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0. Introduction. A differentiable manifold is said to be contact if it
admits a linear functional / on the tangent bundle satisfying /Λ WY~ι ^ 0.
The investigation of this as an intrinsic condition has received consider-
able study, (see [1]). As a real hypersurface of a complex space form is
almost contact, it is natural to ask: when is a real hypersurface of a
complex space form extrinsically contact?

Such investigations have been carried out successfully for real hyper-
surfaces of complex Euclidean spaces, [6], and of complex projective space,
[4], but until now not for real hyper surf aces of complex hyperbolic space.
In this study, contact hypersurfaces of a complex hyperbolic space are
classified using the congruence results of [7] in terms of the examples
constructed in [7]. In brief: complete connected contact hypersurfaces
of CH\—4), n ^ 3, are shown to be congruent to geodesic hyperspheres,
horospheres or tubes of positive radii around totally geodesic ^-dimensional
real hyperbolic space forms imbedded in CHn{ — 4).

Along the way, a related condition, originally investigated in [5], is
taken care of similarly: a complete connected real hypersurface of CfiΓ7^ —4)
whose induced almost contact structure commutes with its second funda-
mental form is congruent to a horosphere or a tube of radius r > 0
around a totally geodesic CHP(—4), 0 <* p <; n — 1.

This paper represents a portion of my doctoral dissertation at Michigan
State University. I would like to extend my deepest appreciation to Pro-
fessor Gerald Ludden for his guidance in the preparation of this study.
I would also like to thank Dr. David Blair for sharing his knowledge of
contact manifolds. Thanks go to Dr. Bang Yen Chen for sharing valuable
suggestions concerning hypersurfaces of complex space forms.

1. Real hypersurfaces of CHn(-4). Let CiTn(-4), n ^ 2, denote a
complex hyperbolic space with the Bergman metric tensor, i.e., a complex
space form of constant holomorphic sectional curvature —4. Let M2n~ι

be a real hypersurface of Cff", V and V be the metric connections on M
and CHn, respectively, so that the Gauss and Weingarten formulae can
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be written as:

(1.1) VXY=VXY+(HX, Y)ξ and Vxξ=-HX for all X,YeT(M),

where ξ is a unit normal field on M in CHn and H denotes the second
fundamental form (in this case the Weingarten map of ξ in End[Γ(M)]).
We shall refer to the eigenvalues and eigenvectors of H in R and T(M),
respectively, as principal curvatures and principal directions.

If J is the complex structure of the ambient complex space form, it
induces an endomorphism φ of rank 2n — 2 and a linear functional / on
T{M) given by setting at each point p of M

(1.2) JX = φX + f(X)ζ for all X in TP(M) .

Set U = — Jξ. As M is of codimension one we have Ue T(M). The fol-
lowing equations now hold for all X, Y in T(M):

(1.8) ΛX) = car, CT>

(1.4) f(φX) = 0

(1.5) ^ [ 7 = 0

(1.6) ^ 2 X= - X + /(X)C7

(1.7) <X,^Γ> = -<φX, Y>

(1.8) <^X, ^Γ> = <X, Y> - /W/(Γ) .

(Φf f> U) is an example of what is called an almost contact structure on
M. The tensor fields φ and U have the following derivatives:

(1.9) VxU=φHX

(1.10) (Vrf) Γ = /(Γ)HX - (HX, Y) U.

We also have the usual Gauss and Codazzi equations for a real hyper-
surface of a complex space form (of holomorphic sectional curvature —4)
in terms of φ and H:

(1.11) R(X, Y)Z = <X, Z)Y- (Y, Z)X + (φX, Z)φy- (φY, Z)φX

- 2<X, ^F>^Z + (HY, Z)HX - <fΓX, Z)HY

(1.12) (VZH) Γ - (VYH)X = -f(X)φ Y + f(Y)φX - 2<X, ^ Γ> U

for all X, F, Ze Γ(Af), where 22 is the curvature tensor on ilί.
All hyper surf aces of CHn studied in the succeeding sections will have

U as a principal direction on M. So we should review some general facts
about such hypersurfaces set forth in [7].

Suppose that U is a principal direction on M with principal curvature
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a. Then

(1.13) 2{HφH + φ) = a(φH + Hφ)

on M. If λ is a principal curvature on M, let Dλ denote the distribution
of principal directions on M with principal curvature λ. If Xe Dxf)ker(f)
and λ2 — 1 Φ 0, then φX is also principal with principal curvature

(1.14) 7 = (αλ - 2)/(2λ - α) .

In case λ = — 1, then 7 = 1. If λ = 1, then (1.13) reduces to an identity
on span{X, φX, U}.

There are two classes of real hypersurfaces in CHn that have U
principal with all the principal curvatures constant and these are the
subjects of the next two sections.

2. Contact hypersurfaces: Algebraic consequences of the contact
condition. Let M be a 2w — 1 dimensional Riemannian manifold that
admits a triple of tensor fields (φ,f, U), (where φ eEnd[ T(M)], f is a
linear functional on T{M) and Ue T(M)), satisfying (1.3) and (1.6). As
remarked in the preceding section, such a triple {φ, /, U) forms an almost
contact structure on M. In general, a Riemannian manifold that admits
an almost contact structure also admits a metric satisfying (1.8). From
these formulae, (1.4), (1.5) and (1.7) can be obtained. This is a generali-
zation of an intrinsic condition that can be imposed on a Riemannian
manifold: M is said to be a contact manifold if it admits a linear func-
tional / on T{M) that is compatible with the Riemannian metric satisfying
fΛidf)71'1 Φ 0. Such a manifold also admits an almost contact structure
{φ,f, U), [1].

In Section 1, we saw that a real hypersurface M of CHn (in fact of
any complex space form) automatically admits an almost contact structure
that is compatible with the metric induced from the ambient space.
In [6], Okumura showed that if M271"1 is a contact real hypersurface of
a complex space form of complex dimension n, then

(2.1) φH + Hφ = 2pφ

on ikf, where p can be shown to be a constant. By selecting an appro-
priate orientation of M, p may be assumed to be positive. (In fact, (2.1)
is equivalent to ρ~nfΛ (d/)1*"1 Φ 0). Contact metric hypersurfaces are
contact hypersurface on which p — 1.

In the following discussion we shall assume that M is a complete,
connected, contact hypersurface of CHn(—4), with n ^ 3, and obtain
algebraic consequences of (2.1). In particular, the principal curvatures
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and directions on M will be determined using (2.1).
Combining (1.5) and (2.1) we have φHU = 0, which shows that

iίi7espan{ί7}, i.e., U is a principal direction. Set HU = all. We recall
some fundamental formulae for contact hyper surf aces:

LEMMA 1 (cf. [6]). On a contact hypersurface ofCHn, H\keτ{f) satisfies
the polynomial

(2.2) λ2 - 2pχ + ap - 1 = 0 .

LEMMA 2 (cf. [4]). a is constant on M, if M is contact.

From (2.2), M has at most three distinct principal curvatures, all of
which must be constant by (2.2) and Lemma 2. Since CHn(—4) has no
complete totally umbillic hypersurfaces (see [2] and [3]), we are left with
only two cases to consider:

(A) (2.2) has two distinct solutions λ : Φ λ2, or
(B) (2.2) has only one solution λ Φ a.
Case (B) is the easiest to analyse. Let Dλ and Da denote the eigen-

distributions of λ and a on M. Of course, Dλ is of dimension 2n — 2 and
Da has dimension 1. It is immediate that φ acts as a complex structure
on Dλ. Requiring (2.2) to have only one solution forces λ = p and p2 —

ap + i = 0. The latter equation has real solutions only when a2 — 4 ^ 0.
In case α2 — 4 > 0, we may regard a as a parameter. By selecting the
orientation of M appropriately, we may assume that a = 2 coth(2r) and
X = p = tanh(r) or coth(r), for some r > 0. Otherwise, set a = 2 and
X = p = l. So with respect to the frame consisting of principal directions
{Xlf , Xn_x, φXί9 , φXn_19 U) of Γ(ΛΓ), (where for each i = 1,
n — 1, HXi = \Xi and HφXt = XφXt), H has only three possible matrix
representations:

( i ) diag(tanh(r)I2n_2, 2 coth(2r)),
(ii) diag(coth(r)J2TO_2, 2coth(2r)), or
(iii) diag(/2n_2, 2).
Notice that in each of these cases, EX- \X + af{X)U, i.e., M is

totally U-umbillic. These hypersurfaces also satisfy the condition φH —
Hφ. In fact, it is not hard to show that a contact hypersurface is totally
Z7-umbillic if and only if φH = Hφ. Real hypersurfaces satisfying this
condition in CHn have been classified in [5]. However, the classification
for hypersurfaces satisfying (B) in this paper will involve a new geo-
metric characterization that utilizes [7].

The analysis of Case (A) is considerably more laborious and basically
new. We first notice that if a2 — 4 < 0, then M must satisfy (A). In
the following we will show that if M satisfies (A) and n ^ 3, then
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α2 - 4 < 0.
Let A and A be the eigendistributions of λx and λ2, respectively.

Since (2.2) has two distinct solutions λx Φ λ2, we have λj. + λ2 = 2p. Now
if XeDlf (2.1) shows that φXeD2. Therefore, φ interchanges the distri-
butions A and A from which it follows that each distribution is of
dimension n — 1.

LEMMA 3. // M satisfies (A) and n ^ 3, then λΛ2 = 1.

PROOF. This is established in a series of steps. First assume that
a Φ Xi for i = 1, 2.

Step 1. If X and Y are in A then so is VXY.
Proof of Step 1. We shall prove this in the case i = 1. Let X,

A Then

x ^ > = o .
This shows that VxYeker(f) so that £ΓVxFeker(/).

Let Zeker(/). Then

, Z) = (VXHY, Z) - ((VXH)Y, Z) = \(VxYf Z) - <Γ, (VXH)Z)

= λx<VxΓ, Z) - <Γ, (

Thus, ί ί V x Γ = λiV^F which completes the proof of Step 1.
Step 2. If X e A and Γ e A , then V x Γe Aθspan{?7} and V F I e

Aφspan{?7}.
Proof of Step 2. Let ZeD,. Then,

<Γ, Z> = 0 =- 0 - (VXY, Z) + <F, VXZ) => <VXΓ, Z> = 0 by Step 1.

This yields the first inclusion. The second follows in exactly the same
way by choosing ZeD2.

Step 3. If X e A and YeD.niφX}1, then VxYeD2 and V Γ XeA
(Here we see the reason for the stipulation n ^ 3.)

Proof of Step 3. From the hypotheses,

<yxY, U) = X(Y, U) - <Γ, VXU) = -<Γ, φHX) = -λx<Γ, φX) = 0 .

Combining this with Step 2 we have Step 3.
Let I e A and Γe A n W with ||X|| = | |Γ| | = 1. Applying Steps

1, 2 and 3 we find that

R(X, Y)Y=VX(VYY) - Vr(VxF) - Vu,F]Γe Aθspan{ί/}
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by writing [X, Y] = Vx Y — VYX. However, a direct computation using
the Gauss equation reveals that R(X, Y)Y = (λxλ2 - ΐ)Xe A Therefore,
i2(X, Y)3Γ = 0 and since X is nontrivial, we must have λiλ2 — 1 = 0.

Now if a = Xi for i = 1 or 2, the same statements hold if A and A
are replaced by AΓΊker(/) and AΠker(/). q.e.d.

Because of (2.2) we must have λiλ2 = ap — 1. So by Lemma 3, ap = 2
when 7i ^ 3 in Case (A). (2.2) can now be written as λ2 — 2ρx + 1 = 0.
This has two distinct solutions only when Ap2 — 4 > 0, i.e., when a2 —
4 < 0. Notice that a = 0 is ruled out by ap = 2.

Hence, if M is a contact hypersurface satisfying (A), a can be viewed
as a parameter. So set a = 2 tanh(2r), r > 0. Then the solutions of (2.2)
are x1 = tanh(r) and λ2 = coth(r). (Note that p = (tanh(r) + coth(r))/2 in
this case.) So with respect to a suitably chosen basis of T(M) = A Θ
A Θ span{[7}, H has the matrix representation:

diag(tanh(r)/„_!, coth(r)/„_!, 2 tanh(2r)) .

Notice that all the preceding hypersurfaces are isoparametric and
have the direction U as a principal direction. Hence, Theorem 2 of [7]
may be applied to classify these hypersurfaces, which is the purpose of
Section 4.

REMARK. Okumura in [6] treats the case a = Xt for i = 1 or 2
separately. But from our work so far we see that this occurs in Case
(A) for a specific r, namely r = ln(2 + i/ 3) in which case a = λ2 = i/ΊΓ
and λx = 1/l/lf.

3. Hypersurfaces of Cffn satisfying ^iϊ = ίfy. A quick glance at
the classification results in [5] will convince the reader that not all hyper-
surfaces satisfying

(3.1) φH = Hφ

are contact. Yet, these related hypersurfaces yield to the same algebraic
techniques and fall into the same type of classification as do the contact
hypersurfaces of the preceding section. So we should spend a little time
on algebraic consequences of (3.1). (For more detail see [5].)

Combining (3.1) with (1.4) yields U principal; say with principal
curvature α. An argument similar to that of Lemma 4 shows that a is
constant. By combining (1.13) with (3.1) we have

(H|ker(/)) "~ tffl|ker(/) + -fker(/) = 0 .

That is, H satisfies the polynomial
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(3.2) λ

2 - a\ + 1 = 0

on ker(/).
This equation has real solutions only if a2 — 4 ^ 0. In case α2 — 4 > 0

we can again regard a as a parameter and set a = 2 coth(2r), r > 0. The
solutions of (3.2) are now λ = tanh(r) or coth(r). In case a = ±2 set
λ = ± 1 .

If Dχ is a proper subspace of ker(/), then (3.1) ensures that Dλ is
^-invariant. Since ker(/) = Dλ φ Dux, Όm is also ^-invariant so that φ
acts as a complex structure on each of the even dimensional distributions
Dλ and D1/λ. From our analysis of Case (A) for contact hypersurfaces we
see that a hypersurface satisfying (3.1) is not in general contact.

The possible matrix representations for the second fundamental form
of a real hypersurface satisfying (3.1) with respect to a suitably chosen
basis of T(M) = Dλ φ D1/λ φ span{ϊ7} are now

(i) diag(tanh(r)I2p, coth(r)J2n_2_2p, 2coth(2r)), p = 0, , n - 1, or
(ii) diag(/2Λ_2, 2).
Of course, if p = 0 or p — n — 1 in (i) then M is contact, (ii) is

obviously contact.

4. Classifications. We invoke Theorem 2 of [7] to classify contact
hypersurfaces of CHn in terms of the families of isoparametric hyper-
surfaces constructed in [7]:

THEOREM 1. Let M be a complete connected contact hypersurface of
CHn{—4), n ^ 3. Then M is congruent to one of the following:

( i ) A tube of radius r > 0 around a totally geodesic, totally real
hyperbolic space form Hn( — 1),

(ii) A tube of radius r > 0 around a totally geodesic complex hyper-
bolic space form CHn~\—4:),

(iii) A geodesic hypersphere of radius r > 0, or
(iv) A horosphere.

PROOF. Apply Theorem 2 of [7], the matrix representation of a con-
tact hypersurface from Section 2 and the examples in [7]. q.e.d.

We thus have:

COROLLARY. Horospheres are the only contact metric hypersurfaces
of CHn(-4:).

The same techniques can be applied to obtain a new classification of
hypersurfaces satisfying (3.1):

THEOREM 2. Let M be a complete connected real hypersurface of
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CHn{—4) that satisfies (3.1). Then M is congruent to one of the following:
( i) A tube of radius r > 0 around a totally geodesic CHP(—4),

0 ^ p ^ n — 1, or
(ii) A horosphere.

Only one case remains to analyse: that of a real hypersurface satis-
fying φH = —Hφ (i.e., α = 2, λi = 1 and λ2 = —1). However, I have
found no examples of such hyper surf aces so I will defer that investigation.
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