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1. Introduction. We consider linear evolution equations of “hyper-
bolic” type, that is, non-parabolic type, in a Banach space X

du(t)/dt = A(ut) 0<t<T
u(0) = u, € D(Ay(0)) ,

where A, () is the generator of a semigroup on X and its domain D(A4,(t))
depends on t.

It is our main intention to give an abstract formulation of the
mixed problem (including Neumann conditions) for hyperbolic partial
differential equations. For this purpose we modify Kato’s formulation
[6] which is the following: the space X contains a dense subspace Y
(cD(A,(t))) which is a Banach space with respect to the stronger norm,
and each A,t) generates a semigroup on Y. Instead of Y we define a
family of closed subspaces Y(t) (CD(A,(t))) of the space Y so that A,(t)
generates a semigroup on Y(¢t). Roughly speaking, our formulation reduces
to his when Y(t) = Y.

The basic idea is similar to [8], but the assumptions, and hence the
proofs, are essentially different: the result of [8] was incomplete in the
sense that it does not seem applicable to partial differential equations.

In the present paper we give only a simple application to the mixed
problem for wave equations with Neumann conditions. Further applica-
tions to hyperbolic partial differential equations will be discussed in sub-
sequent articles.

The authors wish to express their gratitude to Professor A. Inoue

(1.1)
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for many stimulating conversations. They owe much to the referee
whose kind advice made the paper easier to understand.

2. Notations and statement of theorems. Let X and Y be vector
spaces. Let (X, ||-||) be a separable Banach space. (Y, |||-||]) is a Banach
space such that Y is densely and continuously embedded in (X, ||-||) and
the unit ball {y e Y; |||¥|l| £ 1} of (Y, [||-]|]) is closed in (X, ||-||). Here we
denote by ||-|| and |||-||| the norms of X and Y, respectively. For sim-
plicity, (X, ||-1) and (Y, |||-]||) will be abbreviated to X and Y respectively
if no confusion arises. Let {A(t)} be a family of closed operators from
X to X such that YcD(A(t)) for each te[0, T]. Let {Y(¢)} be a family
of closed subspaces of Y such that the unit ball {y € Y(?); |||y||| = 1} of
Y(t) is closed in X with respect to the norm ||-||. Let A,(t) be the mini-
mal closed extension of A(t) to Y(t)— X.

A(t) and A,t) correspond to a differential operator and the differential
operator with a boundary condition, respectively.

We assume the following conditions:

(A.1) For every te[0, T], A,(t) generates a bounded C,-semigroup
on X and Y(¢).

(A.2) There exist a positive constant @w and a family of monotone
decreasing norms {||-|l;};er,r7 On X equivalent to ||-|| such that each
exp(s(4,(t) — w)) is a contraction semigroup on X with respect to the
norm ||-|f,.

(A.3) There exist a positive constant @ and a family of monotone
decreasing norms {|||-||l}ie0z1 On Y equivalent to |||:|]] such that each
exp(s(4,(t) — w)) is a contraction semigroup on Y(t) with respect to the
norm |||-|lf.

(A.4) A(-) is strongly continuous from [0, T] to B(Y, X), where
B(Y, X) is the space of bounded linear operators from Y to X. There
exists a T,-topology = of X such that A(f) is continuous from (X, |-||)
to (X, 7) for any te[0, T].

Let C(e, t) and h(e, t) be positive functions on (0, 1]x [0, T'] satisfying
the following:

(i) h(e, t) and C(e, t)h(e, t) decreasingly tend to zero as ¢—0.
(ii) Cle, s) = L(t)C(e, t) for any se[t, t + h(e, t)] where L(t) is
2.1) a constant which depends only on t.
(iii) There exist positive constants M, M and 6 such that
(M, t) = & and C(M,t) < M < + o for any te[0, T].

(A5) For any ¢ >0, te[0,T), xe Y(t) and se(t, t + h(e, t)] there
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exists y € Y(s) such that

(2.2) e —yll, = eCils — t]-[ll=]ll.

2.3) lle — ylll, = CC, B)ls — ¢[-[llz]ll, .
Moreover, when s =t + h(e, t) and x € D(A,())rw-rw, Y Satisfies
(2.4) Mylll. = @ + Chle, DI — hle, AMD Il

in addition to (2.2) and (2.8).
These constants C;, (¢ = 1, 2, 3) do not depend on ¢, ¢, s, z, ¥, Y(¢),
Y(s).

REMARK. Our condition (A.2) is equivalent to the stability condition
of Kato [5].

THEOREM 1. If the conditions (A.1)-(A.5) hold, them there exists a
unique solution u(t) € Y(t) to the equation

.5) {Mt) —u+ [ Au@ds for telo, T],

u, € Y(0) .

In stead of the condition (A.4), we may assume the following:
(A.4)" A(:) is norm-continuous from [0, T'] to B(Y, X) and D(A(¥))=Y
for t [0, T].

THEOREM 2. If the conditions (A.1)-(A.3), (A.4), (A.5) hold, then
we have the same conclusion as in Theorem 1.

3. Construction of an approximating sequence. We shall construct
an approximating sequence {u‘(t)|e | 0}. For an arbitrary fixed constant
0 <e=1 we define u*, v* inductively as follows.

(a) Let
(8.1 t, =0
(8.2) u(ty) = vi(t) = %, .

(b) Using (2.1) and (A.4) we take ¢, > 0 small enough to satisfy (3.¢,):
3.8) Max {C(e,, to)h(e, to), &, ||[[A(, + h(ey, 1) — Al oI} = €
and we set
3.3) h, < min(h(e, t,), (20)™)

(34) ue(t1) = (I - hle(to))_luo € Y(to) )

where t, = t, + h,.
We set
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(3.5) tl+1 = tl + hl+1 leN.
() Assume that {g;, h;, u'(¢,), t;} are determined for j =1,2, .-+, k.
Then using (A.5) we take v%(t,) € Y(¢,) satisfying (3.%,):
us(te) — v e, = Cierhell|ut(@Ee) llle,—,
(3.%1) [[[w(te) — v(t) ”|t,, = CClexy tuhull| us(te) ”|zk_1
Hlv‘(tk)llle,, =0+ Cr)IIIT — hkAo(tk—l)]uz(tk)lHtk_l .
(d) Take &, > 0 small enough to satisfy
(3.6x+1) Max {C(&p+1) t)P(Ers1y te)s Ersry I[AWK + h(Erss E0)) — A(tk)]ue(tlc)”tky
(T = AErsry E)Ao(ti) 05 (E) — V() |lle} = €

and set
3.6) hivr = h(€sry ) 3 by = & + hisy
3.7 Wtk = (I — b Ao(E)) 0% (8) € Y(R) «

The sequence {t;} may be limited by ¢, = lim ¢, < T, since h, may decrease
rapidly. If w‘(¢{,)eY,, we can start from ¢, again; ¢,., = ¢, + h,, -*-
We shall show u*(t,) € Y(t,). We need the following Lemma.

LEMMA 3.1. If x,€ Y(t,) with |||x]ll,, = L and if t,—t, and z,—2,
as k— oo then z,€ Y(t,).

ProOOF. There exists k, > 0 such that ¢, —t, <6 for any k = k,.

From (2.1) and (A.5) for any k = k, there exists y, € Y(f,) such that
o, — yk”tw = MCt, — tkl‘”lxkllltk < MC.L(t, — ty)
e — ¥ellle, = C.CM, t)Ew — tlllzellly, = GO, 8, — t)L < C'.

Therefore
v — @olle, = 19 — @lle, + |2 — @0lle, 0 as %, .

Since the right hand side tends to zero as t,—t,, it follows that y,—=x,
in X. By |[l4ellle, = C" + lllwlll,, = C' + L and the closedness of {y € Y(?);
llylll: =1}, we get x,€ Y(,).

The boundedness of {u°} is shown in Proposition 3.1.

In the following, the constants C; (1€ N) do not depend on ¢, 9, s,
t, xz, ¥, Y(t), Y(s).

From the definition of {u‘(¢,)} and {v*(t,)} we get the following:

PRrROPOSITION 3.1.
(8.8) e @) ey = Cillluollls, Jor VYkeN
3.9) v @) llle, = Cillluollls, Sfor VEeN.
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PROOF. Since |[|w(tu)llloy_, = (1 — @) (| 0"(ts_0)llly_, bY (A.3), it suf-
fices to show (3.9).
From (3.7) and (3.%,) it follows that
v G- ey = @ + Coha DI — haos Ao ]w Cr) [y,
=1+ Cshk—x)m’ve(tk—z) |||tk_2 .

Hence
k—1
oG ey, = ,H=1 A + Chplllve(@Eo) llle,

=< exp(Cat)ll| %o,

= eXp(CaT)muoHIto . q.e.d.
Let

t=1t,
(3.10) wi(t) = |

Wty b, <t=t,.
PROPOSITION 3.2.
(3.11) lus(t) — w @) Ml = Cllte — &l + eltusy — Gy [l 4ol
3.12) vt — v (@) [l = 2C 8 — tul-luollls, - Sor G =t
ProoF. From (8.%,), (3.7) and (8.8) we obtain

lut) = w@lly < 3 lwtt) — wits

= 3 (lust) — v°(t;) ”tj + |v*(E;-) — w't;-) ”z,-)
= 3 (Cgsihylllw @) e, + Chylllus@E i)
= C"Cillluolllllte — | + eltey — Byl -

Similarly, we can prove (3.12) using the inequality
lve(E) — v lle; = |v°(E) — w@)le; + lus(E) — v¥(E-) lle; - q.e.d.

By transfinite induction we shall construct %*(t) on the whole interval
[0, T]. £ denotes the first uncountable ordinal number and a any fixed
ordinal number smaller than 2. Assume that wu‘(f;,) is defined for all
B < a and that sups.,t;, < T. If a is an isolated ordinal number, then
t, and u‘(t,) are defined, since t,_, and u‘(f,_,) are already defined. If «
is a limit ordinal number, we put ¢, = sups..t;. Let 8, < B, < --- be
such a sequence of ordinal numbers that B8, < a and Zpk—>ta. We put
t, = f,;k, and z, = u‘(t,). By Proposition 3.2, x, converges to some z, € X.
Applying Lemma 3.1, we get x,€ Y(¢t,) and we define u*(t,) = x.,.

We see easily that there exists an ordinal number a, < 2 such that
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t,,= T, since t;_, — t;, > 0 an 2 is an uncountable ordinal number.
Thus desired approximate sequences {u‘(t)} are obtained.

4. Strong convergence of {«‘(f)} in X. Our main purpose of this
section is the following:

PROPOSITION 4.1. The sequence {u‘(t)} is convergent in X with respect
to the morm ||-|| uniformly in t€[0, T] as ¢ tends to 0.

For two functions u*(t) and u*'(t) depending on {¢;} and {¢,}, we give
another approximate function u’(s) depending on {s,;} such that
min{e, '} =26 >0, {tJUuftiicis;}, =8 <s, < <8y =1t .
For the proof of Proposition 4.1 it suffices to show:
PROPOSITION 4.2.

41 lw@) — Wl = u'ts) — w @) g, + Cle + ) + by -

For the proof we need the following lemmas.
For x € Y(t), we define the set W(e, t, x, s) consisting of all elements
y € Y(s) which satisfy the following:

(4.2) ly — =], = Cels — t|-|ll2]ll,
(4.3) Ny — =lll, = CCCe, DIs — t|-|l|z]]l .
Set
(4.4) E=uty) —v(t); k=8—s_-.
For fixed k, I, we inductively define a sequence of triplets {v;, w;, 4}
by
(4.5) Vo = Vo(lioss teey) = V(Ee—y)
(4.6) w, = w,(841;8) =0
(4.7) By = W(S141 8) = v + kb E + w,

(4.8) V; = Vi(Si4i) S140) € Wesy St4im1y Uiy $149) for 1=1,2,.-4, 3

(4.9) Uy — Vioy = Wi(S1415 Stict) — Viy
€ Wew te—yy K1iihi'E, 8145-) for ©=2,-.4,7

(4.10) Wi = w8140 = U — Vi, — kphitE for 1=2,--+,]

(4.11) w; = wisy) =v;, — 4, for 1=1,--+,7.
REMARK. 2z = 2(s;t) means 2z belongs to the space Y(f) at “s-time”.
For simplicity, set
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(4.12) Ck) = Cles, to_y) XC, .
LEMMA 4.1.

(4.13) wellloygeey < CErll| By,

(4.14) Wil sy < Ceiersll Elllsy_, -

Proor. From (4.10), (4.9), (4.4) and (4.3), we get

- i-1 ~
[Hwi|”n+i~1 = Hl'ﬁm — Vi — kl+i k_lE]”nHi—l é C(k),"z:‘; kl+m[”kl+1 1:1E|||tk—1
é C(k)EH-IHIEIHtk—I 4

since S Ky < SV, Kivw = b, Thus we get (4.13).
From (4.10), (4.9), (4.4) and (4.2), it follows that

104llsy = 18 = Vs = B Bl S G 34 Brvall B Bl
< Cekrlll Ellley, -
Thus we obtain (4.14). q.e.d.
LEMMA 4.2.
(4.15) W Belllayy; = Co -

Proor. From (4.7), (4.13), (3.9) and (3.¢,) we have
N oy < 0 G ey + B NN E ey, < Culll%ollley + Frsiill| E e, _, -
We prove
@16) 1B llyercy S Cill il exB] CCO) 5, Fivn ] + 1C) + '] S e

by induction on 7 =1,2,.--. From (4.10), (4.13), (3.¢;), (4.8) and (4.16)
we have

M Naye < Mvicalllage, + Nwilllay, + Bkl Ellle,_,
S iy = Bacalllogyy + N B ooy + [CERY e + Fosihi'e
= [CR)erssy + 1]“|ﬁi—1”]q+¢_1 + [C(k)EHt + Elwh;l]e

< [COvsees + C el Jexp] o) 5 Fivn |
[CO) + hi') S Fivn + [COFs + Fuvihile

= CAH%HI:O exp| C(k) g El+m:| + [Ck) + Rhi'] 2‘1 El+m8 .

By induction we obtain
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1elllayys < Cilll%olllee® + [e + 1]e = Co
since ¢ = 1.
LEMMA 43. For +,1=1,2, .-+, we have
(4.17) lve — w(@ llloyy, = Ce
(4.18) N — u @) llgyy, = Coe -
PRrROOF OF (4.17). From (4.10) and (4.11), it follows that
v — v, = W, + w; + ke hi'E .

Then from (4.5) we get
(4.19) 0= 0(t) + 3w+ 3w + (3 B JHE
Therefore by (4.13), (4.14), (4.15) and (3.s,), we have

Mv: — w ) oy, = v Eez) — w @ e,y

+ 3 1wl + Nl + 1B,

i ~ ~
é €+ mz;‘l [C(k_l)kl+mIHE|Htk+1+C(k_l)kH—mHIﬁ'm |||q+m] +eé
= 2e + C(k — Dhy_y(max [[[ @y |ll,,,,, + €)
= Ce,

showing (4.17).
PrOOF OF (4.18). From (4.11) and (4.17), it follows that

W — w @y, = WA — villlyy, + ve — w @) Il

g I||w£|||al+¢ + C’(s
= C(k — Dkl Bellloyy-, + Cre
< Cge.
LEMMA 4.4.
(4.20) ||vj - us(tk) lltk+1 é CQShk .

PrROOF. From (4.11) and (4.10), we have
(4.21) v;= 3w+ 3 wa + 3 Buahi'E + v,
By (4.4), (4.5) and 3., k1 = ki, wWe get

i~
(4.22) mZ=1 kiiwhic ' E 4 v, = us(ty) — vi(t-y) + v'(Ey) = u'(ty) ©
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Then from (4.21), (4.22), (4.8), (4.11), (4.14) and (4.15) it follows that

J J
o, — wt) | = 3 lwall + 3wl

~ i~
é lskkl+m—1 + Cl mz:‘ll kl+mnum ”:H.m)s .

< Ceh,, .

Thus we obtain (4.20).
For each I, © we set

(4.28) Uy = US1155 S14imt) = (I — FBransAo(8144-0) "0y

(4.24) Ty = T(S1as; S130) = (I — EyyiAg(8140) s -
LEMMA 4.5.

(4.25) e = villoyys < Cuole + e)rs -

Proor. From (4.10), (4.4) and (3.7)
vy = B — wi — kAt )w (@)
By (4.24)
Vi = W — Frpe A(S14i) 8 -
From (3.¢,), (3.%,) and (3.8) we obtain

(4.26)  [[[Ate)) — Alsird]u () lloy,
= Ao — A(siallw () — v (-] Hs;H
+ I[Ae-) — AV (Eeny) — wi(te-y)] “81+¢
+ HA®G-) — Al ) oy
= 20|l b1 Ao )V (i) [y, + 20l v*Gi)) — W) ey, + €
= 2ce + 2¢C.C(k — Dby |[[u (i) |lle,_, + €
=< 2ce + 2¢CoeCyl||ullly, + €
= C’.
Then from (4.14), (4.26), (4.18) and (3.8) we have

vy — 7713-—1“31.'_1; = ”th”H + El+i”A0(tk—1)ue(tk) - Ao(sl+i)ﬁi+1”sl+i
= “wi”al_H + EHt”[Ao(tk—l) — A(8140)]us(ty) ”a,H
+ El+i”A(sl+i)[ue(tk) - 12‘&'+1]||51+t
= CxeiEHtlHElek_l + El+iC,s + CEHiI”uE(tk) - 'ﬁ/i“lq.;.i
= Cukie .

Therefore we get from (4.23) and (4.24)
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(4.27) [lw, — ﬁillll+1 =1- wEHi-x)_l””i-x - 17t-1”.,+i_, = C{157‘;1+5 .
From (4.11), (4.8) and (4.15) it follows that
“ﬁi - ,v’i”ul.(_i g ekl’ZH‘lHIﬁiH}s[_pi é CﬁekEl+1 .

Hence from (4.27) we get
Ilu; — /vi”B[-\Ll = flu, — ﬁi”slﬂ + |l — vi”aH.,- = Cyle + sk)El+i .
Thus (4.25) is proved.

LEMMA 4.6.
(4.28) 1v°(t) — villy, = N1V°(tees) — v* (i) ey, + Crale + )by -
PROOF. Let
vi=0(s50), U =u(s10), 1=0,1,2,---,75.
From (3.7), (4.25), (3.8) and (4.23) we obtain
v} — v;lle, = 1103 — uillayy, + 1uF — wlla,, + Nw; — 5l
= 51+5k1+,‘||lu:‘[””+5 + |lu — ui”aH-j + Cy(e + &kiy;
= i — sl oy + Gk Gl wollle, + 2C,ky ;
é “'Ug'—l - 'Uj—1”q+5_1 + 012(5 + a)klﬂ'

i~
é “’Ug - 'vo”q + C12(5 + 5) 1"2:‘1 kH—j
= |[v*(t-r) — V(L) ”%—1 + Cyule + 0)hy «

PROOF OF PROPOSITION 4.2. From (4.20), (4.28), (3.8) and (3.%,) it
follows that
lwste) — w2t e,
= llw'®) — vills, + llv; — v3lls, + [105 — W@ [le,
< Celul[| @) llle, + 1° ) — VG My, + Cuale + O
+ C23El+jmud(tk—1) lle,
= CchHuoIHtoehk + [|v*(Geey) — u*(i-r) Htk_l + [t (teny) — w (i) ”tk_l
+ 1w (tny) — VG-l + Cuale + )b + CCU| %o s ker;
= Czehk_llllw(tk_l)IHe,,_l + [Jut(ty) — w’(ey) ”t,,_l
+ Czaﬁl-xnlua(tlsq)l”tk + [Ci + CchIHuo“Ito](e + Oh;
S [[ut) — W) ey, + [Co + Gl % llls,)(e + )R + Ri_y)
< [ w(teer) — W) [leyo, + Cole + (e + hacy)
Thus we obtain (4.1).
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5. Proof of theorems. Let

u'(t) = u'te) , u°0) = u,

V() = v (b)), v°(0) = U,

As(t) = A(tk—l) fOI‘ tk—l < t é tk .

Then we have

(6.1)

hitlus(t) — u'(t — hy)] — A*(@)v(t + 0)
(5.2) { =R+ 0)—uwl—h)], La.<t=th
ut(t) = U, -1<t<0.
Therefore

5.3)  w(t) — u(0)
= w(t) — w't — hy) + fz;::{u (t - mﬁzl h,,,) - w(t — :2:1 h,,,)}
+u(t - "g ha) — w(0)
= B A (t + 0) + v'(t + 0) — u'(t — hy)
+g[h,A= (t _ mi:‘,l h,,,)v‘(t - ,éﬂ ho + 0)
+ v‘(t _ mi:‘,l ho + 0) - w(t - gh’“ﬂ
- S:A‘(s)v‘(s)ds + lﬁ; ) — w(t )} for te(ty ] .
From (3.%,) and (3.8) we get

[ vty —wiend| s 310t - vl

k
< 3 el w i) lll, S eColllollls, T -
This means

(5.4) S i) — wE)) 20 as €0 for vVie[o, T)

=2

in X with respect to the norm |||, where the notation = means the
uniform convergence.
From Propositions 8.2 and 4.1 there exists u(t) € X such that

(5.5) w@) 3ut) as €l0 for te(0,T] in X w.r.t. ||-|
(5.6) vt)3u®) as €0 for te(0,T] in X w.r.t. |-] .

We now prove Theorem 1.
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LEmMA 5.1.
5.7 A()vi(t) — A@)u(t) for almost every t as €0 in (X, 7).
PROOF. There exists k > 0 such that ¢,_, <t =<1¢t,. From (6.1 we
have
A)vi(t) — AQu(t) = A_)v*(ter) — A)u(?)
= [A(te-) — AD]v () + AD[v* (L)) — u(D)]
Then from (2.2), (A.4) and (5.6) we obtain (5.7). The closedness of {y¢e

Y@®); lllylll: =1} in (X, ||-]]) implies u(s) € D(A(s)). Thus from (5.3), (5.4),
(56.6) and (5.7) it follows that
u(t) = u, + T—StAo(s)u(s)ds :
LEMMA 5.2.

(5.8) u(t) = u, + S:Ao(s)u(s)ds .

Proor. If A (-)u(-) is a weakly measurable function from [0, T'] to
(X, |I'1), then it is strongly measurable by the separability of X and
Pettis’s theorem. From Proposition 3.1 it follows that

|1 4@u@lds < | Cllu@)lds s €T < +eo .

Therefore A,(-)u(-) is integrable on [0, T'] with respect to (X, ||-|)).
To complete the proof of Lemma 5.2, it is sufficient to show the
following:

LemMmA 5.3. If f:]0, t]— (X, 7) ts weakly measurable then f:[0, T]—
(X, ||-) ©s weakly measurable.

PrOOF. Let X’ and X! be the respective dual space of (X, |-|) and
(X,7) and B’ a closed unit ball of X’. Since X is separable, B’ is a
metrizable compact set with respect to the w*-topology.

We define X!(a) inductively as follows.

X:0) = X7
X!(1) = {x e X"; *{a,} C X/(0) such that x, — 2 as n — oo}

X!(a) = {we X": 3w,}C U X'(B) such that @, — 2 as n — oo}
f<a

i.e. X/(a) is the set of limit points of w*-sequentially convergent sequences
of Uﬁ<a Xé(ﬁ)'
Set X! = U,<o X!(a), where 2 is the first uncountable ordinal number.
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Then X! is closed with respect to the w*-sequential convergence. Since
VB’ is metrizable X/NnB’ is w*-closed for all neN,. Thus by Krein-
Smulian’s theorem X! is w*-closed. On the other hand, X! is w*-dense
in X’ since X!, is w*-dense in X’. Hence X! coincides with X’.*

For any «e€ X!(1), there exists {x,} < X!(0) such that x,,—"’——wc and
that {f(t), z,> is measurable for all z,. Hence {f(¢), ) is measurable.
In the same manner, we see that {(f(¢), ) is measurable for all x € X/(a),
if {f(t), x) is measurable for all x € U, X}(B).

Consequently, f: [0, T]— (X, ||-|]) is weakly measurable. q.e.d.

Therefore we get
w(t) = u, + StAo(s)u(s)ds .

LEMMA 5.4 (Kato [4]). Let S be the set of those s = 0 at which the
strong solution u(s) of du(t)/dte Au(t) is strongly differentiable. Then,
we have,

2"‘%“7&(3)“2 = ||u(s)lli“:‘i’iﬂ = Re<%, f> , at almost every seS

whenever fe F(u(s)), where F is the duality map.

The uniqueness of the solution to (2.5) now follows.
Indeed, let w,(t) and u,(t) be two solutions to the equation (2.5).
From the above lemma, we obtain, for a certain fe F(u,(t) — u,(t)),

2 d _ 2 _ du,(t) _ du(t)
272 lon(t) — w(t) | = Re( Lt — LD 7

= Re<A0(t)u1(t) - Ao(t)uz(t)y f> =0.
Therefore we get
%) — %@ |* = [|u(0) — u(0) |I* = [|u — %[> = 0.

This means that u, = u,.
This finishes the proof of Theorem 1.

We now prove Theorem 2.

LEMMA 5.5. For any ¢ > 0, 2w > X\ > 0 and t€[0, T] there exists
0 > 0 such that

(5.9) (I — NA@E)™ — (I — M) <e for |[t—s| <o
(5.10) (I = NAFEN™ — (I = NAF() M| <e for [t —s| <3,
where A¥(t) is the adjoint operator of A (t).
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PROOF. Let x€ X be fixed. Set
I — NA()
(I — NAy9) 2,

(.11) {y‘
v,

where t < s. From (A.5) for any n > 0 there exists z, € Y(s) such that

Y — 2.lll, = CC, OIs — ¢ |||yl
5.12
( ) {”ya-z.|l.§Cl7718—t|°|||ytch .
Let
(5.13) z = (I — NA,(8))z, .

From (5.11) and (5.13)
(6.14) |z, — 4ll, = IT = NAL(8) 72 — (I — NAL(S) ],
=1 -r0) Mz — 2],
= C||(I — MNA(8)z, — (I — MNA®))z, + (I — MNA(R))z,
— (I = M)y,
= CIMI[AGs) — A®)]z,lls + I[(T — MA@ (=, — ) la] -

Since A(-) is norm-continuous, for any 7’ > 0 there exists { ={() >0
such that

(5.15) I[A(s) — A®)lz, |l = 7|2, ]I, for [s—1t] <.
From (5.12) we have
(5.16) Mzlll, = @ + CC, NIl Yelle -

Note that D(A(t)) = Y and the norm |||-]||; is equivalent to the graph
norm |-||, + || A(®)-];» Then from (5.14), (5.15) and (5.16) it follows that

617 lz. — v.ll. = COMYA + C.L(, 1)) + eC.C(1, Bl — I wellle -
From (5.11) we obtain

(5.18) Nyellle = el welle + 11 A®: ]l

el = M) 2l + | AO)T — ML) |,)

e[zl + AT — (T — MA@ 2|l

el + 207z, .

Thus from (5.17) and (5.18) we have

(619 |z — w.ll, < Cel + 2707 + CCp, OV + als — ¢l ]l
From (5.11), (5.12), (5.18) and (5.19)

A A I
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I = NAED™ — (I — M) ]I,
= ”yt - ys“: g ”yt_ zs”:+ ”za— y:”a é Cl’?ls_tlco(1+2_1)")”x”t + “za_y:”s
= (1 + 27T + CCp, O] + [e.C.C(n, t) + Cplls — tl} x|, -

Then for ' > 0 and |s — t| sufficiently small we obtain (5.9).
Let o(t) = o(X, D(A¥())) be the weak topology on X with respect to
D(A¥@) = (I — MA¥(®)'X’. Then we have

(5.20) A®): (Y5 |- ) — (X; o(t) is continuous for te[0, T'] .
Let ' € X’ be fixed. Set
{u.(®)} = {w@); 8}, tel0, T
Wa(t) = At )ua(te) , L St <
i) = (I — NA¥@®) 2", tel0, T]
finl®) = I = MA@ 2, LSt <t

LEMMA 5.6. For some positive sequence €,—0 we have

.22) [[ 1<,(6), £ = Funls)>|ds < Ceult = ¢ .

(5.21)

PrROOF. From (5.10) for any s€[0, T'] and m € N, there exists n € N,
or a partition {t,,} with respect to {u"}, such that se[t;_;m, tem) and

(I — NAF ()" — (I — NAFErwn) @' || £ 1/m for n' = n.
n depends on s, but we get n,(m)e N, such that
N — NAFE)) ™ — (I — MNAFGew) 2 || £ 1/m for n = n(m) .

for any s€[0, T'], since [0, T'] is compact. Let ¢, = 1/m for n,(m) < n <
no(m + 1). Then for k = k(n) and se€[t,_, t,) it follows from Lemma 5.5
and Proposition 3.1 that

[{w,(8), F3(8) = fFra(8))| = | (AU (ts), (I — NAF(8)) ™2 — (I — NAF(E))'a") |
= | AE)ua)|Cell 2" | = C'|l[ua(t) ]l 12" |len
é C,C4[Huo||| ”x, “5n .

Integrating both sides of the above inequality we get (5.22).
LEMMA 5.7.

623 | <w.(s), fa@)ds
[\ Aoute), (I~ \Az@)yayds, as m— oo .

PROOF.  Since |(A(t,) — A)u,(t) | = [|At) — A®) lly-xlll %) [[| —0
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(where ||-|lz-x is the norm of B(Y, X)) and since w,(t;) —u(t) as n— oo,
it follows from (5.20) that
(5.24)  w,(t) = (A(t) — A@)u.() + ARuat) — AR)u®) = w() ,
with respect to o(t) for any fixed t€[0, T] .

By virtue of (5.24), (w.(s), fi(s)) converges to <(w(s), fi(s)> for each se
[0, T] as m— «, and so the function {w(s), f;(s)) is measurable in s. On
the other hand, we have

625) || o), fineDds — | o), £ils)ds|
= | o) = wis), Aieds| + 7 1<wno), £ = frulo)lds -

From || fi(s)|| = ||z'||, (5.25), Lebesgue’s convergence theorem and Lemma
5.6 it follows that

[ o), fiods — | wio), fie)ds as m— o .

LeMMA 5.8.
Ay(Hu(+): [0, T] - (X, |- |l) is weakly measurable.

PROOF. dw(s), f(8)) = (A 8)u(s), I — NAF(s))72’> converges to
(Ay(s)u(s), x) as n—0 for each s€[0, T]. Thus for any 2’ € X’ the func-
tion (A, (s)u(s), #’> is measurable in se[0, T'], since {w(s), fi(s)) is meas-
urable.

From the separability of X and Pettis’s theorem we get the strong
measurability of A,(s)u(s). Therefore the equality

u(t) — u(0), x> = St<A0(s)u(s), 2>ds for any '€ X’
implies
u(t) = u, + StAo(s)u(s)ds .

REMARK. Suppose X, Y are reflexive Banach spaces. From Proposi-
tion 3.1 there exist subsequences {u‘»(t,);e¢, | 0} C {u*(t,)} and {v°»(¢,);
€, | 0} < {v*(t,)} such that they are weakly convergent sequences in Y.
From Y c D(A(%)) and the closed graph theorem A(t) is continuous from
Y to X. Therefore we can prove our theorem under weaker assump-
tions without Proposition 4.2.

6. Application to wave equations. As a simple application of pre-



LINEAR EVOLUTION EQUATIONS 141

ceding results, we consider the mixed problem for hyperbolic equations
of second order:

atzu(t %) = g (a,,(t x)zu(t x)> , @) e [0, T]x 2

M.P) (0, x) = uo(ac) (0, 2) = u,(x), x€Q
E a;(t, 2)v;

=0, 05t=T,

where 2 is a domain such that 02 is a C'-manifold and satisfies the
following:

Condition (C). For some 7,> 0, the projection P;,: {x € 2; dist(x, 02) <
7.} — 02 is a well-defined differentiable map.

(vyy *++, v,) is the outer unit normal of 02 at x € Q. 3.7 ,., (9/ox.)(a(t,
x) 0/ox;) is an elliptic operator satisfying

a,;, 0a;[dt, da;lox,, o°a/ox.0x;, a“’ai,/ataxte.%’([o TIx 2)

sup {lautt, 9, |-Lagt, )|, | a.t, ) =,

(6.1) bt
'z=‘1 aij(t’ x)EiEj 2 d;- E% ’ da>0 v (Eu %y Eu) €R"
a,(t, x) = a;(t,x) for V(¢ x)el0, T]x2.

We treat this problem (M.P) as the following evolution equation
(A.M.P):

?ld?U(t) = AMUL), 0<t<T

U©) = U, = <“">
U,

6.2 X= {(:) we H(Q), ve L?(Q)} Y= {Cf) we H(®), ve H@Q)! »

(A.M.P)

where

0 1
6.3) At) = [ 5 J: Y- X
%ax,< (s x)71> 0
(6.4) B(t) = [z‘, it B> 0]: Y — H(30)
E 0x;
(6.5) Y#) ={UeY; Bt)Uls = 0}

(6.6) A1) = Ay -
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We introduce norms in the spaces X and Y as follows:

(6.7) NUIE = llull 1o + ”’UHLZ(I)) for U= (:) €X

6.8) U = 1wl + lvline for U= (:) <Y
y o ou  ou

(6.9) Al exp(— Mtd )LS;I (a“(t m)a 0%; >L2(.0)

U
+ (%, u) 20 + (v, ’U)Lm):| for U= <v> eX

(6.10) ||| U||} = exp(—Mtd )| AU + U] for U =<u>ey'

By (6.1), a,; and (a/ax )a; are Lipschitz continuous in ¢ € [0, T'] in the
following sense:

la:;(t, )u — a8, 2)u (|20 = Clt — s|-||u]lz22

(6.11) P )
“——a“-(t. L)u — —a,s, x)u” = Clt — s|-[|ullzg -
o, ox; L)

As is easily seen, our norms in (6.8) and (6.9) satify the assumptions
(A.2) and (A.3).
In order to apply our theorem, it is suffices to show that the assump-
tion (A.5) holds.
Let any te[0, T') be fixed. There exist families of open sets {O}5-,
and homeomorphic mappings {¥;'}5-, of C*-class such that
. Um0, —{yeR |yl <1}
U 0,002, T;i"0,Nn2—{yeR; |yl <1,y >0}
7:;:0,n02 - {yeR"; |yl <1, y, = 0}
6%' =p for all B and some x> 0.

For any local coordinate y; = (%3, -+ -, %%) of OsNoL.
We consider the following ordinary differential equation:

d n_ .
(6.12) {—X(y, Yo) = —A@, X)-V

dy

X(0, y5) = 2, = (0, %) ,

where A(t, X) = (a;(t, X)) and —P = (X — P;pX)/|| X — P;pX|. By the
condition C, ¥ is a differentiable map, and (6.12) has a unique solution
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X(#,y yo). Then the mapping X(¥, y;) = (@, -+, %) =Y = (Yo, ¥o) defines
another local coorditate of O, N {x € 2; dist(x, 02) < 7,/2}. From a,; € Z*(Q)
there exists £ > 0 such that

©6.13) L@l ¥) >k for dist(, 00) < 2-'r, .
K a(mu Loy xn)

Note that £ does not depend on O; and ft.
We define e(s, y) = (e(s, ¥), -+, e.(s, ¥)) by

(6.14) S gl = S e
0x; 0Y;
Then we get
(2 =1
(6.14Y et v)

et,y) =0, 1=2 for dist(y, 02) < r/2.
Let {(y) e C™(RY) be a function such that
0=fw)=1, O0O=1, Ly)=0 for y,=r/2, 0)=0.

Let {&:}5-, be a partition of unity on 62 such that
£,€C*(02), supp£,c0,NoR2 , g, g@=1 on 42.
For uwe Y(t) set us(x) = L(H)E(T 60, yo))u(w) for x = X(¥, y) and

u(X(y) lyl<1l, >0

W =1 lyl=1, %>0.

For simplicity, we denote u = w;, w = w; etc. We consider the fol-
lowing matrix

q, 0
(6.15) Q=% 1. 0

. 01
where for positive constats \, h we set

q; = (el(tr y))_lpt 1= 1’ 2’ e, M
D, = es, ¥)
p; = —e;t,y) + (B 4+ Ney(s,y) for 7=2.

Then the inverse matrix is given by
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. 0
~ 0
(6.16) Qs =| = 1,
-G, 0 1
where 7; = (ei(s, )70, 1 =1,2, -+, m .
Set
zl yl
(6.17) zs(§)=Q(s)<§),
zn y"
(6.18) 9(2) = fQ7'(s)2) (= f)),
== zl e o
(6.19) woa(2) = xhg(x, 2y e z) A>0, B>0.
LEMMA 6.1. For ue Y(t) and w,, as above, we have
(“ +Ow""> e Y(s) .

Proor. We simply denote w,, by w.

w(y) :>\'hf<M“%,?72+y29 "'9’.’7i+yir""gn+yn>

e(s, ¥)
(6.20) .
where ¥, = l: et, v) _ (R 4+ Nes, ¥) jll/_l L 1=2, -, M.
e,(s, ¥) e.(s, ¥) Y

So with f; = df/oy; we have

0Y, la 1+ €48, A j =2 1
R
wthl_[ML}L MFYs L RS, =2, ,m.
0Y; fai'/j e(s, ¥) M i=2 ﬁay,. fir 3
Using
els, 2w = Set,hfy|  — 3 e, w)(; + WSy
ay1 ¥1=0 i=1 ¥1=0 j=2 y1=0
and
e(s, y)—a—w = e;(s, YNIS;
a i Y1=0 ¥1=0
we get

©6.22) 3 4y ol lu) + w(x)]’
1,5=1 0x; zedR
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1

(™%

3 euts, 0 <y>| + Bt 0wl

n

Z,le (s, hg ej(t’ y)‘f}(y)ly1=0 - gei(s, y)f:(y) ¥1=0
=0 ,

by (6.14). Therefore (“ +0w1,,,> e Y(s).

LEMMA 6.2. For any ¢ >0 and h =s —t > 0 we obtain
(6.23) lwee,o_e |l < eh|llwllle
(6.24)  |[[we,eelll, = e7'Cohl[|ull,

B B

PROOF. We simply denote w,z,_, by w. Then with z, = A"y, we have

(6.25) S lw(y) *dy = (xh)zs |9(z,, ¥') PNd2,dy’ = NRP|| g
08 08
and
_ 2 ag NE ’
(6.26) A w(y) dy )\:h (zl, )| dz,.dy’ .
Set
— 99 - 09
A 2 [0 o2t .

Then it is easy to see that

z 2
90 1 S [ [ oute, 9P|+ 10,0, 91
Hence, by the Shwarz’s inequality
62n) | 19z v)rdedy
? 1 2 , 1
<2 2| [loue vordedyaz +2( | 0.0, vyayaz
0 y' Jo
1
< 29l | dz + 211918, | 102 < Cllglle,

since [|gllso; = 19 llm+120p = Illglll and supp g C {(z, ¥"): [¢| = 1}. From
(6.26) and (6.27) we obtain

2
6.28) § dy < \eCll|gllf* -

8 ayl
Combining (6.25) and (6.28) we have (6.23).
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629 | |Zww|ay =L 10.@rday =Ll
By (6.13) and C' < detQ < C”, we have [||g|]| = C|||«|]|]. Hence from
(6.28) and (6.29) follows (6.24).
LEMMA 6.3. If h = ¢ and Ue€ D(A))yw-re them we have
(6.30) MU + Winllleen = @ + CR) [T — RAD]U ||l
where Wy, = (w(;"-) with w,, as in (6.19).

PROOF. Set
(6.31) V=U—-hA®)U.

We simply denote W, , by W.

We first show that for s =t + A we get
(6.32) [<AB)U, AWyl < 27|V — U||IF + CrlI| U I .
From (6.3) we have

(6.33) (AU, AW, = “925‘1—@“(3, w)-%—u)ZE%(a,,,(s, ) afc

= S pi (ai,(s, x) 5%) 2L Wiw(8, TV, ai

o0x; 5 m

- SS Wim () x)—( 0 ( a.5(8, x)——“) 0 w>d3 .

0x, \ 0, ox; / ox,,

Let T and II be the first and the second terms. From (6.1), (6.23) and
(6.31) it follows that

6.34) [ = M|[|[AGU||[-[|W| = e.M[[|[AQU ||| W]
< oM||RAQ UV RIU| = M|V — U[[V 2| UJ||
=47V = UlllF + M*ch|||UJ|]" .

From U + W e Y(s) we have

©.35) 1= Sw s —a—(aﬁ(s, x)_a_u) S s, ), aa

ox; ow;

w )dx

wds

uds .

_ S >0 (a“(s, x)5x—u> 2. A8y XV, az

0, : -

From (6.13) we get
3 (s, 292
l,m=1 axm

= k);.l ex(s, y)a—g—f

and
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S as, f = a3 elt, )2 F + 3 byw)25
i oY = oy~ 7= T oy
where a, = e,(s, ¥)/eit, ¥), b;(y) = (—e(s, Ve, y) + e(t, Ye;(s, ¥))/e(t, y)
for j=2, -, m.
Note that (6.14) and Ue Y (¢) imply
636 w=e@v), LW =e6v, Xadb y)a%f =0 for yeaR.
=1 %

From (6.13) we get

6.30) 3 el -f — 3 elt, S = 3 [01a(s, 2) — ainlt, D)2
=1 oY k=1 oYy, l,m=1 0%,
Therefore from (6.86), (6.37) and (6.1) it follows that
(6.38) |b;(y)| < Ch for yeoR.
Let
(6.39) Fw) = [y fd,,
Y
where dist((%3, ¥"), 02) = 7, E(¥) = L(rh7'yy).
From (6.35), (6.38) and (6.39) we get
0 z 0
640 1115 || 5 2-(auls, gu) St v)z-ds|
_ ) 0 ) b
= S > ax{(%(s, x) e u) §=l b;(y) ay,.fdsl
- 0 0 (N2_F
= ], 2 a(aute 9 o) B0 s
= C“hA(s)U”m?(am“f“mﬂ(am = C'mhA(S)UI”‘“f“mm) .
We now estimate || f|lx10-
o =\ . 9 - F) 2
6an ([ (2w = [ Cwlr)ay < [[ew]Lrla
~2 a 2
s [ ¢ gup, [ Jav
9 NI 5 N
(6.42) [ax,,. u(®,, )] <2 S [aw, L, @ )] da, + Z[a —u(0, x):| .
Therefore from (6 1) we have
_ n, 0 N
(6.43) ossggh -a—y—l ] = sSlllgh [Z Wi (S, X4, )Y, P u(x,, © ):l
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= [ 2

From (6.41) and (6.43) we have

W] o) o = (Ewaam | sus [ - Jaw
< 2Ch[|[|UI}* + |U |Ba+am] < 4CRI|UJIP .

From (6.39) and (6.13) we have

I (%f)zdy = || ({2@dw. I (% jy lf)zdyl)dy
< C||U||* for k=2, -+, n.

Wz, m’)]zdxl + [ 32:,,, u(0, x)]} :

m

Therefore

(6.44) I FIl < Cre||Ul|

From (6.40), (6.44) and (6.31) it follows that

(6.45) 1| = 47|V — U|| + Ch|||U||} .

From (6.34) and (6.45) we get (6.32). By definition we have
(6.46) (U, W), = [KU, W), + (A(s)U, A(s)W),lexp(—Msd™) .
From Ue D(At))yw-re (6.23) and (6.32) it follows that
(6.47) 2(U, WY, < 2| UL, | WIl, + 27|V — UII + Chl|U||I

s C'R||IU|IE + 27|V = Ul -
Since (Au, u) < w||u|]® for a large enough constant C, we have ||| U||? +
NU—= V|| @A + Cr)Y||V||2. Then it follows from (6.47) and (6.24) that
WU + Wi = Ul + 26U, W), + [IWI][§
< U + C"RlUI + 11U — VI + Ch*e U}
= [1 + Cre?|||U |||} + C"R|||U |2 + ||U — V|2
=@+ CYIVIIE + [Che™ + C"IR[IIU|I1E
=@+ GYIIVIIE+ 2CAl Ul
<1+ GhrPIII — RAD]IU||Z . q.e.d.
From Lemmas 6.1, 6.2 and 6.3, we can now see that the condition
(A.5) holds.
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