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INTERPOLATION OF OPERATORS IN LEBESGUE SPACES
WITH MIXED NORM AND ITS APPLICATIONS TO
FOURIER ANALYSIS
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1. Intoroduction. In this paper we show interpolation theorems for
linear operators in Lebesgue spaces with mixed norm and apply them to
Fourier analysis.

Let M be a measure space and M™ be an m product space [[7 M;
where M; are copies of M. Let L‘(I;'):L‘(M"; L*(M™)) be a Lebesgue space
with mixed norm <gm<suml f l")m)l/ . Let T be a linear operator in Li(L®).

Under the assumption that T is bounded in L:(L°) for every permutation
of {M;;7=0,1, ---, d — 1}, we discuss the boundedness of T in the space
L*(M™), where

lu = (m/s + nft)/(m + n) .

Part 1 deals with interpolation problem. In §2 we introduce auxiliary
holomorphic functionals W* and F* in |z2| < 1. We divide the unit circle
into several arcs and estimate these functionals by L*M"; L*(M™))-norm
for z in an are, where the choice of permutation of the measure spaces
{M;} depends on the arc. This is the idea to prove our interpolation
theorems and they are given in §3. To get bounds of the functionals we
restrict the domain of F”* to functions in 2% L“(M,). As a conse-
quence the domain of the linear operators of Remark 1 and Theorem 3
in §3 are restricted to T L*“(M;), but this condition is unremovable (cf.
Remark 4 in §5).

In Part II we shall apply our interpolation theorems to two problems
in Fourier analysis which are closely related. In §4 we consider the
Riesz-Bochner summing opertor s, ¢ > 0. For a function f on the d-
dimensional Euclidean space R? the Riesz-Bochner mean s‘(f) of order ¢
is defined by

s(F)E) = L — |eP)fe)

for || < 1 and = 0 otherwise, where f is the Fourier transform of f:
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fe) = Rdf (w)e *=dx .

75)
V' 2r*

For d > 1 the operator s° is not L”-bounded if p # 2 (Fefferman [5])
but s° is L*-bounded if it is restricted to radial funetions and if 2d/(d +1) <
p<2d/(d—1) Herz [8]). For d =2,¢>0 and 4/3 < p < 4, the operator
s* is L*-bounded (Carleson and Sjolin [2]). Later, several proofs of the
Carleson-Sjolin theorem were given (Hormander [9], Fefferman [6] and
Cordoba [4]).

In §§4.1-4.4 we shall prove that if ¢ > 0

wy | (1, s Drda) don) < const | (] 17 1dow)) ancr)

R2
for all reasonable function f on R?, where x(p) = (%, - -+, %;_5) and z({p) =
(24_s x4_,). Since the operator s* is rotation invariant (1.1) holds for any
permutation of variables (x, @, ---, ;). Therefore our interpolation
theorem applies to s* and we get the inequality | s‘(f)||, < const | f||, if
e>0,2d/(d +1) < p=<2andif fis of the form f,(x,)fi(®)- - fo.(Xs_0).
In §5 we consider the restriction problem of Fourier transform.
In the following, C will denote constants which may be different in
each occasion and $#(R% the set of functions in R® infinitely differen-
tiable and rapidly decreasing.

Part I. Interpolation of operators.

2. Notations and auxiliary functions. Let (M, _#, 1) be a ¢g-finite
measure space. Let d be a positive integer and (M;, #;, ;), 3=0,1, -+,
d—1, be copies of (M, _#, t). Let (M, _#, %) be the product measure space

5 (M;, A, ;). For a subset » = {p, »,, *++) P} of {0,1, --+,d — 1}
we denote (M(p), #(p), 1(p)) = [I7= (M,,;, #,; th,;)- For a subset p of
0,1, ---,d — 1} denote [p=1{0,1,---,d —1} — p. Thus dy(p)x,, -,
Tpp_) = Aty (X)) < -+ d;z,,m__l(x,,m_l) and dy(p) xdp(p) = dit.

For 1 lg‘ 8 < oo L*(M) denotes the Lebesgue space with norm || f|, =
([ lrraz)". For 155 t<e and p={py py -+, pas) LMCR); LMp))
denotes the Lebesgue space with mixed norm

1 e = (., (], 171d00)) " dem)

The definition for s = o or/and t = - will be obvious.
Let d = m + n, where m and n are positive integers. Define u by

1/u = (m/s + nft)/d .

vt
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For 1 < s =< oo, s’ will denote the conjugate exponent defined by 1/s +
1/s' =1.

For simple functions w and f in (M, _#, %) we shall define holomor-
phic functions W#(x) and F*(x) and estimate them in mixed Lebesgue
spaces. Our arguments are divided into two cases.

2.1. The case m =n and  =f=s=1. Let P be the family of
index sets p of {0,1, -+, d — 1} with card (p) = m. Let Q@ = {peP;0ep}
and R=P— Q. For qeQ put R'={reR;card(gnr) =m — n}. Then
we have

card(P) = CZ) , card(Q) = <:L : 21l> , card(R) = <d7—n- 1)

and

card (R?) = (Z : i) .

Divide the unit circle 4D into (;i) congruent ares I, p e P.
Let a,(z) and a,(2), € Q, be functions in the Hardy space H*(D) in
the unit disk D having the following properties:
1/s a.e.in U I,
qeQ

Re a,(e”) = {1/t ae. in U I,

reR

and
1/t — 1/s a.e. in I,
9y — 1/s — 1/t)/(card (R%) a.e. in rgqu'

0 a.e.in oD—1I,— U I,

reRY

Re a (e

for each ge Q. Furthermore we assume
Im ay0) = Im a,(0) =0 .

By the mean value theorem we have

@1)  a(0) = [card(Q)/s + card (R)/t]al%m = (mfs + njt)d = 1/u
and
(2.2) a,(0) = 1t — s  1/s — 1/¢ card (R) _

card(P)  card (RY card (P)

For a non zero function w in L*(J) and z € D define
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@3) W =A@ @ T (| weldue)"”

if w(x) = 0 and = 0 otherwise, where
Ayz) = ||w|ler*
and
—m Sy, (AL
16 = o) = 2) + (= - 3) -

For a non zero function f in L*(M) with 1/u’' =1 — 1/u and for
ze€ D define

—ag(z)
@4  F@=Berrf@ror (| 1f@lrdu)
ge@ \JM(q)
if f(z) # 0 and =0 otherwise, where

By(z) = || flla*7* .

LEMMA 1. Let d=m+n,m_gngl and ~ =Zt=s=1. Let w
and f be non zero fumctions L*(M) and L*(M) respectively. We have
the followings.

(i) W) = w(x) and F°(x) = f(x).

(ii) Let peP and zeint (I,). Then

” W’ "(t.a:p) g “ w “u .
(iii) Furthermore if f 1is of the form fyx)fi(x,) «« - fi_.(@sy),
“F’“(t',a':p) = ”f uw e

PrOOF. (i) follows easily from (2.1) and (2.2). To prove (ii) and (iii)
we assume 1 < s <t < o. A proof for other cases is similar.
(ii) Assume ¢e@ and ze€int (Z,). Then

IW'(x) |' = IAW(Z) l'l'w(x) ‘“(Slw(x) |“d[£(q)>m_l

from which we get (ii).
Next suppose r € R and zc€int(l,). Rea,(z) = 0 for ¢ such that » ¢ R*
and Rea,(z) = v for q such that r € R, where

v=(/s — 1/t)/<’: - i) .

W@ = | 4@ @ 11 (e rduo)

Therefore
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where
(2.5) S={eQ;reR%}.
Let a €r and put
(2.6) A={geS;a¢q} and B={gecS;acq}.
Then
@.7) card (S) = <m> , card (4) = <m - 1)
n n—1
and
(2.8) card (B) = <m; 1)

if m >mn and =0 if m = n.
Applying Holder’s inequality with exponents (s/t) + sv-card (4) =1
we have

LR

=14, T ({1 ap@) [lwe) = 11 ({lwe rdeo) e,

<14@F I (@ rde@)” 1 (e rauaan)”(flwe raa.)”

Iterating this process for all ¢ in r we get
ot \eo(®)
[ W@ auer) < | 4@ 1((lwrdee )" ((lwraz)™

Since s”(ﬁ) = (1 — s/t)m/n and |A,(2)| = ||w|ivt-swsvimn we have
(Jiwraur)”apen < (flwraz)”,

which proves (ii).
(iii) Let f(x) = fy(@)f,(x,) - - - f1_.(x4_,) be a non zero function in L*'(M).
If ¢eQ and zeint([,), then
F@ = |B@ 1@ (|1 F@due)
Since | B,(2)| = || f [l

({17 apa) ™ duta = 1B @I |1 1@ az = 1£15

8’/t'—1
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Assume r€ R and zeint (I,). Then

(2.9) F@P = 1B@ | £ 11 ([l 7@ du) ",

€8

where S is defined by (2.5). Let = {ry, ry -+, Tua}. Put f(r)(z) =
@ )f @) - £, (., ) and define f(br) for (r={0,1, ---,d —1} —r
similarly. Suppose acr. Since {ge€S;a¢q} = A by definition, the ex-
ponent of f,(x,) in (2.9) equals u's’/t’ — u's’v card(4) = #’. On the other

hand since {g€S;acq} = B, the exponent of Slf,,l"'d;z,, is —s'vecard(B) =

1 - ¢/th(m — n)/n by (2.8). Next consider the case a ¢r. We remark
that o ¢ r implies that a € q for every qeS. Thus the exponent of f,(x,)

in (2.9) is «'s’/t’ and that of Slfal"'d;za is —s'veard(S) = 1 — §'/t")m/n.
Therefore we have

|F@I = 1B,@ | f @ (|1f 0 “ap)

)(l—a’/t’)(m—n)/n

>(1——s’/t’)m/n

<1 @@ ([Ir e apen
Thus

, t'/8’ , o s
@10)  |((1Frapn) " apen = 1B, 1 (|17 1w am)er—mm.
Since |By(2)|" = || fl|2¥* 7% = || fllz# ¥ -w'@/'0mn the right hand side of
(2.10) equals || f|%,, which proves (iii).
2.2. The case » >m and o Zt=s=1. Let
d=mk+r

where k=2 and m = r >0, so that n = m(k — 1) + r.

We define a family P of m integers p* = {p{, p{, +++ va_}, 0 £ a < d,
as follows. If 0<j<k and 0<b<m-—7r or if 0=<j<k-—1 and
m—r =b<m, then

PPt =mji+b+ec¢ modd.
If j=k—1 and m — r < b < m define
pmr* Ut = (k- 1)+ b,mk —1)+ b+ 1, -+, mk — 1}
Ume—-1)+b+r,mk—-1)+b+r+1,---,mk+b—1}

UmE+ 1), mE+1)+1,---,m+1)+b—m+r-~1}
modd .

For mk < a < d put
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p*={mk,mk +1, -+, mk +m — 1} modd .
We remark the followings.

(2.11) For each 1 =0,1,---,m—1, p™*(j=0,1,---, k—1) are mutually
disjoint and card (U%i p™"'Up®) =d if mk < a < d.

2.12) If ¢« = mk + b modd for some b=0,1, ---, m — 1, then
card {{; a g pUp™U-. - Upmt 0 <l < m}=17r.

Let «)(z) and a,(2), m < a < m(k + 1), be functions in H*D) which
satisfy the following conditions: Divide the unit circle 0D into d con-
gruent ares I,,a =0,1, ---,d — 1. We choose a, and «, so that

1/s a.e. in mL_jl I,
Re a,(e?) = = s
1/t a.e. in oD — lU I,
=0
forl1<j<kand 0=51<m,
1/t — 1/s ae. in I,; .
Rea, ;. (e?) = {1/s — 1/t a.e. in I,;,
0 a.e. in oD —I,; . UL,
and for 0l <m

1/t —1/s a.e. in I, 44

Re aMk+l(ei0) — (1/8 - l/t)/T a.e. in byo Imk+b

r—1
0 a-e- in aD - Im(k—1)+lUbU Imk+b .
=0

Furthermore we assmme that
Im a,(0) = Im «,(0) = 0 .
Then we have
a,0) =1/ and a,(00=0 for m=Za<mk+1).

Let v be a function in H*D) such that Rev(e?) = 1/u — 1/t a.e. in
urkr I, and =(1/u — 1/t) — (1/s — 1/t)m/r a.e. in UL, I,, and Im~(0) =
0. Then we have v(0) = 0. _

For a non zero function w in L*(M) define
(2.13) Wz(x) — Aw(z)lw(x)|uao(z)eiargw<z)

1 . Amj+1(2)
x 1 l0 l](glw [*dp(p'Up™tiy - - Upm<,-n+z)>
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if w(w) # 0 and =0 otherwise, where A,(z) = [|w[[i". For a non zero
function f in L*(M) put

(2.14) F‘(x) = Bf(z) | f(x) Iu'(l—ao(z))eiargf(z)
m—-1 k .
% ng:-‘[l <S| f [“'d#(pl U p’”“ U+ U pm(g—1)+l)>

if f(x) 0 and =0 otherwise, where B/(2) = || f||-*"".

—amj41(2)

LeEMMA 2. Letd=m+n,n>_m;1 and o ztzs=1. Let w
and f be non zero functions in L*(M) and L*'(M) respectively. We have
the followings.

(i) W) = w(x) and F°(x) = f(x) .

(ii) Let 0=a <d and zeint (I,). Then
W o0 < l[wlla -

(iii) Furthermore if f is of the form fy(x)fi(®) +++ fa_(®sy)
1 F= lar,ori0m = 1S [lar -

PrROOF. (i) is obvious. To prove (ii) and (iii) we assume 1 < s <t <
o, The other case is proved similarly.

(ii) TFirst suppose that 0 £ b < m and zeint(l,). If mj + b =0 and
if ap;(2) #0 then j =1,1 =b and a,.,(2) = 1/t — 1/s. Thus

W@l = 4. o) {lwrduen)

Since |A,(2)| = [[w[i™",

[((iwtde@n) aper) = 14.@1 (1w rap@aper = ([lwrde)

t/u

Next suppose that 0 <b<m,1 <7<k and zeint (I,;;;)- Remark
that Re a,(z) = 1/t, Re @pijrn () =1/t — 1/s, Re atn; () = 1/s — 1/t and
Rea,(2) =0 for a #0, mj + b, m(7 +1) +b. Thus

W@ = | 4@ Flw@ ([ [wlap@ up=ru - upmio ) T
X (glwl“d#(pb Upm?ty---U p’"“")>'/H .

Integrate both sides with respect to dp(p™**) and apply Holder’s inequality
with exponents s/t + (1 — s/t) = 1. Then we get

1w rdpom) = 4@ H([wldp i)

8/t
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which proves (ii) by the same way as above.
Finally suppose that 0 < b < r and ze€int ([,,,;). By definition

( : ) | ” z(x) ls - |Aw(z) |, l w(x) I""/t
1 d/‘t (1—s/t)/r
X ll_[o <§| wl (p’ Up‘m'H U e p"‘(k—1)+l)) .

Recall that p™* = {mk, mk + 1, ---, mk + m — 1} modd. Let aecpm*
and set A= {l;agp'Up™*U---Upm* P 0<l<m}and B={l¢A4; 0
l <m}. Then by (2.12) card (4) = r. Furthermore we have p'U™"U
e UpmEDH g pmEt = 10,1, ---, d — 1}. Applying Holder’s inequality to
(2.15) with exponents s/t + r-(1 — s/t)/r = 1, we have

SIWZI’dﬂa = lAw(z)P(Sleudﬂa)a/t
X lll (wa '"dﬂ(pl Upm™tiy -« Upme-ntiy {a}))(l—m),,
x zl;];g<§|ﬂ’|“dﬂ(p‘upm+zu cee Up’”(k-l)+l)>(1_’/t)/r '

Iterating this process for all a € p™*® and using (2.11), we get finally

(1w rapom <14, k([ |wlauwm)" ([wraz) ™" .

Integrating both sides with respect to du((p™*?) we get

t/s

(1w rap @) “augp) = ((lwraz)”,

since |A,(2)| = ||w||}—wo-wte=t0nr - which proves (ii).

To prove the equality (iii) we consider only the case zeint (I,;,,;)
with 0 < b < 7. A proof for other cases follows from similar arguments
to (il). By the definition (2.14)

]Fz(x) '3’ — le(z) Is' | £ () qu,:/t,
X E <S|f “dp(p UpHmuy - - - Upm(k—1)+1)>

(1—8’/t") /r

Assume a € p™*® and A is the set defined in (ii). Since card(4) = r the
exponent of f,(x,) in |F*|* is w's'/t' + r-u' A — §'/t')/r = w’ and the one of
S|fal“’d;z,, equals (m — r)(1 — s'/t")/r. If a ¢ p™* the term containing f, in
| F*(x)|*" is

>m(1—a’/t’)/r

FRCATRC({[FARC
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Thus
[17e I au=) = | B £ Epm @)
x([17@m 1 ap)

x (S'f (cpmk+b)]“ldﬂ(cpmkﬂ;))m(l“"/t')r -

Since le(z)l — “f“::[(l/u’—l/t')—(l/a’—llt’)m/r]’ we get

({17 Faumen ) wapapmen = ({15 am) "™

which proves (iii).

>1+(m—r) (1—8’/t')/r

REMARK 1. If d = mk for some %k = 3, then Lemma 2.2 (iii) holds
for functions f of the form

Jo(@oy =) T M@y + o Toy) =0 fk—l(xm(k—l)’ cr ey Bppy) -

3. Interpolation theorems. Let d = m + n. Let P be the family
of m integers defined in 2.1 or 2.2 according to m = n or m < » and I,
p€eP, be arcs in §2. Let (M, _#, 1) and (N, _#;v) be o-finite measure

spaces. (M(p), A (D), k(p)), (M, A, B), (N(p), A4 (D), »()) and (N, 4, D)
will denote the product spaces defined in §2.

THEOREM 1. Let T be a linear operator of simple functions on

(M, _#, [t) to measurable functions on (N, 45 v). Let v(e?) be a measurable
Sunction in 0D such that 1 <wv(e®) < . Define v by

1o = Sw(l/'v(e”))%i— .

Let 1= uy = u, £ o and

3.1) 1w = (mju, + n/n,)/d .
Suppose that
(3.2) ” Tw ”v(ew) = C(ew)” w ”(ul,uo:p)

Sfor simple functions w and e cint (I,), p € P, where C(e) is measdrable
on 0D. Then

3.3) | Twll, = Cllwll. ,

where

C = exp Sw log C(e”)%z- .
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REMARK 1. If 1%, S u, < o, (8.83) holds for w of the form
wy(we)w,(,) * « » wy_,(x,_,) under the assumption (8.2) with w as above.
This is a consequence of Lemma 2 (see also [1]), but in general we
cannot conclude (3.3) for all w in L*(M). We shall give a counter example
in §5, Remark 4.

REMARK 2. The family of the spaces L*“*”(N) in Theorem 1 is re-
placed by more general family of Banach spaces B[z], z€oD, which is
introduced by Coifman, Cwikel, Rochberg, Sagher and Weiss [3].

PrOOF. Let P,(e?), z = re" € D, be the Poisson kernel (1 — %)/ —2r
cos(@ — 7) + r?). Denote by v'(e*’) the conjugate exponent of w(e??). Let
V'(2) be a holomorphic function in D such that

Re V'(e¥) = 1/v'(e’) = 1 — 1/v(e*’) a.e.
and
ImV’(0)=0.

Such a function exists in the space H*D) and V'(0) =1 — 1/v = 1/v".
Suppose w and g are non null simple functions in N and |/g],, =
Define W* by (2.8) or (2.13) and G* = ¢™&@|g|"'""*?),  Put

o) = SNTW’-G’du .

@(z) belongs to the class N, (D), which consists of holomorphic functions
¢ in D such that sup,,., Sa log™ | ¢(re®?)|df < - and
D

(3.4) log |9()| = | log |9(e?) | P.te?) 22

for z€ D where log*x = max (0, log ) (see [3]).
Let pe P and assume z = e¢“ €int (I,). Then by Holder’s inequality
and (3.2)

122)| = | TW*[low | G* oy = C@NW* lwguim |G o -

By Lemma 1 or 2 we have ||[W*||,, um = [|w]|l.- Furthermore we have
”Gz”v'(z) = ”g”::/v’(z) =1. Thus

|2(2)| = CR)||wll., -
Applying Jensen’s inequality (3.4) to @ and z = 0 we get

90| < exp | log Ce) 2]l -

Taking supremum over g such that ||g|l,, =1 we get (3.3).
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We can generalize Theorem 1 for analytic family of operators {77},
zeD. {T?} is said to be an analytic family if

o) = SNT’ W*-Gedy

belongs to N,.(D) for every simple function w and g on N.

THEOREM 1’. Let {T?} be an analytic family of operators. Under
the assumption of Theorem 1 if

3.2) | T*w loey = Cl2)||w ||(u1,uo:p)
for z = e eint(l,), p € P, then we have
(3.3) | T*wll, = Cllwll. .

THEOREM 2. Let T be a linear operator of simple functions on M to
measurable functions on N. Let 1S u,Su, £ o and 1 v, £ v, < oo,
Suppose that

T |y, < CDY 0 |y i
Sfor all w and peP.
If
(8.5) 1w = (m/u, + nju)/d and 1/v = (m/v, + njv,)/d
then
| Twll, < Cllwll.
where C = (I1,.p C(p))er®,

PROOF. Let w and g be non null simple functions on M and N
respectively. Define W* and G* by (2.3) with respect to indices (u,, u,)
and (v, v;) respectively. Put

0(2) = SI_VTW"GZdi .

Obviously @(z)e N.(D). If peP and zeint(l,), by Holder's inequality
and our assumption

|@(z)| é ” TWwW* ”(vl,vom)“ G* ”(vi,v(}:p) é C(p)” w l|(u1,u0:p) ” G* ”(v{,v(’)tp) .

Since 1 < vy £ v] £ o, the last two terms are estimated by Lemma 1 or 2
and consequently the last term is bounded by C(»)||w|l.|lg|l.~» By Jensen’s
inequality (8.4) we get

100)] < exp (S 1oz CO)IL ) wullg

which proves our theorem,
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THEOREM 3. Let T be a linear operator of simple functions on M of
the form fyx)fi(x,) ++ fii(xs_,) to measurable functions on N. Let 1<
UWSU = and 120, v, < . Suppose that

” Tf”(vl,vozm é C(p)”fH(ul.uow)

Jor all simple function f on the above form and p e P.
If w and v are defined by (3.5), then

I1Tfll. = CIl f .
for all f of product form, where C = [],ep C(p)"/era®,

PROOF. Assume m = n. For simple non null functions w(x) on M
and f(z) on N of product form define W* and F* by (2.3) and (2.4) with
(v, v1) and (u,, u,) respectively. Remark that F? is of product form too.

Put 0(z) = S_TF’-W’dE. If peP and zeint (I)),
N
l¢(z)l é “ TFZ ”(vl,voip) ” Wz ”(vi,v(fq) é C(p) ” F* “(ul,uo:p) ” Wz H(vi,v(’,:p) .

Since 1 < v; < 9] £ o, Lemma 1 is applied to the last term and we get
our theorem by the same method as in the proof of Theorem 2.
A proof for the case m < m proceeds similarly applying Lemma 2.

Part II. Applications to Fourier analysis.

4. Riesz-Bochner operator. Our aim in this section is to show
Theorem 6 in §4.4. The idea of the proof is to estimate s*(f) in the
mixed Lebesgue space L*R?* L*R*?) applying the two dimensional
argument due to Cordoba {[4] and to use our interpolation theorem.

4.1. We introduce the operator s as follows. Let ¢ be a C*-function
on the real line such that suppgc(—1,1) and ¢ = 0. Fix 0<d < 1/4.
For a function f in $7(R?) define s(f) by the Fourier transform;

(@) = (L — [0S -

Now we shall consider a decomposition of s(f). In the following p
denotes the set {0,1, ---, d — 3} and use the notations Z = z(p) = (@, ..
cev, ) and T = z(p) = (,_p 24_,) for xe R:. Let 4 be a C>-function
on the real line such that supp+C(—5,5), + =0 and 4+ =1 on__(—~4, 4).
For a positive integer %k put p, =1-0k if 0<dk=<(2—1"2)2 and
A—W2 —14+0k»)” if @—12)2<0k<2—-1"2. Let &*(p) =
0:(cos 6205, sin 6"°0;'b) for b = 0,1, --- and put

P8 = P([&(Cp) — £°Cp) |07 ((|£C) [P — 02)07") -

If cesupps((L —|-[)07"), then 4 4(&) #0 for some k£ and b and the
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number of such (%, b)’s is uniformly bounded. If we put ¥,,(¢) =
Vie,s(8)/ 20,5 ¥1,5(&) where the denominator does not vanish, then {¥,,} is a
partition of unity of the support of 4((1 — |-[*07Y).

Let {¢%(p)} be a sequence in R?? such that

6= geljf |&(p) — E(D)] -
Put

(&) = ¥(&(p) — &(p)167)

and ¥°(8) = $%(&)/2 ¥(&)-
Let us define s ,(f) by

sta(F) (&) = ¢((1 — [P NTET L ,(OFE) -
Furthermore put

sialf) = 2sin(f) and s*(f) = 25 sta(f) -
We get a decomposition of s(f);
s(f) = % 2. sta(f) -

In the following we denote the Fourier transi:grm with respect to
z(p) and z((p) by &, and &, respectively. Thus f= .7,.Zf.

LeEMMA 3. We have

Snz (Snd—zl s(f) Izdx(p)>2dx(ﬁp) =C SRZ (Snd-z ; ;,Z,b“ Isz,b(f) |2dw(p))2dx([‘,p)
Sfor f in F(R?), where the constant C is independent of f and o.

PROOF. Since .F,si,(f) = U 5,8, ,(f) and since supp?* (¢ = 1,2, :++)
intersect at most 102 times,

[ Jsan@ Bras 1025 | s, Brds

for all . Therefore it suffices to show that

2 2
w2 | (| Jsraa)azscl (( Sisuora)s.

Dividing the sum 3};;s,,(f) into 100 sums we may assume s(f) =
s () I Tinal Dp(@ — 1 8N #0 for some £, then
Troin& M@ — [(E, DD =0 for any j+#k b and 7. Thus the
support of F,(3 Swnes(FN)(+, ), £ =1,2, -+, are disjoint for each Z in
R?. In order to prove (4.2) we may assume S(f) = 3, Sy 100(f) Where
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b < 07%0,/200. We denote simply s, ,(f) for 8 100(f)-
By Parseval relation we have

[ olstn@ Bpaz = |
-3

75 (Saualh) )& 5|

k

F(Saalh) )& B dE .

Rd—2

Thus
(1. stH@rds) ez
B W T LR L e e )
Put
Canin 1.8 = o= | 8N E = D3, D7
Then the last sum equals, by convolution relation,
z]g:%;g; Sdgdﬁsa(k,b;l,c)(év 779 g)a(k,b’:l,c')(g, ﬁy E)d-&__ .
SUBLEMMA. If (b, ¢) = (b, ¢'), then

U(k,b;l,c)(gy 77; E)'O-(k,b’;l,c’)(§7 7-7—’ g)) =0.

Granting for a moment this sublemma we have

[(l1srrdz)az = 55 (3207 {1 0wnnn@ 7, 201 a2,

which is carried by Fourier transform with respect to Z and then &, 7
to the sum

>

k,b 1,e

ey

dz gq o308 F)E B).F 51, )T, &) ['dEdR

b

S(S IIENGITE -

Since ., si:(f) = U F,8:,(f) and {supp ¥} intersect finitely, the last
term does not exceed

O (Jpue D S |5k () 45 ) 05 .

Thus a proof is complete.

= 55 [a5( [ s.otr)@ 1z (15100 )
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PrOOF OF SUBLEMMA. Fix & and 7 in R%?% Then the sublemma
follows from the fact that supp 8, ,(f)&, ) + supp §,,(/)7, *), b,¢c =0, 1,
.-+, are disjoint. In fact, supp §,,(f)(&, ) is contained in the annulus
{0, — 500 = |E| < o + Hop;'} and a disk of radius <562 centered at
&*(p). Therefore a proof is reduced to the two dimensional case which
is well known if & = (see Fefferman [6]). If k # [, we can prove it by
a similar way with more careful computation.

42. Let M=N,=1lande, >0 (=12, ---) and O, be rotations
in R* which fix the first d — 2 coordinates. Let S, = {(&, x,_,, %,_,) € R%;
|%| < e, M, |2s_.] < €,N,, |2,,] < ¢,} and R, = O0,S,. For a function f on

R? define M, (f) by

__1 _
M@ = =, fe— vy .

LEMMA 4. There exists a constant C such that
§(§ s S 12250 () Y dne) < Cog M2 (|, 5211, o)) datp)
Sor all f, in F(R*) and M > 2.
PrOOF. Let w be a non-negative function on R? and put
1= | .. SIM1G B 0@dsds .
R2 JRA—2 "

By Schwarz’s inequality

IM(S)E B S |G D@ ~ 5,5~ D)dgd

Substituting this inequality we have

|, M.1.@, Byuw@dzdz

< \17.@, Drapdy-—2,@ — 7% — D@z

Put

W@ = sup Il%,,l |, tra(@ 7Y@ + D) .

Then the last integral is bounded by

(0 s 113 D P07 W) -
Thus
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<\(|= @ wra)waas,

which does not exceed, by Schwarz’s inequality,

(|(Is17.razYaz)" (| w@az)”

Therefore our proof is complete if we show that

4.3) Swzdf/ < Cllog M)sngda
with a constant independent of M or w.
In fact, put
1 N
= X , )T .
o) IRIS (T, T)AT

Since O, is a rotation which fixes the first d — 2 coordinates,

0@ <

r N X, (&)

for some rectangle I, of size 2¢,%x2¢,N,. Therefore
W) s sup o S w(§ + 5)dE

where the sup runs over all rectangles I in R® of eccentricity <M. Thus
(4.3) follows from Cordoba’s theorem ([4]).

REMARK 3. Let R% be the set obtained from R, expanding by the
factor 2* and M} be the operator M, defined by the set R% Our proof
shows that Lemma 4 holds if M,(f,) is replaced by >.2,2*M%f,), in
which form we apply it later.

4.3. Let P, = {€ = (&4_ &4-1); M0Y2 = &4y < (n + 1)0'2} Dbe strips in R?
and for fe . &#(R% f, be the projection defined by

%pfn = xn%pf ’
where X, is the characteristic function of P,.
LEMMA 5. We have

[ (0 ol o) doery = caogay| ([ ., S 11 rdo@)) dem)

for f in SP(R?), where C is a constant independent of f and f.
PROOF. Let ti be the operator defined by
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t2()°(©) = w((1&@)F — A — 0))/39) ¥(&(p) — &(0)1/30) f(&) .
We remark that
Sz,b(f) = tios}i,b(f) .
In fact, if &= (§ &) = (&n), &(Cp)) esupp 8i,(f), then —100 <|[&(p)[ —
(1 — p}) <1006, which implies 4 ((|&(p)]* — (1 — 03))/30) = 1. Obviously

¥(l&@) — &%(p)|/30) = 1.
Since t§ is defined by a multiplier depending only on the first d — 2

variables &(p) and since 35, 3% v(([£()]F — (1 — 08))/30)¥( &(p) — £%(p)|/30)
is uniformly bounded,

; % Snd—z |t;(f")(5’ :7/) |2d:‘—6 = CSRd—2|fn(E’ “=;) IQdE

for all £ € R®. Therefore by Lemma 3 it suffices to show that

@y | (| =snra)asc (|, 56 ra)s.

a

Now st ,(f) = 2., sks(f,). Since for each b the support of ¥, , inter-
sects the support of X, at most 11 times, we have >, [si,(f)* <
1130, 3 Isks(f) 1. On the other hand for each » the support of X,
intersects the support of ¥, b =0,1, -+, 67%0,/200) at most a time.
We denote such a b by b(n). Thus

45) 55 s F S 1S [stam(FF -

Next we remark that s;,. (f,) has a representation
st (fo) = Ky *ti(fa)

where K, 4(8) = T, 4m(@)s((1 — |£[)57).
Assume for a moment b(n) = 0. Then by an elementary calculus

| Ko@) | < C, 0 u0% 705 0%|°| 00k 42| "] 0" "2q |7
for every s,t,u =0, where C,,, < C3t | 4|, with a constant C
independent of 4.
Let R, be a set such that Rf = {(F, 2,_p 2s_) ER% |Z| < 2407, |, <
200,07, |@4_, | <2007} and R, = O, ,R;, where O, , is a rotation such that
0,&, 1, 0) = (¥, cos 6'*0;'b, sin 6'*0;'b). Then K, , is bounded by

o o-u 1
R TR

Therefore
|stom(F)| < C 32" ml—lx « 188(F)] -

#=0

By (4.5) and Lemma 4 with Remark 3 we have
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a 2 I 2 = — L
(eSS sanran)az s cf (| S sl rde)

RA—2 7 a,k

= cog oy |, (| = 1tx(s)rdz) a3,

R2 n,a,k

which completes a proof.

LEMMA 6. There exists a constant C such that

we) | (|, Sinraw) e s cf () 1) e

for all f in P (R%).

PrROOF. Let H = L*R%?. Then the left hand side of (4.6) is written
as

Lz@ . £a(-5 2(p)) ”i{)zdx(cp) .

Now we apply an H-valued version of Carleson’s theorem (cf. Rubio
de Francia [10]) to get a bound of the above integral

cl, 17¢, sCo) lsdattm) = | (| , 1 £ 1dae)) dater) .
THEOREM 4. Let 0 <6 < 1/4. Then
(150 rdew)) dueo) = caog 57| |17 rdow) ) duew)

for fe (R, where C is a constant depending only on d, ¢ and A,
more precisely C < Cyyp D056 |-

Now choose a function ¢’ so that ¢’ € C(— oo, o), supp ¢’ (1/4, 1),
¢'=0and Dip_,¢'(2*%) =1 for 0<t<1. Let ¢>0and put ¢@t) = t°¢'(¢).
Define si(f) by

8O = (1 — [&Prg'(A — 1)29fe) .
Then

() = 3 si(f) -
By Theorem 4
(1580 o) o) < cwz]({1 Paote)) datem)

Summing over k = —1,0, 1, --- it follows

THEOREM 5. If ¢ > 0, then

(E) ({12 rdaw) datery < ({17 ras@)) dater)
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for fe P(RY, where C is a constant independent of f.

4.4. Let P be the family of subsets p of {0, 1, ---, d — 1} such that
card (p) = d — 2. Since the operator s is rotation invariant, (1.1) implies
that

Hse(f) H(4,2:p) é CH f“u,z:p)
for fe (R? and peP. By duality
4.7 |8 (N wszm = ClLS Mlewsoim -

Applying Theorem 3 to (4.7) and then an interpolation theorem for
multilinear operators (ef. [1]) we get

THEOREM 6. Let ¢ >0 and 2d/(d + 1) = u < 2. Then
s (Nl = Cll f 1l
for all f in F(R?) of the form fu(@)fi(2,) - fa_i(24s)-

5. Restriction problem of Fourier transform. We apply our inter-
polation theorem to a restriction problem of Fourier transform. By a
theorem in Tomas [11], if 1 = u < 2(d + 1)/(d + 3),

5.1) (|, forde)” = cl sl

for fe S (R? where do(g) is the surface element and C is independent of
f. The inequality fails for u > 2(d + 1)/(d + 3) but a simple argument
shows that (5.1) holds for 1 < u < 2d/(d + 1) if the functions f are radial.

THEOREM 7. If d=2,1=u=<2d/(d+ 1) and f is a function in
SF(R?) of the form f(x) = fu(®)fi(,) =+« fui(sy), then

(5.2) (VP @ - el do@)” < A=l 71l

Proor. We assume d > 2 but a careful reading shows that our proof
applies to the case d =2. Let w, fe S (R% and assume supp w(g)C
{|&,] > 0}. By Fubini’s theorem
(5.9) oo o RO o) = | ) Sui@)da

S Rd
where

Suw) = —2=z| 161" da(e) .

Therefore our problem reduces to an estimate of the following integral;
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G4 | Isw@rds, - do.,

-1
(2m)

We introduce the polar coordinates: ¢ = cos@,, & = sin 6, cos 8,, & =
sin 6, sin 6, cos @, - - -, &;_,=sin ,- - -sin,_,cos6,_,, &=sinb,---sinh,_,sinf,_,.
Then the last integral is transformed to

(5.5) Ssd—ldff (77)§nd—1 ey« dx""lSnw(e’ exp —al(E = 7%,
+ oo A+ (Ean — Na—1)%s—1]d0 ,

where (8, 1) = |&m [ w(©)@() I15=i sin®~~' 6, exp[ —i(& — 7o)x,] and D is
the image of S¢*Nsupp w by the mapping of & to 4.
Now fix 7 and introduce new variables

Vo {60 do@dotr)

.012("0501—7]1 ’
0, = sin @, cos b, — 7, ,

04—, =sin@,sin@,---sinf;_,co86,_, — n,_, .

Consider the Jacobian |00/06| = |sin** @, sin* 26, ---sin@,_,|. The inner
integral of (5.5) is transformed to

Ld_l dx, + - dmd_lSAw(a’ n)/l%%‘exp[—i(pm + e ay)]do - do,,

where 4 is the image of D by the mapping of 6 to po. (8, 1)/|6p/06] is
infinitely differentiable in p since w(£) vanishes near g = 0. Therefore
by Fourier inversion formula the last integral equals

en00, 0)f| 22

at o =0. Since ¢ =7 if p =0, the last term coincides with
@) & | lw(@) [/Isin 6, sin 6, - - - sin 6,_,| = (2m)*~ [w(&) [* .
Thus by (56.4) and (5.5)

2 cen — _1_ 2
Jpoms | S0@ P -+ dogy = 2= @) Fda(e)

Applying the reversed Holder’s inequality to (5.3) we get

lallferdo®)” = 2=\ ({ _1r1de, - do.,) ds,
s V' 2r Jre\)r

from which we have
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(Ve FOrao@)" = = (1, £ P diy s - i) s

Let P be the set of d — 1 indices in {0,1, ---d — 1} and I,, p€ P, be
disjoint arcs in oD of length 27/d. Let 0,(2) be functions in the Hardy
class H*D) such that Red,(e”) =1 a.e. in I, and =0 a.e. in 9D — I,, and
Imé,(0) = 0. Then 6,(0) =1/d. Identify p with j such that j¢p and
define a mapping T* by

7A@ = A TL &5

Applying Theorem 1’ with M = R* and N = S** we get Theorem 7.
REMARK 4. If (5.2) is valid for every f in /(R?%), then we have

(5.6) (1,170 1d0©) " = CIIF luiaen

for f such that supp fc{g; |¢/|g] — (L L, -++, )/V/d| < 1/20"d}. Thus by
rotation (5.6) holds for all f in $”(R*), which contradicts the optimality
of Tomas’s condition.
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