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Abstract. We give a simplified proof of a recent result due to K. Masuda
concerning the global existence and asymptotic behavior of non-negative
solutions to some reaction-diffusion systems. This new method also provides
an analogous result under weaker growth assumptions on the nonlinear
terms.

Introduction. Let 2 be an open, bounded domain of class C! in R",
with boundary I' = 62. Let d,, d, be two positive constants with d, +# d,
and a,(x), a.(x) two nonnegative functions of class CYI") with «, =1,
a, =1. Let pcCYR™) be a nonnegative function. We consider the
reaction-diffusion system

(1) {au/at — d,Au + up(@) =0 on R*™xQ
ovjot — d,Av — up(v) = 0 on R*xQ

with the homogeneous boundary conditions

{alau/an + A1 —-—a)u=0 on R*xTI

a0v/on + (1 — a,)v =0 on R*xTI
A basic question, initially raised by Martin in [5], is the existence
of global solutions in C(2) for the initial-value problem associated to the
system (1)-(2). This question has been studied successively by Alikakos [1]
who gave a positive answer when ¢(v) < C(1 + |v|*™¥"), and by Masuda [6]

who solved the question when ¢(v) < CA + |v]f) with g8 > 0 arbitrarily
large without any restriction on n.

In this paper, we show that the method of K. Masuda can be
generalized to handle any non-linearity o(v) such that
(3) lim [(1/0)Log(1 + @()] = 0..

Also the proof given here is slightly simpler than Masuda’s argument and
is therefore still interesting when @(v) = ¢v?.

(2)

1. Notation and preliminary observations. Throughout the text we
shall denote by || ||, the norm in L?(Q), | |/ the norm in C(2) or L*(Q)
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and | ||~ the norm in C2). The study of local existence and unique-
ness of solutions to the initial-value problem for (1)-(2) in the framework
of C(2) or L*(Q) is classical. As a consequence of the theory of analytical
semi-groups the solutions are classical on 10, T*[, where T* denotes the
eventual blowing-up time in L>(2). It also follows from standard methods
that if the initial data «(0, ) = u,(x) and v(0, ) = v,(x) are nonnegative,
then v and v are nonnegative on 10, 7*[ x 2. Finally we note that as a
consequence of the methods of [2], to prove that the solutions of (1)-(2)
are global it is sufficient to derive a uniform estimate of |[u®(v)|, on
10, T*[ for some p > n/2. Since ||u(t)||. is obviously bounded by | «,|,,
it is therefore good enough to obtain a bound on |@(v)|, on ]0, T*.
Moreover if the bound does not depend on ¢, it will follow from the
results of [2] that ||u(t)|,. and ||v(t)],. are bounded for ¢ > 0.

2. Statement and proof of the main result. The main result of the
paper can be stated as follows.

THEOREM 1. For any solution of (1)-(2) there exist two positive
numbers ¢ and 8, depending only on ||u(0)|., such that

(4) Sg{l + o[u(t, x) + u*@t, x))}e*“"'dx is mon-increasing on 10, TH[ .

ProoF. For any feC*WR?') such that f=0and f =0 on R* and
any solution (u, v) of (1)-(2) it is straightforward to check the following

inequalities.

(5) (d/dt)Bgf(v)dx] < —dQL_ £(0) | Vo P + SQuf’(v)go(v)dx .

(6) (d/dt)[sg(u ) f(v)dx]§ — 2dlsg fv) | VP — dzL £ Vo [+ ut)dee
—(d,+ d2)g Qf’(v)(l + 2u)Vu -Vodx + Sgu[(u +u)f (v)— 1+ 2u)f(v)lp(v)dx .

[Note that ou/on < 0 and ov/on < 0 on 0, T*[ X I" and (5) is an equality
if @, =1, while (6) is an equality if o, = a, = 1].

We now choose in (5) f(v) = e where ¢ > 0 will be determined later
on. By the Cauchy-Schwarz inequality we note that

(7) d, + dZ)Sgee“’(l + 2u) | Vau| Vo |de — 2dlsge‘”{Vu[2dx
< [e¥(d, + dz)z/(Sdl)]Sge‘”(l + 2u)| Vo 'z

and since here f”’ =0, from (7) and (6) we deduce immediately the
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following inequality:

(8) (d/dt)sg(u + uderdr < Sgu[e(u + %') — (1 + 2u)]e”’p(v)da

+ [, + 48] (L + 20| Volds .
On the other hand from (5) we deduce
(9) (d/dt)sae“’dw = Sgeue‘”@(v)da} — ezdzsae“’IVv [*dew .

Let 6 = 8d.dy(d, + d.)*(1 + 2|/ %,|l)"% It follows immediately from (8) and
9), since (1 + 2u)* < (1 + 2||w,||)* that we have

(10) (d/dt)gg[l + o + ud)eda

=< Sg{e + ole(w + w*) — A + 2u)Puep(v)dex .

The integrand on the right-hand side of (10) is < 0 a.e. on 10, T*[x 2 as
soon as we have & + 0&(||%llw + ||%]|%) < 6. Hence for any e > 0 such
that

(11) e = 0[1 + o(|| o lloo + [loll2)]™

the inequality (10) yields
(12) (d/dt)sg[l + S(ut, @) + wit, we*dz <0 on 10, TH[ .

This clearly implies (4) and Theorem 1 is completely proved.

COROLLARY 2. If @ satisfies condition (3), all the solutions of (1)-(2)
with nmomnegative initial data u, v, tn L>(2) are global and uniformly
bounded on 10, + o[ X Q.

PROOF. (8) in particular implies that for any (u, v,) € L*(2)x L=(Q),
there exists a constant K such that

(13) 1+ o) < Ke“"", forall v=0

where ¢ = &(||%,||) is chosen as in the proof of Theorem 1. Then from
(4) it follows in particular that o(v)e L=(J0, T*[, L*(2)) and therefore
up(v) is bounded in L"(2) for ¢te[0, T*[. By the preliminary remarks
we conclude that the solution is global and bounded on ]0, + o[ X2 .

REMARK 3. In [8], the problem of global existence of nonnegative
solutions to (1)-(2) is studied when o(v) = ¢**. It turns out that global
existence can be established when n = 1 or 2 under a smallness assump-
tion on || ||«
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3. Behavior as ¢t > +o. To conclude the paper we give a simple
proof of another result of [6] in the spirit of [2].

PROPOSITION 4. Let (u, v) be any non-negative solution of (1)-(2) such
that w and v belong to Cy(]0, + <[ x Q). Then as t — + o we have

(14) lu@) — w*|l.—0
(15) lv@) — v*[l« —0,
where u* and v* are two real nonnegative constants such that w*e(v*) = 0.

PrOOF. We have the obvious inequalities

(16) (d/dt)sgudx - dISQAudw - Sgugv(v)dw
= dlgr[au/an]da — Sgu¢(v)dw <0

an (d/dt)gp(u + o) = dlsr[au/an]do + dZSr[av/dn]do <0
and the equality
(18) (d/dt)s wde = dls Aw-uds — S wp(v)ds
2 2 Q
= —dls | Vu 'dx + dlx u[ou/dnlde — S wo()dx .
Q2 r [’}

In particular the following functions of ¢:

S | du/dn|do, S |dvjdn lda,S ugv('v)dx,s |Vul'dz and S Vo de

r r Q2 Q2 2

are in L'(R*). Therefore [meas(Q)]"‘Squ(t, x)dz and [meas(.Q)]“S o(t, ©)ds
tend to a limit respectively denoted by u* and v*. ?

Then by using the above inequalities [together with an additional
formula for the i¢-derivative of the spatial integral of +?] in conjunction
with Poincaré’s inequality, the conclusion follows easily.

REMARK 5. The only case where (u*, v*) can be different from (0, 0)
is the case of Neumann boundary conditions for both # and v, i.e., when
a,=a,=1. In this case all nonnegative constants (u*, »*) such that
w*@(v*) = 0 are stationary solutions of (1) and therefore the result of
Proposition 4 is then optimal.
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