and consider (1 + N + N(N - l)/2)-square matrix

0 (Vl/~2)eN 0

Mab = -K IN -

0 0

0

-*iV(2V-l)/2_

where eN = (1, , 1) (iV-times), £ ^ = (£„) with ξ8t = l(s, t e {1,
/^ is the identity matrix of order N, etc., and κl = /ca//c6. When wa6 =
0, let / a 6 be a single element (Z(rβ) Z(r6)), and Mab be a (1, l)-matrix (0).
Then Lemmas 5.1 and 5.2 together with Lemma 6.1 and (6.2) imply the
following.

PROPOSITION 6.5. For every fee {2, •••, R), the matrix Lk represent-
ing the curvature operator on the invariant subspace (Jϊfk) in Proposition
6.3, with respect to the basis (flk, f2k, •• ,Λ_i,fc), has the form

'MΛ

lk

 1}
_Llk

 1 k-l,k

where L?k is a (1 + n8k{nsk + l)/2, 1 + ntk(ntk + l)/2)-matrix whose com-
ponents of the first row and the first column are all zero.

From Lemma 5.4 we conclude the following.

PROPOSITION 6.6. The curvature operator on the invariant subspace
X&f splits into 1 + R(R - l)/2 subspaces (a%) = Σ?=i #(πα*)2 and (%fab) =
Z(nα5|ί) Z(nδ5iί) (a < b) (some of which may be {0}).

u\, juϊ, , ju\(h = be anFor every A; e {1, , R], let u\,
orthonormal system of (tιfc#, < , », and set/ f c =
X(u\)-X(u\)> , X(uι) X(uk

h)), a basis of X(nk*f. Furthermore, for every
pair (fc, I) with k Φ I, we consider an (nk*(nk* + l)/2, nu(n^ + l)/2)-
matrix

Tk _ __ J (^«α»β«αV (V 2
(6.3)

where uα and vc mean u\ and t6c, respectively. Then Lemma 5.4 together
with Lemma 6.1 and (6.2) implies the following (see also Corollary 4.5).

PROPOSITION 6.7. The matrix L representing the curvature operator
on the invariant subspace (^*) in Proposition 6.6, with respect to the
basis (/„ •••,/«), is given by
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ιcϊ1IHι L\ LR

L2 *--l Γ Γ2

i —-£2 i/fg l^s
. . .

L R T R . . *--lf

Hk =

7. Characterization of symmetric bounded domains by the curvature
operator. A homogeneous bounded domain in Cn is called irreducible if
it is not biholomorphically equivalent to a product of any two homogeneous
bounded domains of lower dimension. In the case of symmetric bounded
domains the irreducibility in the above sense coincides with the irredu-
cibility as a Riemannian manifold, with respect to the Bergman metric.

In this section we shall show the following main theorem of this
paper.

THEOREM 7.1. Suppose that the curvature operator of the Bergman
metric on a homogeneous bounded domain D in Cn has at most two dis-
tinct eigenvalues. Then D is irreducible symmetric, or D is biholomorphic
to a product of several balls of the same dimension.

By combining Theorem 7.1 with the result of Calabi and Vesentini
[6; Chap. 3, §2] and Borel [3; Proposition 3.4], we get the following.

THEOREM 7.2. An irreducible homogeneous bounded domain D in Cn

is symmetric if and only if the curvature operator of the Bergman metric
on D has at most two distinct eigenvalues.

Now, let D be a homogeneous bounded domain of rank R, and let
(β» j) be the corresponding normal j-algebra with the Koszul admissible
form K. To prove Theorem 7.1 we employ the following Lemmas 7.3 and
7.4

LEMMA 7.3 (DΆtri and Miatello [10; Proposition 3]). The domain D
is irreducible, quasi-symmetric in the sense of Satake [23] if and only
if R = 1, or nab — n12 > 0 for every a, b with a < b and na* = n^ for
every a (see (2.8)).

Put End(^, j) = {/ G End(^); jof = foj}9 and define a linear mapping
φ:£?-> End(^, j) by

<Ά<P(v)u), Wί>β = <E(u, v), y) for u,ve^,ye£f

(see (4.3), (5.8)), or

(7.1) (<P(y)u, v) = ([ju, v], y) for u,ve^,ye£f.
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Denote by φc: J^c —> End(^, j) the complex linear extension of φ, i.e.,
φ\x + iy)u - φ(x)u + jφ(y)u for x, ye£f and % e ^ (cf. [9; p. 41]).

LEMMA 7.4 (Dorfmeister [12; Satz 3.4, p. 95]). When D is quasi-
symmetric in the sense of Satake [23], D is symmetric if and only if
φc(F(v, u))v = 0 for every pair (u, v) 6 παs|e xn6 # with a Φ b.

Now, suppose that

(7.2) the curvature operator of (g, j) has at most two distinct eigenvalues
(see §6).

If R = 1, then D is a ball ([22; p. 52]); therefore the conclusion of
Theorem 7.1 trivially holds. So, suppose

(7.3) R ^ 2 .

LEMMA 7.5. Assumptions (7.2) and (7.3) ίmpί# JCX = = κB and
nab = nn for every pair (α, b) with a <b. Moreover, the curvature operator
has precisely two distinct eigenvalues —l/icx and

PROOF. Let us denote by V the set all eigenvalues of Q. By Pro-
position 6.4, { — I/id, •••> - 1 / U c F ; while by assumption (7.2) the car-
dinarity # F of 7 is 1 or 2. Put

(the value in V - {-l/zcj , # 7 = 2 .

Then the matrix M representing Q satisfies

(7.4) M2 - (-/ΓΓ 1 + ξ)M - ξKZ'I = 0 .

So every matrix Lb (6 = 2, , J?) in Proposition 6.5 also satisfies the
equation (7.4) with Lh instead of M\ in view of the (1, l)-component of
the α-th diagonal block of this equation for every αe{ l , •••,6 — 1}, we
have

(7.5) nab/2κ2

a - ξ/κ, = 0

therefore, ξ ^ 0 by (7.3). This implies # F = 2 and ATX = = κR. Once
more by (7.5) we have nab = 2/c£ for every α, 6 with a <b. The proof
is now complete.

PROPOSITION 7.6. Assumptions (7.2) and (7.3) imply that D is irre-
ducible and quasi-symmetric in the sense of Satake [23], or D is a pro-
duct of R copies of an (n^ + l)-dimensional ball.

PROOF. From Lemma 7.5 together with (2.7) it follows that nab =
n12 for every (α, 6) wite a < 6, and that na* = nlw. for every a. First,
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suppose n12 = 0. Then g is a direct sum of R mutually isomorphic j -
ideals naa + jnaa + παs|c (α = 1, , R). Since the normal j-algebra nn +
jn u + π^ corresponds to an (nls|t + l)-dimensional ball J5, we have D =
ΰ x x ΰ (iϋ-times) (cf. [22; pp. 52, 64]). Next, suppose n12 > 0. Then
Lemma 7.3 implies that D is irreducible and quasi-symmetric in the sense
of Satake [23]. The proof is complete.

LEMMA 7.7. When D is quasi-symmetric in the sense of Satake [23],
the following four conditions are mutually equivalent (see (5.8), (7.1)):

(si) D is symmetric.
(s2) <pc(F(v, u))v = 0 for u e πα5iί, v e rt6* with a Φb.
(s3) (F(v, u'), F(v> u)) = 0 for u, u' e πα5ie, v e nh* with a Φ b.
(s4) Rvΰvΰ' — 0 for u, u' 6 uα5K, v e n6sK tί iίfe a Φ b.

PROOF. Lemma 7.4 asserts the equivalence (sl)«(s2). By (7.1) we have

(φc(F(v, u))v, u') = Re(F{v, u\ F(v, u')) ,

(<Pc(F(v, u))v, ju') = Im (F(v, u), F(v, u'))

for every u, u\ v e ^ therefore, the equivalence (s2) <=* (s3) follows.
Lastly, the equivalence (s3)<=>(s4) follows from (5.9). So, the proof is
complete.

We now show the following, which proves Theorem 7.1 completely
by Lemma 7.7.

PROPOSITION 7.8. Assumptions (7.2) and (7.3) imply the assertion
(s4) in Lemm 7.7.

PROOF. We consider the matrix L given in Proposition 6.7 with
κa — κlf Ha — Hi for every a = 1, , R. Since — 1/zt,. and ξ = n^/2^ are
all eigenvalues of the curvature operator (Lemma 7.5), the matrix L
satisfies the equation (7.4) with L instead of M; in view of the fc-th
diagonal block of this equation, we get

Li *Li + ic^lΛ + (^/cr1 + ξ)κZιIBl - ξκ?IHl = 0 ,
/

Σ
aΦk

or Σα*fc Li xLk

a = 0. This implies that L\ = 0 for every (fc, a) with a Φ k.
It follows from (6.3) that Rviv& = 0 for u, w'enα5|£, v, t ' e ^ with a Φ 6,
as desired.

8. Holomophic sectional curvature of the Bergman metric. Let D be
a homogeneous bounded domain. Then the scalar curvature SC of the
Bergman metric on D is identically —2n (cf. [16; Theorem 4.1]), and both
XD and μD in (1.5) become constant functions by Lemma 1.1. Further-
more, the constant λ^ is negative (Lemma 1.3). Set
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(8.1) ΊD = -2/λ* ( > 0 )

(cf. [6; p. 499], [3; p. 508]). We first note the following.

PROPOSITION 8.1. Let D be an irreducible symmetric bounded domain
of rank R in Cn with normal j-algebra Q — ̂ a^b^ab + ΈiazbJKab + Σα*W
Then dimn α 6 = n 1 2 > 0 (α < b) and dimnα 5 | { = n l ϊ i e = 2m (α = 1, , R) pro-

vided that R ^ 2, and the following hold'.
( i ) When R = 1 the eigenvalue of the curvature operator of the

Bergman metric is XD = — 1//̂ ; while when R ^ 2 the eigenvalues are
precisely XD — —1/iCχ and nnβκx.

(ii) The condition (1.7) holds.
(iii) The invariant ΎD is an integer between 2 and n + 1; ΎD — 2

if and only if D is a disk in C, and ΎD = n + 1 if and only if D is a
ball.

(iv) RΎD ̂  2n, and the equality holds if and only if m — 0, i.e., D
is biholomorphic to a Siegel domain of the first kind (cf. [22]).

PROOF. We first employ Theorem 7.2. Then Lemma 7.5 implies (i),
and Proposition 6.4 implies (ii). It follows from the definition of ΎD and
from (2.7) that

(8.2) ΊΌ = f + {R ~ 1 ) Λ u + m ' R " 2

By observing the dimensions in the decomposition (6.1) we get

[R + R(R - l)n12/2 + Rm , Λ > 2

(8.3) n = j ~

From these formulas we obtain the assertions (iii) and (iv). The proof
is complete.

It is well known (cf. [3], [6]) that

(8.4) for every triple (n, 7, R) of positive integers, there exists, up to
biholomorphic equivalence, at most one irreducible symmetric boun-
ded domain D such that

(dim D, 7D, rank D) = (n, 7, R) .

PROPOSITION 8.2 For every triple (n, n12, m) e NxNxZ+, there exists,
up to biholomorphic equivalence, at most one irreducible symmetric boun-
ded domain D such that rank D ^ 2 and (dim D, dim na6, dim na5|£) = (n, n12,
2m).

PROOF. Let R = rank D ̂  2. It follows from (8.3) that
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n12R
2 + (2 - n12 + 2m)R - 2n = 0 .

Since there exists at most one integer R ^ 2 satisfying the above
quadratic equation, the desired assertion follows from (8.2) and (8.4).

PROPOSITION 8.3. A symmetric bounded domain is irreducible if and
only if 0 is not an eigenvalue of the curvature operator of the Bergman
metric.

PROOF. The "only if" part follows from Proposition 8.1 (i), and the
"if" part from Proposition 1.4 (ii).

THEOREM 8.4. The holomorphic sectional curvature HSC of the Berg-
man metric on a symmetric bounded domain D of rank RD satisfies

jmin HSC = λ^ = -2/ΎD

(max HSC = XD/RD = -2/RDΎD

(see (8.1)).

PROOF. Proposition 8.1 (ii) together with Proposition 1.4 (i) implies
that the condition (1.7) holds also for D not necessarily irreducible. There-
fore, Proposition 1.5 yields min HSC ^λ^. But, it is well known (cf.
[17; p. 41]) that HSC is negative and min HSC = RD max HSC. So, the
proof is complete.

COROLLARY 8.5. Under the notation of Theorem 8.4 the following
hold:

( i ) max HSC ^ — I/dim D, and the equality holds if and only if D =
Dλx xDi, where every Dt is an irreducible symmetric bounded domain
biholomorphic to Siegel domain of the first kind, and yD. = ΎDl (i = 1,

v , ί ) .
(ii) min HSC ^ — 1, and the equality holds if and only if D is a

disk U in C, or D is a product of U and a symmetric bounded domain.
(iii) min HSC ^ — 2/(dimD + 1), and the equality holds if and only

if D is a ball.

PROOF. When D is irreducible, the assertions follow from Theorem
8.4 together with Proposition 8.1 (iii) and (iv). Let Dt (ΐ = 1, 2) be sym-
metric bounded domains. Then, ΎDlXD2 = min {yDl, ΎD2} (Proposition 1.4 (i))
and RDIXD2 = RDX + ^zv From these we obtain the assertions also for D
reducible.

Combining Theorem 8.4 with (8.4), we get the following.

COROLLARY 8.6. Let D and Df be irreducible symmetric bounded
domains of the same dimension. If min HSC2' = min HSC2*' and maxHSC^ =
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maxHSC^', then D is biholomorphic to D'. Here, HSCD means the holo-
morphic sectional curvature of the Bergman metric on D, etc.

REMARK 8.7. Among the domains D{r) - {zeC2; \zx\ < 1, |z2 |2 < (1 -
Iz1!2)7"} ( 0 ^ r < + <*>), the same characterization as in Corollary 8.6 holds
([1], [2]): If r, r ' e [ 0 , +«>), inf ΈLSC™ = inf ESCDlr'\ and supHSC 1 ^ =
s u p H S C 2 ^ , then r = r'.

9. Caratheodory and Eobayashi metrics. In this section a Finsler
metric on a bounded domain D stands for a non-negative real valued
function F on the holomorphic tangent bundle T(D) of D satisfying

(fl) F{ξX) = \ξ\F(X),
(f 2) F(X) = 0 implies X = 0

for every XeT(D) and ξeC. We do not assume F to be continuous.
Let BD be the Finsler metric induced from the Bergman metric g on D,
i .e . , BD{X) = g(X, X)1/2 for Xe T(D). F o r t h e u n i t d i sk U = {zeC; \z\ <1},

we have

W3/dz) = ι/T | f |/(1 - I z |2) , (z, ί) e C7x C

(see §1). Let CD be the Finsler metric of Caratheodory on D (or, simply,
the Caratheodory metric on D), i.e.,

CΛX) = sup{^(ΛX)/v/Y; /eHol(A C/)}

fox l e Γ(D), where Kol(D19 D2) means the set of all holomorphic mappings
from Dλ into D2. Let KD be the Finsler metric of Kobayashi on D (or,
simply, the Kobayashi metric on D), i.e.,

uk(X) = inf [Bv{Y)\VT\ YeT(U),fe Hol(ί/, D) with /„ Γ = X)

for J e Γ(Z)). These definitions of CD and iί^ coincide with the usual ones
([4], [5], [13], [14]); while in [18; §2], VΎCD and V~2KD are used as the
definitions of CD and KD. From the Schwarz lemma to the effect that
f*Bv ^ Bυ for every /eHol(ί7, 17), it follows that CD ̂  KD. It is im-
mediately seen from the definitions that for a Finsler metric F on D.

(9.1) CD ̂  F if and only if f*Bπ ^ / ϊ ί 7 for every / e Hol(D, U) ,

and

(9.2) F^KD if and only if \/Ύf*F ^ 5^ for every / 6 Hol([7, D) .

Now, the following is well known (Hahn [13], [14], Burbea [4], [5]):

(9.3) CD < BD on T(P) - {the zero section}

for every bounded domain D. When D is homogeneous (resp. symmetric),
we get a more precise result than (9.3), as in the following Theorem 9.1
(resp. Theorem 9.2).
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THEOREM 9.1. It holds that 2C% ^ Bl for every homogeneous bounded
domain D. Furthermore, this inequality is sharp, i.e., there exist a
homogeneous bounded domain D and Xe TP(D) — {0} such that 2C%(X) =

THEOREM 9.2. For a symmetric bounded domain D, it holds that
KD = CD and ΊDC% ^ Bl ^ ΎDRDCl, where 7D is the invariant in (8.1)
and RD is the rank of D. For every such domain each inequality is
sharp, i.e., for every such D, there exist Xlf X2 e TP(D) — {0} such that

and B2

n(X2) = ΎDRDCl(X2).

To prove the above two theorems, we use a result in the previous
section as well as the following two results.

LEMMA 9.3 (Yau [26; Theorem 2]). Let (M, gM) be a complete Kdhler
manifold whose Ricci curvature is bounded from below by a constant
— a. Let (N, gN) be a Hermitian manifold whose holomorphic bisectional
curvature is bounded from above by a negative constant — β. Suppose
that there exists a non-constant holomorphic mapping from M into N.
Then a ^ 0 and f*gN ^ (a/β)gM for every f eϊlo\(M, N).

LEMMA 9.4 (Kobayashi [17; Theorem 4.1, p. 42]). Let D be a sym-
metric bounded domain with the Bergman metric gD whose holomorphic
sectional curvature is bounded from below by a negative constant —a.
Let (N, gN) be a Hermitian manifold whose holomorphic sectional curva-
ture is bounded from above by a negative constant —β. Then f*gN ^
(a/β)gD for every / e H o l ( A N).

PROOF OF THEOREM 9.1. (The first assertion.) Let ΰ b e a homoge-
neous bounded domain. Then the Ricci curvature of the Bergman metric
on D is identically —1 ([16; Theorem 4.1]). Furthermore, the holomorphic
bisectional curvature of the Bergman metric on the unit disk U coincides
with its Gaussian curvature, and is identically — 1 , as was seen in §1.
So, Lemma 9.3 implies that f*Bσ ^ BD for every /eHolCD, U); therefore,
by (9.1) we obtain the first assertion of Theorem 9.1.

PROOF OF THEOREM 9.2. Let D be a symmetric bounded domain. It
is well known ([17; p. 52]) that KD = CD. The following is also known
(Koranyi [20]): There exists a > 0 such that for every X e TP(X) there
corresponds surjectively a non-negative real vector (ξί9 , ζB) e R+ of
dimension R = RD with the properties BD(X) •= a(Σ*a ξl)1/2 and CD(X) =
maxffi, •• ,ζB}. From this it follows that

(9.4) c?Cl ^BIS RDeeC% on T(D)
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and that each inequality is sharp. We shall show α2 = ΊD. By Theorem
8.4 the holomorphic sectional curvature HSC of the Bergman metric on
D satisfies

(9.5) HSC ^ -2/7* ,

(9.6) HSC ̂  -2IRDΎD .

By (9.5), Lemma 9.4 implies that ΎDf*Btr ^ 2B2

D for every /eHol(Z>, U).
So, by (9.1) we have ΊDCl ^ B2

D. From the sharpness of the first in-
equality of (9.4) it follows that ΊD ^ α2. Similarly, Lemma 9.4 together
with (9.2) and (9.6) shows B2

D ^ RDΊDKl = RDΊDC2

D. Combining this with
the sharpness of the second inequality of (9.4), we have ΊD ^ α2; therefore
a2 = yD, as desired.

PROOF OF THEOREM 9.1. (The second assertion.) We shall show the
sharpness of the inequality in Theorem 9.1. For this it is sufficient
(Theorem 9.2) to find a symmetric bounded domain D so that yD = 2, or
minHSC = - 1 (Theorem 8.4). The unit disk U, or the product of U and
a symmetric bounded domain possesses the desired property (Corollary
8.5 (ii)). Thus, Theorem 9.1 is completely proved.
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