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1. Introduction. Uniform domains in the Euclidean w-space Rn, n^2,
were introduced by Martio and Sarvas [MS] who proved injectivity and
approximation results for these domains. This notion has turned out to
be useful in several questions. For example, Jones proved that BMO
and Sobolev functions on uniform domains can be extended to the whole
R* (cf. [JoJ, [Jo2], [GO]).

In Section 2 we consider various definitions for uniform domains.
All of these are based on the same idea; joining points of the domain
by a cigar. In Section 3 we give an essentially different characterization
based on compactness. In Section 4 we show that the uniformity of a
domain is a local property of its boundary. Section 5 deals with null-sets
for uniform domains.

2. Uniformity and cigars.

2.1. Cigars. We shall always assume that the dimension n of the
space Rn is at least two. Open balls are written as B(x, r).

Roughly speaking, a domain DaRn is uniform if each pair of points
in D can be joined by a cigar which is not too thin or too crooked.
One can use several types of cigars. Many of these can be described
as follows: Suppose that for every pair of distinct points a,beRn there
is given a set F(ay b) of continua containing a and 6. Suppose also that
for every triple 7 = (E, a, b) with EeF(a, b), there is given a continuous
function λ: E—> [0, °o) such that λ̂ CO) = {α, b}. Then for r > 0, we define
the cigar r-neighborhood of 7 of type {F, λ) as

C = cig(7, r, F, λ) = U {B(x, r\(x)): xeE} .

Observe that C is an open neighborhood of E\{a, b}. Suppose that δ is
a map which associates to every nondegenerate continuum EcRn a number
δ(E) > 0. If c > 1, r = 1/c and E satisfies the turning condition δ(E) <̂
c\a — 61, we say that C is a c-cigar of type (F, λ, δ). The continuum E
is the core of C. In the notation we often replace the triple 7 by E if
the points a and b are clear from the context.

A domain DcRn is c-uniform of type (F, λ, δ) if for each pair of
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distinct points a, b eD there is EeF(a, b) such that δ(E) ^ c\a — b| and
cig(E, l/c, F, λ)cZλ Briefly: a and b can be joined by a c-cigar of type
(F, λ, δ) in D.

Two definitions for c-uniform domains are equivalent if every c-
uniform domain DaRn in the sense of one definition is always Cj-uniform
in the sense of the other definition with cx = c^c, ri).

Typical examples of non-uniform domains in R2 are the parallel strip
and the complement of a half line. In the first example the cigars are
too thin and in the second example too crooked.

2.2. Length cigars. The most common choice for F(a, b) in the
literature seems to be the family of all rectifiable arcs with end points
a and b. Then δ(E) is the length of E, and χ(x) is the length of the
shorter one of the two subarcs of E into which x divides E. We call
cigars of this type length cigars and denote them by cigz(τ, r).

2.3. Diameter cigars. Another choice is to let F(α, 6) be the family
of all arcs joining a and b. Then δ(E) is the diameter d(E) of E. If
xeEeF(a, 6), x again divides E into subarcs E1 and E2. We set

χ(x) =

call cigars of this type diameter cigars and write them as cigd(τ, r). A
slightly different choice for λ is the function

λi(a?) = minmax{|τ/ — aφ !/e2£J ,
i

used by Martio in [Mo, 4.5]. Since λ x^λ^2λi, these choices are equivalent
from the point of view of uniform domains. The equivalence of the
definitions based on length or diameter cigars was proved by Martio
[Mo].

2.4. Distance cigars. In this paper we shall use the triple (F, λ, δ)
where F(a, b) is the family of all continua containing a and 6, δ(E) = d(E),
and

χ(x) = m i n ( | # — a\, \x — b\) .

We call cigars of this type (F, λ, δ) distance cigars or simply cigars and
write them as cig(τ, r) or cig(i?, r). The function

> /^\ \x a\\x o

used by Jones [Jo2] is equivalent to λ provided that E satisfies the turning
condition d(E) ^ c\a — b\; then λ/2 ^ λ2 ^ cλ.
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It is often convenient to allow the core E of a cigar to be an arbitrary-
continuum instead of an arc, especially if the cigar is constructed as a
limit of a sequence of cigars. For a future reference, we give the
following classical result on continua (see e.g. [Ku, p. 172]):

2.5. LEMMA. Let AaRn be a continuum, let UaR71 be open, and
suppose that A\U' Φ 0 . Then every component of Ap\U meets dll.

On the other hand, some constructions are easier to do if the core
of the cigar is an arc. The following result enables us to replace arbitrary
continua by arcs:

2.6. LEMMA. Let cig(τ, 1/c) be a c-cigar with 7 = (E, a, 6), and let
cx > c. Then there is an arc Ex with end points a and b such that for
7i = (Elf a, 6), cig(7lf 1/cJ is a c^cigar contained in cig(7, 1/c).

PROOF. Let ε > 0, and consider the cigar C = cig(τ, ε). It obviously
suffices to find an arc Ex joining a and b in CU{α, &}. For this, it suffices
to find an arc in CU{α} with end point at α. We may assume that
\a — b\ = 1. By 2.5, there is a component A1 of B(a, 1/2) ΠE joining a
and 3J5(α, 1/2). Proceeding inductively we find a sequence of continua
AiZDAgiD such that A3 joins a and a point XjedB(a, 2~j) in B(a, 2~j).
Join Xj and xj+1 by a broken line in B(a, 2~i+1) Πcig(7, ε). The desired
arc is then contained in the union of these broken lines. •

2.7. Mobius cigars. A somewhat different way to describe a cigar
is based on cross ratios. This idea is due to Martio [Mo], see also [Va2].
It is technically somewhat more complicated than the cigars above, but
it is handy when considering Mobius and quasi-Mδbius maps in the ex-
tended space Rn = jBnU{°°}. If a, b, c, d are distinct points in Rn, their
cross ratio is

\a — b \c — d
a, b, c, d\ =

a — c\\b — d\

with the obvious modification if one of the points is oo. The reader
should be warned that in the literature, there exist at least four out of
the six possible essentially different choices for the order of the points
α, bf c, d in the notation of the cross ratio. The choice above is the same
as in [Mo], but different (I apologize) from [Va2]. I think that this order
is the easiest to remember.

If EaRn is a continuum containing distinct points a and 6, we define
two unsymmetric Mobius cigar neighborhoods of Ύ = (E, α, b):

cigm(7, r) = {x e Rn: \x, y, a, b| < r for some y eE} ,
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cigm(7, r) = {x e i?71: |#, y, b, a\ < r for some y eE) ,

and the symmetric Mobius cigar neighborhoods

cigm(7, r) = cigUT, r)Ucig2

m(7, r) ,

cig£(7, r) = cigi,(7, r) Π cig2

m(7, r) .

A domain DaRn is called Mobius c-uniform if each pair of distinct
points α, 6 in D can be joined by some cigTO(7, 1/c) in D. No turning
condition for the core E is needed, since it is automatically satisfied.
The equivalence of Mobius and ordinary uniformities was proved by
Martio [Mo], The following lemma shows that one can replace the cigars
cigw by cigi,, cig2* or cig*:

2.8. LEMMA. Suppose that E is a continuum in Rn containing the
distinct points a and b. If 0 < r < 1, then ciĝ (i<7, r/(l + r))dcig2

m(E, r).

PROOF. Set r1 = r/(l + r). Performing an auxiliary Mobius map, we
may assume that α = oo, 6 = 0. If x 6cig^(£7, r j , there is y e E such
that

τ = \χ-V\ =\χ,y, o o , 0 | < r i .
\y\

Since

\χ\^ \v\-\y-χ

we have

\Xf y9 o, co I

and hence a ecig i^, r). •

2.9. DEFINITION. A domain Dc:Rn is c-uniform, c ^ 1, if each pair
of distinct points α, 6 6 E can be joined by a (distance) c-cigar in Zλ The
empty set is considered as a c-uniform domain for every c ^ 1. A domain
D(zRn is called c-uniform if Df]Rn is c-uniform. Remember that we
always assume n ^ 2.

2.10. THEOREM. Definition 2.9 is equivalent to Mobius uniformity
and hence to all ordinary definitions of uniformity.

PROOF. We shall prove the relations

cig(7, r/2)ccigm(7, r) , cig*(7, r2/2)ccig(7, r) ,

where 0 < r < 1, Ύ = (E, a, b), EciRn is a continuum, and in the second
condition, E satisfies the turning condition rd(E) ^ \a — 6|. The proof
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is valid in every metric space.
If x ecig(7, r/2), t h e r e is y eE wi th \x — y\ <2~1rmin(\y — a\, \y — b\).

Assuming \x — a\ ^ \x — b\ we have \a — b\ ί*2\x — a\, and obtain

I %> V, a, b\ < r. Hence x e cigm(7, r).
Next assume that rd(E) ^ \a — b\ and that x ecig*(7, r2/2). Then

t h e r e is y eE such t h a t \x,yfa,b\<r2/2. Since | y — b| ^ d { E ) ^\

and \y — a\ ^ \a — b\/r, this implies

\χ - y

| y - δ | 2 | α - δ |

Hence \x — y\/\y — b\ <r. By symmetry, a? ecig(7, r). By [Va2, 4.7], the
Mobius uniformity of D is equivalent to that of Df)Rn. The theorem
follows. •

It is often useful to know that boundary points of a uniform domain
can also be joined by a cigar in the domain:

2.11. THEOREM. Suppose that D is a c-uniform domain in Rn and
that a, beDΓ\Rn, aΦb. Then there is a c-cigar joining a and b in D.

PROOF. Choose sequences (α, ) and (&,-) of points in D converging to
a and 6, respectively. Choose c-cigars dg(EjΊ 1/c) Joining a3- and bo in D.
Since d{E5) ^ c\a3- — bά\, the continua Eό are contained in a compact subset
of Rn. Passing to a subsequence we may therefore assume that the
sequence (Ej) converges to a continuum E in the Hausdorff metric. Then
E contains a and 6, and d{E) ^ c\ a — 6|. It is easy to see that
cig(E, l/c)cίλ •

2.12. REMARK. In [Va2] we also considered uniform sets which are
not necessarily open. It follows from 2.11 that a set A is c-uniform if
and only if DaAcD for some c-uniform domain D.

2.13. Plump sets and c-pairs. We shall give a new characterization
for uniform domains, which will be needed in the next section. An open
set UdRn is c-plump, c ^ l , if for each x e Uf]Rn and for each r e (0, d(U))t

there is z e B(x, r) such that B(z, r/c) c 17. A uniform domain is always
plump (see 2.15), but the converse is not true. The plumpness condition
is clearly also true for x e UΠRn. If U is bounded, we easily see that
the plumpness condition is also true for r = d{U). The empty set is c-
plump for every c ^ 1.

If the plumpness condition is satisfied for every x edUpiR71 and
r 6(0, d(dU)), U is 2c-plump. To show this, assume that x 6 UpiRn and
that r e (0, d{U)). If B(x, r/2)c U, we can choose z = x. If B(x, τ\2)qL U,
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there is a point aeB(x, r/2)f]dU. If r/2 < d(dU), there is zeB(af r/2)c
B(x, r) such that B(z, r/2c)c [/. If r/2 ^ d(317), then Rn\UaB(a, r/2),
and we can choose z to be a point such that | z — x | = r and such that
x lies on the line segment with end points z and a.

Let ΰ be a domain in Rn and let c ^ 1. A pair (Blf B2) of balls
i?, = B(xjy rj)aD is a c-pair in D if

(1) rjr2e [1/2, 2],
( 2 ) I ^ - x21 ^ 4c max(ri, r2).

2.14. LEMMA. Lei DaRn be a c-plump domain, and let a, beDpiR71

with \a — b\ = r > 0. Then there are sequences (a3) and (bj) such that
setting Bs = B(ajy 2~jr/c), B) — B(bό, 2~jr/c) we have:

(1) The pairs (B19 B[), (Bj9 Bί+ί) and (Bj, B'j+1) are c-pairs in D.
( 2 ) \a3- - a\ ^2~άr, \b5 - b\ ^2~W.

PROOF. Since r = \a — &| ^ d(D), we can find ajeB(a, 2~jr) such
that B(ajf2~dr/c)c:D. Similarly, there are b3 eB(bf2~jr) such that
B(bj, 2~3'r/c)cD. The condition (2) is clearly true, and (1) is easy to
check. •

2.15. THEOREM. Suppose that DcRn is a domain, that c ^ l , c o ^ l ,
and that

(1) D is c-plump,
(2) the centers of the balls of every c-pair in D can be joined by

a Co-cigar in D.
Then D is c^uniform for some cλ = cλ(c, c0). Conversely, every cQ-uniform
domain D satisfies (1) and (2) with c — 4c0.

PROOF. Let a and b be distinct points in D. Set |α — 6| — r and
choose sequences (aό) and (bj) as in Lemma 2.14. For each j ^ 1 join α̂
to dj+1 by a Co-cigar cig(£7i, l/c0) in D, and similarly b3- to bj+1 by
dg(Fj, l/c0). Observe that

d ( E 3 ) ^ co\aj+1 - aj\^ 2~j+1c0r ,

and similarly for d(F3). Finally join a1 and b± by a co-cigar cig(£7*, l/c0)
in D. Then the union of all continua E*, Ej9 Fό together with a and b
is a continuum E. We show that E is the core of the desired Ci-cigar
joining a and b in D.

We shall first find an upper bound for d(E). Let zeE. Assume
that z 6 E3. Then

I z - α I ̂  I z - aj+1 \ + | aj+1 - a | ^ 2-^'+1cor + 2-^V ^ (c0 + l )r .

Similarly, zeF3 implies \z — 6| ^ (c0 + l)r, and thus |z — α| ^ (c0 + 2)r.
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If zeE*, we have

\z - a\ ^ \z - α j + \aι - a\ ^ co |αx - 6J + r/2 ^ (2c0 + l ) r .

Hence d(E) <: 6c0r.
It remains to find an upper bound cx for the function

_ minfls - α ] , [z - b\)

over x eE\{a, &}. Assume first that zeEj. As above, we obtain
\z — a\ ^ 2~i(2c0 + l)r. We consider three cases:

Case 1. \z - as\ ^ 2""i"V/c. Since JByCZ?, we have d(s, 3D) ^ 2~j~1r/c.
Hence %(z) ^ 2c(2c0 + 1).

Case 2. |« — as+1\ ^ 2~j~2r/c. A similar argument gives w(«) ^
4c(2c0 + 1).

Case 3. The cases 1 and 2 do not occur. Since cig(Ejf l / c o ) c ΰ , we
have d(z, 3D) ^ 2~j~2r/cc0, and hence (̂2;) ^ 4cco(2co + 1).

The case z 6 ^ is similar and the case z e £7* almost similar.
Conversely, assume that Z) is c0-uniform. The condition (2) is trivially

true. Let xeD and let r e ( 0 , d(D)). Choose yeD with |y — x\ — r/2.
There is a co-cigar cig(£7, l/c0) joining x and /̂ in D. Choose zeE with
Is — χ\ = r/4. Then J3(z, r/4co)cJ9. Thus Z) is 4co-plump. •

2.16. REMARK. Martin [Mn] has given the following interesting
characterization for the uniformity of a domain DczRn: There is c ^ 1
such that each pair α, 6 of points in D is contained in a c-bilipschitz
image CcD of a ball. Gehring and Hag [GH] have recently characterized
uniformity in terms of a min-max property of curves.

2.17. John domains. For completeness, we include a discussion of
John domains, but this concept is not used in the later sections. However,
these domains are closely related to uniform domains. Indeed, the original
definition for uniform domains in [MS] was based on John domains. The
definition of a John domain is usually given in terms of carrots rather
than cigars (see, however, 2.20). As in 2.1, suppose that for each pair α, 6
of distinct points in Rn there is given a set F(a, b) of continua containing
a and b. We also assume that for every triple Ί = {E, a, b) with E e F(a, b)
there is given a continuous function λ: i7-»[0, 00), but instead of λ" 1^) =
{a, b] we assume that λ-1(0) = {α}. If r > 0, the carrot r-neighborhood of
7 of type (F, λ) is the set

car(7, r, F, λ) = U {B(x, rx(x)): xeE} ,

also written as car(i?, r, F, λ). Thus car(7, r, F, λ) is an open neighborhood
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of E\{a}. If c ^ 1, we say that car(7, 1/c, F, λ) is a c-carrot of type
(F, λ) joining α and b. No turning condition is given on E.

A domain D Φϋn is called a c-John domain of ί̂ /pe (i*7, λ), c ^ 1, if
there is xoeD, called the John center of 2), such that every point in D
can be joined to x0 by a c-carrot of type (F, λ) in Zλ The equivalence
of two types are defined as for uniform domains (2.1). A c-uniform
domain could be defined as a domain such that each pair α, b of distinct
points in D is contained in a c-John domain GaD with d(G) ^ c\a — b\.

As with cigars, we consider three types of carrots, which are mutually
equivalent:

(1) Length carrots. We let F(a, b) be the family of all rectifiable
arcs E with end points a and b. Now x(x) is the length of the subarc
Ex of E with end points a and x. This is the most usual choice in the
literature. One often also gives an upper bound for the lengths of the
arcs E, but the number cd(x0, 3D) is always such a bound.

(2) Diameter carrots. Now F(a, b) is the family of all arcs joining
a and 6, and x(x) = d(Ex). We denote these carrots by card(7, r).

( 3 ) Distance carrots. Here we let F{a, b) be the set of all continua
containing a and 6, and \{x) == \x — a\. We write carrots of this type
as car(7, r) or car(u7, r) and call them simply carrots.

The equivalence of the types (1) and (2) was proved in [MS, 2.7]. In
fact, [MS] used a variation of (2) with paths instead of arcs, but a path
can always be replaced by an arc joining the same points in the induced
order [Wh, p. 39]. We prove the equivalence of the types (2) and (3):

2.18. THEOREM. Suppose that DczRn is a domain.
(a) If D is a c-John domain in the diameter sense (2), it is a c-John

domain in the distance sense (3).
(b) If D is a c-John domain in the distance sense (3), it is a c±-John

domain in the diameter sense (2) with c1 = cλ(c).

PROOF. The part (a) is trivial. Suppose that D is a c-John domain
in the distance sense. Let x0 be the corresponding John center of D.
Replacing c by a slightly larger number we may assume that the cores
of all carrots are arcs (cf. 2.6). Set a = d(x0, 3D). We first observe
that D(zB(x0, ca). Indeed, if xeD, choose a c-carrot car(i?, 1/c) joining
x to x0 in D. Then B(x0, \x — xQ\jc)ciD, which implies \x — xo\ 5g ca.

Suppose that xι e D. We want to find a diameter c-carrot card(i7, 1/d)
joining xx to x0 in D. If \xλ — xo\ < α, E can be chosen to be a straight
line segment. We may thus assume that |x t — x0\ ^ a. Set r = d(x19 3D)/2.
Then \xx — a?0| =

 r- Let k be the unique positive integer for which
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2*~V ^ \x, - xo\ < 2kr .

We define inductively points yά e 3B(xly 2y"V) Π D, l ^ j ^ k f as follows:

L e t y1e3B{xίir) be arbi trary. Assume t h a t t h e points ylf « , i o have

been chosen. Join y9- to x0 by a (distance) c-carrot car(23y, 1/c) in D,

where Ed is an arc from yά to x0. Let y y + 1 be t h e first point of E3

meeting dB(xlf 2jr).
For 1 <S j <; fc — 1 we let A3 be the subarc of Eά with end points yβ

and yi+1. We also set Ak — Ek and let AQ denote the line segment from
xL to ylm Then the union

has a natural structure of the image of a path from xλ to x0. Set
dj = d(A0U U Aj). It suffices to show that if xeAjf then the function
u(x) — d3'/d(x, dD) has an upper bound cx = c^c). Observe that ds ^ 2/+1r
for j ^ fc - 1.

If '̂ = 0, we have w(a;)^l. Suppose that l^j^k — 1. We consider
two cases:

Case 1. \x — ys\ ^ 2j~3r/c. Since car(JSf, , l/c)cΰ, we have d(a?, 3D) ^
2i~V/c2, and hence (̂α?) ̂  16c2.

Case 2. |aj~yy |^2ί"V/c. If i ^ 2 , then yy e JSy_lβ Since car(Ed_19 l/c)c
Z), we have d(y3-, dD)^\yΰ' — yd_1\/c^2j~2r/c. This is clearly also true if
j1 = 1. Hence d(a?, dD) ^ 2j~zr/c, which implies u(x) ^ 16c.

Finally assume that j — k. Now

d* ^ d(D) ̂ 2ca^2c\x1-x0\< 2*+1cr .

Considering two cases as above we obtain u(x) ^ 16c3. •

2.19. REMARK. The relation DaB(x0, cot) holds for every c-John
domain of type (F, λ) provided that χ(x) >̂ | x — a \, which is true for
each of the three types considered above. In particular, every John
domain of such a type is bounded. Remember that we excluded the
case D = Rn.

2.20. John domains and cigars. We next show that John domains
can also be characterized in terms of cigars simply by dropping the
turning condition from the defintion of a c-uniform domain. Thus we
say that a domain DaRn is a c-John domain in the cigar sense if for
each pair α, b of distinct points in D there is a continuum E containing
a and b such that cig(i?, l/c)cZλ Compared with the definition in 2.17
there is one essential difference: There are unbounded domains satisfying
the new condition, for example, a half space. For bounded domains,
however, the two definitions are equivalent:
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2.21. THEOREM. Suppose that D is a domain in Rn.
(a) If D is a c-John domain in the (distance) carrot sense, it is a

c-John domain in the cigar sense.
(b) If D is bounded and a c-John domain in the cigar sense, it is

a crJohn domain in the carrot sense with cλ = c^c).

PROOF, (a) Let x0 be the John center of D, and suppose that
a, beD. Join a and b to x0 by c-carrots car(£7, 1/c) and car(F, 1/c) in D.
Then cigCEΊjF, 1/c) joins a and b in D.

(b) Choose points a, beD with \a — b\ = a ^ d(D)/2, and join them
by a continuum E with cig(E, l/c)cZλ Choose a point xQeE with
\x0 — a\ — \x0 — &|. Then B(x0, a/2c)aD. Suppose that x1eD, and join
a?! to #o by a continuum F with cig(F, 1/c) cZλ If a? e F and |a? — xo\ ̂  α/4c,
t h e n I a? - x,\ ̂  d(Z>) ^ 8 c \x - xQ\, a n d t h u s d(x, 3D) ^ \ x - x^/Sc2. I f x e F
and \x — 5C0| ^ α/4c, then cZ(#, 3D) ^ α/4c ^ d(D)/8c ̂  \x — x^βc. Hence
car(F, l/8c2)cZ>, and thus J5 is a 8c2-John domain in the carrot sense. •

2.22. REMARK. 0. Martio (unpublished) has given the following
characterization for a John domain DczRn. There are xQeD and c ^ 1
such that for each point x e D there are r > 0 and a c-bi-Lipschitz mapping
/ : £(0, r)^Z> with /(0) = x0 and xefB(0, r) (cf. 2.16).

2.23. REMARK. The definition 2.9 of uniform domains makes sense
in every metric space. Many results and proofs of this paper are valid
in this general case. A notable exception is Section 3 where we make
effective use of the similarity maps and the local compactness of Rn.

In Lemma 2.8 we made use of the inversion in Rn. A general metric
space can be isometrically embedded into a normed space V. The inversion
u(x) = xj\x\2 in V changes the cross ratios at most by the factor 34 [Va2,
1.6]. Hence the analogue of 2.8 is true in every metric space with
r/(r + 1) replaced by rβ\r + 1). The proof of 2.10 shows that uniformity
and Mobius uniformity are equivalent in every metric space. However,
Mδbius uniformity makes also sense in an extended space XU{°°}. On
the other hand, the Mδbius uniformity of a domain D in the extended
space is often equivalent to the uniformity of Z)\{oo} [Va2, 4.7].

3. Uniformity and compactness. In this section we give a charac-
terization for uniform domains in Rn in terms of compactness.

3.1. Terminology. If X is a compact metric space, the set

K(X) = {A: 0 Φ AaX, A compact}

with the Hausdorff metric is a compact metric space, and the subfamily
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of all continua is compact [Ku, pp. 45, 47, 139]. We shall only consider
the case where X is the extended w-space Rn = Rn U {°°} with the spherical
metric. We write

Kn = mA») .
Closed unbounded sets AaRn will also be considered as elements of Kn,
identifying A with AU{°o}.

If HaKn, we let simiί denote the family of all images of the
members of H under similarity maps of Rn. Furthermore, we write

H2 = {AGH: {0, eJ

where e1 — (1, 0, , 0).
We say that a family H(zKn is sίαδίe if (1) sim H = H and (2) H2

is compact. The family H = {.B71} is trivially stable, since if2 = 0 .
For any HdKn we let σCfl") denote the union of all stable sub-

families of H.
We shall show that the set of the complements of all uniform domains

is precisely σ(H) where H is the family of the complements of all domains
in Rn. For that we need a similar characterization for the plump open
sets.

In another paper [Va4] I prove that if HaKn is any family which is
invariant under quasisymmetric maps, then σ(H) has the same property.
It follows that the uniformity of a domain is invariant under quasisym-
metric maps of the complement of the domain, and the same is true for
the plumpness of an open set.

We first give an alternative characterization of σ(H). An auxiliary
result is needed:

3.2. LEMMA. // HczKn and sim H = H, then (cl H2)2 = (simcl H2)2 =
(cl H)2.

PROOF. Clearly sim H=H implies sim cl H = cl H. Hence c l i P c
s imcl ίPcc l i ί . Thus it suffices to show that (cl ϋ) 2 c(cl if2)2. Suppose
that Ae(clϋ) 2 . Then {0, eJcSA, and there is a sequence AjβH con-
verging to A. Choose points ajf bjβdAj with a3—> 0, b3- —> ex. Let aj be
a similarity which maps (ajf 6y) to (0, ej. We may assume that the
sequence (αy) converges uniformly to a similarity a with α|{0, ej = id.
Then B3 = cΓ^As e H2 and B3 -> A. Hence A e (cl iϊ2)2. •

3.3. THEOREM. Let HczK71 with sim H = iί, α^d suppose that AeKn

has at least two finite boundary points. Then A e σ(H) if and only if
cl((sim{A})2)ciϊ2.
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PROOF. Set M = (sim{A})2. If Aeσ(H), A belongs to a stable family
LaH. Then ikfcL2, and hence clMaUcH 2 .

Conversely, assume that clikfcif2. Then L = simcl MaH. Since
dAf]Rn contains at least two points, AeL. Hence it suffices to show-
that L is stable. Clearly sim L = L. From 3.2 it follows that L2 = (cl M)\
Since cl MaH2, U = clikf, and thus U is compact. •

3.4. THEOREM. For c ^ 1 let Lc be the family of all AeKn such
that Rn\A is c-plump. Then Lc is compact and stable. Conversely, for
every stable family LaKn there is c ^ 1 such that LaLc.

PROOF. Assume that A3 eLc and that A3 -+ AeKn. To prove that
Lc is compact we must show that U = Rn\A is c-plump. Suppose that
xe Uf)Rn and that 0 < r < d(U). We may assume that the sets U3 =
Rn\A3 have diameters greater than r and that x e Uό for all j . Since
Uj is c-plump, we can choose ZjβB(x,r) with B(zί9 r/c)cZ7y. We may
assume that zs —>zeB(x, r). Then B(z, r/c)aU. Hence U is c-plump.

Clearly simLc = Lc. Assume that BάeL\ and that B3-+BeKn. To
prove that Lc is stable we must show that BeL2

c. By the first part of
the proof, B belongs to Lc. Since {0, eJcSBy, d(Λn\J5y) ^ 1. For every
given re(0,1) we can choose ydeB(0,r) with B(yίf rlc)aUj. We may
assume that yd->y ej?(θ, r). Then B(y, r/c)c:Rn\B, and thus OedU.
Similarly e1GdU, and thus BeL2

c. We have proved that Lc is stable.
Assume that the last part of the theorem is false. Then there is a

stable family LdKn and sequences AάeL, ad e dAjf]Rn and rs e (0, d{BA3))
such that d(z, A3 ) ^ rrfj for all zeB(ajf rs)\ see 2.13. We may assume
that dAj Π dB(ajf rs) Φ 0. For every j choose a similarity a3- such that

a3(a3) = 0 , a3B(a3 , r3) = 5(0, 1) - Bn , e, 6 3ayAy .

Then C3 = a3A3 e ZΛ Since L2 is compact, we may assume that C3-*Ce ZΛ
Since ^ , Cy) ^ 1/i for all ^ e ΰ n , we have BnaC. Hence 0g3C, which
gives a contradiction C&L2. •

3.5. COROLLARY. AW opew set UaRn is plump if and only if
Rn\Ueσ(Kn).

3.6. THEOREM. For c ^ 1 let Mc be the family of all AeKn such
that Rn\A is a c-uniform domain. Then Mc is compact and stable.
Conversely, if MaKn is a stable family such that Rn\A is connected
for every AeM, then MczMc for some c ^ 1.

PROOF. Suppose that A3 e Mc and that A3 —> A 6 Kn. To show that
D = Rn\A is a c-uniform domain let a, beDf)Rn. Then α, b eD3 = i
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for large j. Join a and 6 by a c-cigar cig(E3, 1/c) in D3. We may assume
that (Ej) converges to a continuum E with d(E) ̂  c\a — 6|. It is easy
to see that cig(E, l/c)cΰ. Hence AeMc, and Mc is compact.

Clearly simikfc = Mc. By 2.15, McaLie where Lc is as in 3.4. Since
Mc is compact, 3.4 implies that cl MlcLlcf)Mc — Ml. Hence Mc is stable.

Suppose that the last part of the theorem is false. By 3.4 there is
c ^ 1 such that all members of M are c-plump. By 2.15 we can find
sequences of sets A3eM and c-pairs (B(x3, r3), B{yh s3)) of balls in D3 =
Rn\A3 such that the centers xjy yά cannot be joined by a i-cigar in D3.
We may assume that r3- ̂  so . Then

for all j.
Set Qj = dAjΠBiXj, IOCTJ). If d(Q3 ) ^ rj9 it is easy to join x3 and yd

in Dj by a i-cigar for large j. We may thus assume that d(Qd) ^ ry for
all j. Choose points a3 , b3 e Q3 with \a3 — b3\ ̂  r̂  . For every j" choose a
similarity a3 such that αXα̂  ) = 0, a3{b3) = βx. Since ilί is stable, the sets
C3 = a3A3 are in ikP, and we may assume that C3-*C eM. Setting
Lj z= \aβ — b3\~x — lipα^ we have l/20c ^ L3r3 ^ 1. Passing again to a
subsequence we may assume that

as(xj) -> x' , a3{y3) -> y' , L3r3 -> r '

with

a;', / 6 5(0, 20c) , l/20c ^ r' ^ 1 , \x' - y'\ ^ r' .

Then the balls l?(a?', r') and JB(̂ /', r') are contained in D = Rn\C. Since
CeM, D is connected, and we can join #' and #' by a continuum EaD.
Choose 6 ^ 1 such that d(jS) ̂  6|a?' - j / f | and cig^, 1/6) c D . Let JÊ  be
the union of £7 and the two line segments joining xf to a3(x3) and ̂ /' to
αyd/,-). Then for large j, cig(E3, 1/26) is a i-cigar joining a3 {x3) and α ^ )
in Rn\Cj. Applying the map aj1 we obtain a i-cigar joining α̂  and yά

in D̂  . This contradiction completes the proof. •

3.7. COROLLARY. Let H be the family of all AeKn such that
Rn\A is connected. Then a domain DaRn is uniform if and only if
Rn\Deσ(H).

3.8. COROLLARY. A domain DaRn is not uniform if and ony if
there is a sequence (a3) of similarities such that

(1) {(UJcαyaD,
(2) Rn\a3D->AeKn, and either OeintA or RV\A is not con-

nected.
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3.9. REMARK. The case 0 e int A in 3.8 occurs if the cigars are too
thin and the other case if they are too crooked. For example, let D be
the strip 0 < x2 < 1 in R2. Setting ctj(x) = x/j we have R2\ajD-> R2.
Next let D be the complement of the half line {reλ\ r ^ 0} in R2. For
aό(x) = j(x — βj) the sequence R2\a3D converges to the α^-axis.

Of course, the situation with arbitrary domains may be much more
complicated.

4. Local uniformity. In this section we show that the uniformity
of a domain D is a local property of dD. This probably belongs to the
folklore.

4.1. THEOREM. Suppose that DaRn is a bounded domain and that
c ^ 1, 0 < r < d(D). Suppose also that if zedD, then every pair of
points in Df] B(z, r) can be joined by a c-cigar in D. Then D is cx-
uniform with cx — i0csd(D)/r.

PROOF. We may assume that d(D) = 1. Observe first that if α, b eD
with \a — 61 ̂  r/2, then a and b can be joined by a c-cigar in D. Indeed,
if d(a,dD)<r/2, then a and b belong to B(z, r) for some zedD. If
d(a, 3D) ^ r/2, then B(a, r/2)cD, and there is even a 1-cigar joining a
and b in D.

Let a and b be arbitrary points in D. We want to join them by a
crcigar in D. By the remark above, we may assume that \a — b\ > r/2.
Set q — l/20c. Since D is connected, there is a finite sequence a =
x0, xlf , xs = b of points in D such that

2qr ^ I Xj — xό_γ \ ^ 5qr

for all j — 1, , s. Since q ^ 1/20, \xs — x0_x\ ^ r/4 for all j . Hence we
can join x5_x and xs by a c-cigar dg(Ejf 1/c) in D. By Lemma 2.5, there is
a continuum Aa{x eEλ: \x — a\ ^ \x — xx\) containing a and a point uλ with
\uλ — a\ — \u± — xλ\. Similarly choose a continuum Ba{xeE8: \x — b\ ^
\x — x8-i\} containing b and a point us with \u8 — b\ — \u8 — xs^\. For
1 ^ j ^ s — 1 we let %,- be an arbitrary point in Eό satisfying \us — Xj_λ\ —
Uj — Xj\. Since

d(Ej) t*c\Xj — Xj_!I ^ 5grc = r/4

for all j , \uj+1 — %| ^ r/2 for 1 ^ i ^ s — 1. Hence there is a c-cigar
cig(i^ , 1/c) joining uά and u i + 1 in D. Then F = A U F, U U F8_, [JB is
a continuum joining a and 6. We claim that it is the core of a Ci-cigar
in D.

Since d(F) ^ d(D) = 1 and since |α —6| ^ r/2, F satisfies the turning
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condition d(F) ^ (2/r) | α — b\^c1\a — b\. I t remains to show t h a t u{z) ^ ct

for zeF where

__ min(lz - a\, \z - b\)

Case 1. zeA or zeB. Now u{z) ^ c ^ cx.
Case 2. zeFj for some j . Since cί(D) = 1, if suffices to show that

d{z, 3D) ^ 1/d Since cig(Ed, l/c)cΰ and since |% - xά | ^ |% — a?y_iI/2 ^ gr,
we have d(%, 3D) ^ gτ/c. Hence d(2, 3D) ^ qτ/2c ^ 1/d if \z — u3-\ ^ qr/2c,
and the same is true if \z — uj+1\ ^ qr/2c. If these distances are at least
qr/2c, the condition cig(i^ , l/c)cΰ implies that d(z, 3D) ̂  gr/2c2 = l/cλ. Π

4.2. REMARKS. 1. It follows from 4.1 that the (ε, <5)-domains of
Jones [Jo2] are uniform if they are bounded. For unbounded domains
this is not true.

2. We obtain a version of 4.1 for unbounded domains by adding the
condition that each pair of points in D\B(0, 1/r) can be joined by a c-
cigar in D. Then D is cΓuniform with some cx = cλ(c, r).

Alternatively, one can use the spherical metric. In fact, the spherical
metric gives the same class of uniform domains in Rn as the Euclidean
metric. This follows from the fact that the identity map of Rn is a
Mobius transformation (preserves cross ratios) with respect to these
metrics and from the Mobius in variance of uniform domains.

3. Theorem 4.1 and its proof are valid in every metric space.

5. Null-sets for uniform domains.

5.1. We say that a closed set AczR71 is a null-set for uniform domains
or an NUD set if int A = 0 and if Rn\A = D is a uniform domain. If
D is c-uniform, we say that A is c-NUD. The main result of this section
is Theorem 5.4 in which we show that removing an NUD set from a
uniform domain yields a uniform domain. We first give easy estimates
for the dimension of an NUD set. Let dim A and dimHA denote the
topological and the Hausdorff dimension of A, respectively.

5.2. THEOREM. If AaRn is c-NUD, then dim A <; n — 2 and άimHA ^
a = a(c, n) < n.

PROOF. If dimA = n — 1, Rn\A is not locally connected on the
boundary. The theorem follows from [Mo, 6.5 and 6.7]. •

5.3. REMARKS. 1. If A is closed in Rn~\ it is easy to see that A
is NUD in Rn if and only if A is porous in Rn~\ that is, there is c ^ 1
such that every ball Bn~\x, r) contains a point z with Bn~ι{z, r/c) n A = 0 .
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2. Let H be the set of all closed sets AdRn with dim A <Z n — 2.
It is easy to see that with the notation of 3.1, σ(H) is precisely the
family of all NUD sets in Rn.

3. There exist countable sets which are not NUD. For example, the
set of integers is not NUD in R2.

4. From [GM, 2.4 and 2.18] it follows that a NUD set is always
NED (nullset for extremal distances).

5.4. THEOREM. Suppose that AaRn is c-NUD and that DaRn is a
C'Uniform domain. Then D\A is a c^uniform domain with cx = 54c\

PROOF. Let α, b e D\A. We show that there is a cΓcigar in D
joining a and b. Set cr — 4c/3. Applying Lemma 2.6 we find an arc E
from a to b such that cig(£7, 1/c') is a c'-cigar in D. Let x0 e E be a
point for which \x0 — a\ = \x0 — δ|. Set

q = l / 8 c 3 , x(x) = m i n f l α — a\9 \x — b\) ,

and define the sequence xlf x2, of points in E inductively as follows:
Orient E from a to b. Then xj+1 is the last point of EΠB(xjf qx(xj)).
Similarly define x_lf x_2, ••• by letting x.j^ be the first point in En
B(x_j, qx(x-j)) The sequence xlf x2, ••• converges to a point b' eE. For
k > j we have \xk — x3 \ ^ qx(Xj), which implies λ(δ') = 0, and thus V = b.
Consequently, Xj-^b as j —> co, and similarly xs —> α as i —> — °°.

Since i2 n \A = G is a c-uniform domain, it follows from 2.11 that
we can join xs_x and x5 by a c-cigar cig(Ejr 1/c) in G for every integer
j . For each j choose ys e E3- with | ys — ̂ y_! | = | ys — xά \, and join ys and
1/i+i by a c-cigar cig(Fίf 1/c) in G. We claim that the union F of all Fi9

j e Z, and the pair {α, 6} is the core of the desired cx-cigar from a to b
in D \ A .

We first estimate the diameters of the sets Fs. If j > 0, we obtain

(5.5) d(Fj) ^ c \ y j + 1 - y j \ ύ c(d{Eά)

A similar argument gives

d{Fj) ^ c2q(x(xό)

for j < 0, and

It follows that d(Fj)—>0 as i~̂ c>o or j-> — oo. Hence F is a continuum.
We next estimate the function λ(z) for z e F . Suppose that zeF3

for some j > 0. Then (5.5) implies

d(Ej) ^
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Here Xixj^) ^ λfo ) + qx(%,-i) Since q <; 1/8, we obtain λ(%_x) ^ (8/7)λ(&y)
Consequently,

(5.6) I s - a ,

Thus

(5.7) λ(z) ^ λfo) + |s - a,| ^ 3λ(a?y)/2 .

Similar arguments show that (5.6) and (5.7) are true also for z 6 Fs with

Since cig(E, l/c')cl>, (5.6) implies for zeFά:

(5.8) d(z, 3D) ^ d(a?y, 3D) - \z - a?y| ^ λ(%)/c' - λfe )/2c = λ(a?y)/4c .

We next estimate d(z, A) for zeF. We only consider the case zeFjf

j > 0. Since cig(Ej} l/c)cG, the ball J B ( ^ , ry) is in G, where

r , = \yd- Xj\/c ^ %_ x - xd\/2c =

Since x(xs^) ^ (8/9)λfe ), we have r, ^
Set λy(«) = miτίQz — y3-+1\, \z — ys\). If λy(«) ^ λ(xy)/36c4, we have

If λy(j2) ^ λfe )/36c4, then cig(Fy, l/c)c(? implies

Together with (5.7) and (5.8) these estimates show that cig(F, l/c1)dD\A.
We finally verify the turning condition d{F) ^ cjα — 6|. If zeFjf

(5.6) gives

\z — a\<^\z — Xj\ + \xd — a\<L 3d(E)/2 .

Since d{E) ^ c ' | α - δ | , we obtain d{F) ^ 4 c | α - 6|. Π

5.9. COROLLARY. If A and B are c-NUD in Rn, then AΌB is cr

NUD with d = 54c5.

Added in proof. The recent paper [Ge] of Gehring contains several
characterizations for uniform domains.

REFERENCES

[Ge] F. W. GEHRING, Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch.
Math.-Verein. 89 (1987), 88-103.

[GH] F. W. GEHRING AND K. HAG, Remarks on uniform and quasiconformal extension domains,
Complex Variables, to appear.

[GM] F. W. GEHRING AND 0. MARTIO, Quasiextremal distance domains and extension of
quasiconformal mappings, J. Analyse Math. 45 (1985), 181-206.



118 J. VAISALA

[GO] F. W. GEHRING AND B. G. OSGOOD, Uniform domains and the quasihyperbolic metric,
J. Analyse Math. 36 (1979), 50-74.

[Joi] P. W. JONES, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66.
[Jo2] P. W. JONES, Quasiconformal mappings and extendability of functions in Sobolev spaces,

Acta Math. 147 (1981), 71-88.
[Ku] K. KURATOWSKI, Topology, Vol. II, Academic Press, 1968.
[Mn] G. J. MARTIN, Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and

the quasihyperbolic metric, Trans. Amer. Math. Soc. 292 (1985), 169-191.
[Mo] 0. MARTIO, Definitions for uniform domains, Ann. Acad Sci. Fenn. Ser. A I Math. 5

(1980), 197-205.
[MS] O. MARTIO AND J. SARVAS, Injectivity theorems in plane and space, Ann. Acad. Sci.

Fenn. Ser. A I Math. 4 (1979), 383-401.
[Va'i] J. VAISALA, On the null-sets for extremal distances, Ann. Acad. Sci. Fenn. Ser. A I

Math. 322 (1962), 1-12.
[Va2] J. VAISALA, Quasimδbius maps, J. Analyse Math. 44 (1985), 218-234.
[Va'3] J. VA'ISALA, Porous sets and quasisymmetric maps, Trans. Amer. Math. Soc. 299 (1987),

525-533.
[VέU] J. VAISALA, Invariants for quasisymmetric, quasimobius and bilipschitz maps, J. Analyse

Math., to appear.
[Wh] G. T. WHYBURN, Analytic topology, Amer. Math. Soc. Colloquium Publications 28, 1942.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF HELSINKI

HELSINKI

FINLAND




