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1. Introduction. Uniform domains in the Euclidean n-space R*, n=2,
were introduced by Martio and Sarvas [MS] who proved injectivity and
approximation results for these domains. This notion has turned out to
be useful in several questions. For example, Jones proved that BMO
and Sobolev functions on uniform domains can be extended to the whole
R* (cf. [Jo,], [Jo,], [GO]).

In Section 2 we consider various definitions for uniform domains.
All of these are based on the same idea; joining points of the domain
by a cigar. In Section 3 we give an essentially different characterization
based on compactness. In Section 4 we show that the uniformity of a
domain is a local property of its boundary. Section 5 deals with null-sets
for uniform domains.

2. Uniformity and cigars.

2.1. Cigars. We shall always assume that the dimension n of the
space R" is at least two. Open balls are written as B(x, 7).

Roughly speaking, a domain DCR" is uniform if each pair of points
in D can be joined by a cigar which is not too thin or too crooked.
One can use several types of cigars. Many of these can be described
as follows: Suppose that for every pair of distinct points a, b € R* there
is given a set F(a, b) of continua containing a and b. Suppose also that
for every triple v = (&, a, b) with E € F(a, b), there is given a continuous
function A: E— [0, o) such that A~(0) = {a, b}. Then for » > 0, we define
the cigar r-neighborhood of v of type (F, \) as

C = cig(v, r, F, \) = U{B(x, \(z)): x € E} .

Observe that C is an open neighborhood of E\{a, b}. Suppose that § is
a map which associates to every nondegenerate continuum Ec R" a number
oE)>0. If ¢e>1, r=1/c and FE satisfies the turning condition 6(E) <
c¢la — b|, we say that C is a c-cigar of type (F, \, ). The continuum E
is the core of C. In the notation we often replace the triple v by FE if
the points @ and b are clear from the context.

A domain DCR" is c-uniform of type (F, ), d) if for each pair of
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distinet points a, b € D there is E € F(a, b) such that 6(F) < c|a — b| and
cig(E, 1/e, F, x)cD. Briefly: a and b can be joined by a c-cigar of type
(Fy, N\, 0) in D.

Two definitions for c-uniform domains are equivalent if every c-
uniform domain DC R" in the sense of one definition is always c¢,-uniform
in the sense of the other definition with ¢, = ¢,(¢c, n).

Typical examples of non-uniform domains in R? are the parallel strip
and the complement of a half line. In the first example the cigars are
too thin and in the second example too crooked.

2.2. Length cigars. The most common choice for F(a, b) in the
literature seems to be the family of all rectifiable arcs with end points
a and b. Then 6(&) is the length of E, and \(x) is the length of the
shorter one of the two subarecs of E into which z divides E. We call
cigars of this type length cigars and denote them by cig,(v, 7).

2.3. Diameter cigars. Another choice is to let F(a, b) be the family
of all arcs joining @ and b. Then §(&) is the diameter d(E) of E. If
xeFEeF(a,b), x again divides E into subares E, and E,. We set

Max) = min(d(E), d(E,)) ,
call cigars of this type diameter cigars and write them as cig,(v, »). A
slightly different choice for ) is the function
M) = min max{ly —x:y € £},
used by Martio in [Mo, 4.5]. Since ), =<)\=2\,, these choices are equivalent

from the point of view of uniform domains. The equivalence of the
definitions based on length or diameter cigars was proved by Martio

[Mo].
2.4. Distance cigars. In this paper we shall use the triple (F, A, 9)
where F(a, b) is the family of all continua containing a and b, 6(E) = d(&),
and
M) = min(|jz — al, | — b)) .
We call cigars of this type (F), ), §) distance cigars or simply cigars and
write them as cig(v, ») or cig(F, ). The function
_lz—allx—b]
la — b

used by Jones [Jo,] is equivalent to ) provided that E satisfies the turning
condition d(E) < cla — b]; then \/2 <\, < e

E)
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It is often convenient to allow the core E of a cigar to be an arbitrary
continuum instead of an are, especially if the cigar is constructed as a
limit of a sequence of cigars. For a future reference, we give the
following classical result on continua (see e.g. [Ku, p. 172]):

2.5. LEMMA. Let ACR" be a continuum, let UCR_:‘ be open, and
suppose that ANU # @. Then every component of ANU meets oU.

On the other hand, some constructions are easier to do if the core
of the cigar is an arc. The following result enables us to replace arbitrary
continua by ares:

2.6. LEMMA. Let cig(v, 1/c) be a c-cigar with v = (E, a, b), and let
¢, >c. Then there is an arc E, with end points a and b such that for
v, = (K, a, b), cig(7, 1/¢)) is a c,-cigar contained in cig(v, 1/c).

PROOF. Let ¢ > 0, and consider the cigar C = cig(v, ¢). It obviously
suffices to find an arc E, joining @ and b in CU{a, b}. For this, it suffices
to find an arc in CU{a} with end point at a. We may assume that
la —b| =1. By 2.5, there is a component A, of B(a, 1/2)NE joining a
and 0B(a, 1/2). Proceeding inductively we find a sequence of continua
A,DA,D--- such that A4; joins @ and a point x;€dB(a, 277) in Bla, 279).
Join «; and x;,, by a broken line in B(a, 27"*)Ncig(7, ¢). The desired
arc is then contained in the union of these broken lines. O

2.7. Mobius cigars. A somewhat different way to describe a cigar
is based on cross ratios. This idea is due to Martio [Mo], see also [Va,].
It is technically somewhat more complicated than the cigars above, but
it is handy when considering Mobius and quasi-Mobius maps in the ex-
tended space R = RrU{e}. If a,b, ¢, d are distinct points in R*, their
cross ratio is

_la—bllc—d|
o be dl = e = a)
with the obvious modification if one of the points is . The reader
should be warned that in the literature, there exist at least four out of
the six possible essentially different choices for the order of the points
a, b, ¢, d in the notation of the cross ratio. The choice above is the same
as in [Mo], but different (I apologize) from [V3,]. I think that this order
is the easiest to remember.
If ECR" is a continuum containing distinet points @ and b, we define
two unsymmetric Mobius cigar meighborhoods of ¥ = (E, a, b):

cigh(v, r) = {zxe R* |2, ¥, a, b| < r for some ¥y ek},
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cigi(v, r) = {we R™ |z, ¥, b, a| < r for some yeE},
and the symmetric Mobius cigar neighborhoods

cig,(v, ) = cign(Y, r)Ucigh(v, r) ,

cign(7, r) = cign(Y, r)Neigh(v, r) .
A domain DCR" is called Mobius c-uniform if each pair of distinct
points a,b in D can be joined by some cig,(7, 1/¢) in D. No turning
condition for the core E is needed, since it is automatically satisfied.

The equivalence of Mobius and ordinary uniformities was proved by
Martio [Mo]. The following lemma shows that one can replace the cigars

cig, by cigl, cig? or cigk:
2.8. LEMMA. Suppose that E is a continuum in R» containing the
distinct points a and b. If 0 <r <1, then cigh(E, r/(1 + r))Ccigh(E, 7).
ProOF. Set r, = /(1 + r). Performing an auxiliary Mobius map, we
may assume that @ = «, b =0. If zecigh(®, r,), there is y € E such
that

T:u:lx,y, oo’0|</,-l.

|y
Since
el = |yl — |y — 2| =]yl —17),
we have
s ’0,00 —_Ix—y| S T rl = ’
@Y | le] — 1—<¢ 1—r r
and hence x € cigi(F, 7). O

2.9. DEFINITION. A domain DCR" is c-untiform, ¢ = 1, if each pair
of distinct points a, b € E can be joined by a (distance) c-cigar in D. The
empty set is considered as a c-uniform domain for every ¢ = 1. A domain
DcR" is called c-uniform if DNR" is c-uniform. Remember that we

always assume n = 2.

2.10. THEOREM. Definition 2.9 is equivalent to Mobius uniformity
and hence to all ordinary definitions of uniformity.

ProoF. We shall prove the relations
cig(v, r/2)Ceig, (v, ), cigk(y, r*/2)Ccig(y, 7) ,

where 0 < r <1, v = (&, a,b), ECR" is a continuum, and in the second
condition, E satisfies the turning condition rd(F) < |a — b|. The proof
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is valid in every metric space.

If xecig(y, r/2), there is y € E with |2 —y| <2 'r min(J]y — a|, |y — b}).
Assuming |z —a|= |z —b| we have |a —b] <2|x— a|, and obtain
|z, ¥, @, b| < r. Hence zx €cig,(7, 7).

Next assume that rd(E) = |a — b] and that zecigk(v, r*/2). Then
there is ¥ € E such that |z, ¥, a, b| <7*2. Since |y —b|Zd(E)=|a—b|/r
and |y — a| < |a — b|/r, this implies

e—yl rlz—yl+tly—al o loe—yl , 7
ly —b] 2 la — 0] 2ly—b| 2

Hence |z — y|/]y — b] < r. By symmetry, zccig(v, r). By [Va,, 4.7], the
Mobius uniformity of D is equivalent to that of DN R". The theorem
follows. O

It is often useful to know that boundary points of a uniform domain
can also be joined by a cigar in the domain:

2.11. THEOREM. Suppose that D is a c-uniform domain in R* and
that a,be DNR", a #b. Then there is a c-cigar joining a and b in D.

Proor. Choose sequences (a;) and (b;) of points in D converging to
o and b, respectively. Choose c-cigars cig(E;, 1/¢) joining a; and b; in D.
Since d(E;) < c|a; — b;|, the continua E; are contained in a compact subset
of R". Passing to a subsequence we may therefore assume that the
sequence (E,) converges to a continuum E in the Hausdorff metric. Then
E contains a and b, and d(E)=<cla —b|. It is easy to see that
cig(E, 1/e)c D. O

2.12. REMARK. In [V3,] we also considered uniform sets which are
not necessarily open. It follows from 2.11 that a set A is c-uniform if
and only if Dc AcD for some c-uniform domain D.

2.13. Plump sets and c-pairs. We shall give a new characterization
for uniform domains, which will be needed in the next section. An open
set UCR" is ¢-plump, ¢=1, if for each z € UN R" and for each r € (0, d(1)),
there is z € B(x, r) such that B(z, r/e)c U. A uniform domain is always
plump (see 2.15), but the converse is not true. The plumpness condition
is clearly also true for x € UNR". If U is bounded, we easily see that
the plumpness condition is also true for » = d(U). The empty set is c-
plump for every ¢ = 1.

If the plumpness condition is satisfied for every xe€oUNR" and
re(0, d@U)), U is 2¢-plump. To show this, assume that x ¢ UNR" and
that € (0, d(U)). If B(x, r/2)c U, we can choose z =z. If B, r/2)& U,
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there is a point a € B(x, r/2)NoU. If r/2 < d(@U), there is z € B(a, r/2)C
B(z, r) such that B(z, r/2¢)cU. If r/2=d(@U), then R*\UcB(a, 7/2),
and we can choose z to be a point such that [z — x| = » and such that
x lies on the line segment with end points z and a.

Let D be a domain in R" and let ¢ = 1. A pair (B, B, of balls
B; = B(x;, r;)C D is a c-pair in D if

(1) »/re[l/2,2],

(2) @, — @] = 4cmax(r, r,).

2.14. LEMMA. Let DCR" be a c-plump domain, and let a, be DN R"
with |a —b| =r > 0. Then there are sequences (a;) and (b;) such that
setting B; = B(a;, 279r/c), Bj = B(b;, 27'r/c) we hawve:

(1) The pairs (B, By, (B;, B;;,) and (Bj, B;,,) are c-pairs in D.

(2) |a; —al =279, |b; —b] = 279r.

ProoF. Since r = |a — b| < d(D), we can find a, € B(a, 27r) such
that B(a;, 279r/c)cD. Similarly, there are b;e B, 27%r) such that
B(b;, 27ir/c)cD. The condition (2) is clearly true, and (1) is easy to
check. |

2.15. THEOREM. Suppose that DCR" is a domain, thatc=1,¢,=1,
and that

(1) D s c-plump,

(2) the centers of the balls of every c-pair in D can be joined by
a ccigar in D.
Then D is ci-uniform for some ¢, = c,(c, ¢,). Conversely, every c-uniform
domain D satisfies (1) and (2) with ¢ = 4ec,.

PROOF. Let @ and b be distinct points in D. Set |a —b| = » and
choose sequences (a;) and (b;) as in Lemma 2.14. For each j = 1 join a;
to a@;., by a cccigar cig(E;, 1/¢c,) in D, and similarly b, to b,,, by
cig(F;, 1/¢,). Observe that

d(E;) = Col @y — ;| = 277 epr

and similarly for d(F;). Finally join a, and b, by a c,-cigar cig(E*, 1/c,)
in D. Then the union of all continua E*, E;, F; together with a and b
is a continuum E. We show that E is the core of the desired c,-cigar
joining @ and b in D.

We shall first find an upper bound for d(E). Let zeE. Assume
that ze E;. Then

[z —a| = [2— @il + [a;, — a] < 27 + 277 < (¢, + D)7 .

Similarly, z e F; implies |z — b| < (¢, + 1)r, and thus [z — a| < (¢, + 2)r.
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If ze E*, we have
lz_al = ’z“"axl + Ial - a[ écolal - b1| +7'/2.S_ (200 + 1)”'-

Hence d(E) < 6¢,r.
It remains to find an upper bound ¢, for the function

min(jz — al, [z — b))
d(z, 0D)

over x € E\{a,b}. Assume first that zeE;,. As above, we obtain
|z —a| = 2792¢, + 1)r. We consider three cases:

Case 1. |2z —a;| <27 'r/c. Since B;,CD, we have d(z, 0D) = 27 'r/c.
Hence u(z) = 2¢(2¢, + 1).

Case 2. |z — a;,| =27 %/c. A similar argument gives u(z) =
4c¢(2¢, + 1).

Case 8. The cases 1 and 2 do not occur. Since cig(E;, 1/c,)C D, we
have d(z, 0D) = 277 %r/cc,, and hence u(z) < 4ee,(2¢, + 1).

The case z € F; is similar and the case ze€ E* almost similar.

Conversely, assume that D is ¢-uniform. The condition (2) is trivially
true. Let zeD and let r€(0, d(D)). Choose ye€ D with |y — x| = »/2.
There is a c,-cigar cig(F, 1/¢,) joining xz and y in D. Choose ze€ E with
|z — x| = r/4. Then B(z, r/4c,)CD. Thus D is 4c¢,plump. O

2.16. REMARK. Martin [Mn] has given the following interesting
characterization for the uniformity of a domain DCR" There is ¢=1
such that each pair a, b of points in D is contained in a ec-bilipschitz
image Cc D of a ball. Gehring and Hag [GH] have recently characterized
uniformity in terms of a min-max property of curves.

u(z) =

2.17. John domains. For completeness, we include a discussion of
John domains, but this concept is not used in the later sections. However,
these domains are closely related to uniform domains. Indeed, the original
definition for uniform domains in [MS] was based on John domains. The
definition of a John domain is usually given in terms of carrots rather
than cigars (see, however, 2.20). As in 2.1, suppose that for each pair a, b
of distinet points in R" there is given a set F(a, b) of continua containing
a and b. We also assume that for every triple v = (E, a, b) with E € F(a, b)
there is given a continuous function \: E— [0, <), but instead of \~*(0) =
{a, b} we assume that \7*(0) = {a}. If > 0, the carrot r-neighborhood of
v of type (F,)\) is the set

car(v, r, F, \) = U{B(z, r\(x)): x € E} ,

also written as car(E, », F, A). Thus car(v, », F, \) is an open neighborhood
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of EN{a}. If ¢ =1, we say that car(v, 1l/ec, F, \) is a c-carrot of type
(F, ») joining a and b. No turning condition is given on E.

A domain D # R is called a c-John domain of type (F,\), ¢ =1, if
there is x,€ D, called the John center of D, such that every point in D
can be joined to %, by a c-carrot of type (F, ) in D. The equivalence
of two types are defined as for uniform domains (2.1). A c-uniform
domain could be defined as a domain such that each pair a, b of distinect
points in D is contained in a ¢-John domain Gc D with d(G) =< ¢la — b|.

As with cigars, we consider three types of carrots, which are mutually
equivalent:

(1) Length carrots. We let F(a, b) be the family of all rectifiable
arcs E with end points ¢ and 5. Now )\(x) is the length of the subarc
E, of E with end points a@ and x. This is the most usual choice in the
literature. One often also gives an upper bound for the lengths of the
arcs E, but the number ed(x, 0D) is always such a bound.

(2) Diameter carrots. Now Fl(a, b) is the family of all arcs joining
a and b, and A\(x) = d(E,). We denote these carrots by car,(7, 7).

(8) Distance carrots. Here we let F(a, b) be the set of all continua
containing @ and b, and M) = | — a|. We write carrots of this type
as car(v, r) or car(E, r) and call them simply carrots.

The equivalence of the types (1) and (2) was proved in [MS, 2.7]. In
fact, [MS] used a variation of (2) with paths instead of arcs, but a path
can always be replaced by an arc joining the same points in the induced
order [Wh, p. 39]. We prove the equivalence of the types (2) and (3):

2.18. THEOREM. Suppose that DCR" is a domain.

(a) If D is a c-John domain in the diameter sense (2), it is a c-John
domain in the distance sense (3).

(b) If D is a c-John domain in the distance semse (3), it is a ¢,-John
domain in the diameter sense (2) with ¢, = c,(c).

Proor. The part (a) is trivial. Suppose that D is a c¢-John domain
in the distance sense. Let z, be the corresponding John center of D.
Replacing ¢ by a slightly larger number we may assume that the cores
of all carrots are arcs (cf. 2.6). Set a = d(x, 0D). We first observe
that DcB(x,, ca). Indeed, if x e D, choose a c-carrot car(E, 1/¢) joining
% to , in D. Then B(x, |x — ,|/c)C D, which implies |2 — x,| < ca.

Suppose that x, € D. We want to find a diameter ¢c-carrot car,(F, 1/e¢,)
joining 2, to xz, in D. If |2, — x| < @, E can be chosen to be a straight
line segment. We may thus assume that |2,—x,| = a. Set »=d(x, 0D)/2.
Then |2, — 2,] = r. Let k be the unique positive integer for which
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264 <y — 1, < 2%

We define inductively points y;€oB(x, 2"'r)ND, 1 < 5 <k, as follows:
Let y,€0B(x, r) be arbitrary. Assume that the points ¥, ---, ¥; have
been chosen. Join y; to xz, by a (distance) c-carrot car(®;, 1/¢) in D,
where E; is an arc from y; to z, Let y;., be the first point of E;
meeting o0B(x,, 297).

For 1=<j=<k—1 we let A; be the subarc of E; with end points ¥;
and y;,,. We also set A, = E, and let A, denote the line segment from
2, to y,. Then the union

E=AU---UA4,

has a natural structure of the image of a path from =z, to x,. Set
d; = d(A,U -+ UA;). Itsuffices to show that if x € A;, then the function
u(x) = d;/d(x, D) has an upper bound ¢, = ¢,(¢). Observe that d; < 2/*'r
for =<k —1.

If =0, we have u(x)<1. Suppose that 1<j5j<k—1. We consider
two cases:

Case 1. | — ¥;| = 2 %*/c. Since car(E;, 1/¢)c D, we have d(x, D) =
2i=%p/c?, and hence u(x) < 16¢.

Case 2. |x—y;|=2%/c. If =2, then y;€ E,;_,. Since car(E;_,,1/c)C
D, we have d(y; 0D)=|y; —¥,_,|/c =27*r/c. This is clearly also true if
4 =1. Hence d(z, 0D) = 2/ %r/¢c, which implies u(x) < 16¢.

Finally assume that j = k. Now

d, = d(D) £ 2ca < 2¢la, — x,] < 2% er
Considering two cases as above we obtain u(x) < 16¢°. O

2.19. REMARK. The relation DcCB(x, ca) holds for every c-John
domain of type (F, ») provided that an(x) = |x — a|, which is true for
each of the three types considered above. In particular, every John
domain of such a type is bounded. Remember that we excluded the
case D = R".

2.20. John domains and cigars. We next show that John domains
can also be characterized in terms of cigars simply by dropping the
turning condition from the defintion of a c-uniform domain. Thus we
say that a domain DCR" is a c-John domain in the cigar semse if for
each pair a, b of distinct points in D there is a continuum FE containing
a and b such that cig(®, 1/e)cD. Compared with the definition in 2.17
there is one essential difference: There are unbounded domains satisfying
the new condition, for example, a half space. For bounded domains,
however, the two definitions are equivalent:
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2.21. THEOREM. Suppose that D is a domain in R™.

(a) If D is a c-John domain in the (distance) carrot semse, it is a
c-John domain in the cigar sense.

(b) If D is bounded and a c-John domain in the cigar sense, it 1is
a c-John domain in the carrot semse with ¢, = ¢,(c).

PROOF. (a) Let x, be the John center of D, and suppose that
a,beD. Join a and b to x, by c-carrots car(¥, 1/¢) and car(F, 1/¢) in D.
Then cig(FUF, 1/¢) joins @ and b in D.

(b) Choose points a, be D with |a — b| = a = d(D)/2, and join them
by a continuum FE with cig(E, 1/c)cD. Choose a point x,€ E with
|2, — a| = |, — b|. Then B(x, a/2¢)CD. Suppose that x, €D, and join
2, to x, by a continuum F with cig(F, 1/c)c D. If x€ F and |x — x,| = a/4c,
then |z — 2,| < d(D) < 8¢|x — x|, and thus d(x, 6D) < |x — ,|/8¢. If xe F
and |z — x,| < a/4e, then d(z, D) = a/4c = d(D)/8¢ = |x — x,|/8c. Hence
car(F, 1/8¢*)c D, and thus D is a 8¢>-John domain in the carrot sense. []

2.22. REMARK. O. Martio (unpublished) has given the following
characterization for a John domain DCR". There are 2,€D and ¢c=1
such that for each point x € D there are » > 0 and a c¢-bi-Lipschitz mapping
Jf: B0, r)— D with f(0) =z, and z e fB(0, ) (cf. 2.16).

2.23. REMARK. The definition 2.9 of uniform domains makes sense
in every metric space. Many results and proofs of this paper are valid
in this general case. A notable exception is Section 3 where we make
effective use of the similarity maps and the local compactness of R".

In Lemma 2.8 we made use of the inversion in R*. A general metric
space can be isometrically embedded into a normed space V. The inversion
u(x) = x/|z|* in V changes the cross ratios at most by the factor 3* [Va,,
1.6]. Hence the analogue of 2.8 is true in every metric space with
r/(r + 1) replaced by »/3%» + 1). The proof of 2.10 shows that uniformity
and Mobius uniformity are equivalent in every metric space. However,
Mobius uniformity makes also sense in an extended space XU{c}. On
the other hand, the Mobius uniformity of a domain D in the extended
space is often equivalent to the uniformity of D\ {e} [V&,, 4.7].

3. Uniformity and compactness. In this section we give a charac-
terization for uniform domains in R" in terms of compactness.

3.1. Terminology. If X is a compact metric space, the set
K(X)={A: @ # ACX, A compact}

with the Hausdorff metric is a compact metric space, and the subfamily
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of all continua is compact [Ku, pp. 45, 47., 139]. We shall only consider
the case where X is the extended n-space R* = R"U{c} with the spherical
metric. We write

K" = K(R" .

Closed unbounded sets AcC R" will also be considered as elements of K=,
identifying A with AU {c}.

If HcK», we let sim H denote the family of all images of the
members of H under similarity maps of R*. Furthermore, we write

H = {Ac H: {0, e)CoA)

where ¢, = (1,0, -+, 0).

We say that a family HC K" is stable if (1) sim H = H and (2) H*
is compact. The family H = {R"} is trivially stable, since H* = @.

For any HC K™ we let ¢(H) denote the union of all stable sub-
families of H.

We shall show that the set of the complements of all uniform domains
is precisely ¢(H) where H is the family of the complements of all domains
in R". For that we need a similar characterization for the plump open
sets.

In another paper [Va,] I prove that if HC K" is any family which is
invariant under quasisymmetric maps, then ¢(H) has the same property.
It follows that the uniformity of a domain is invariant under quasisym-
metric maps of the complement of the domain, and the same is true for
the plumpness of an open set.

We first give an alternative characterization of ¢(H). An auxiliary
result is needed:

3.2. LEMMA. If HC K" and sim H = H, then (cl H*)? = (simecl H?)?® =
(cl H).

ProoF. Clearly sim H = H implies simel H = cl H. Hence cl H’C
simel H*cel H. Thus it suffices to show that (cl H)*c(cl H%?. Suppose
that Ae(cl H)>. Then {0, ¢,}C0A, and there is a sequence A;€ H con-
verging to A. Choose points a;, b; €9A4; with a; — 0, b; —e¢,. Let a; be
a similarity which maps (a;, b;) to (0,¢). We may assume that the
sequence (a;) converges uniformly to a similarity a with «|{0, ¢} = id.
Then B; = a™'a;A;€ H* and B; — A. Hence A e (cl H%: ]

3.3. THEOREM. Let HC K™ with sim H= H, and suppose that Ac K"
has at least two finite boundary points. Then Aco(H) if and only if
cl((sim{A4))*) c H*.
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PrROOF. Set M = (sim{A})*. If Aeco(H), A belongs to a stable family
LcH. Then McL? and hence cl MCL*cC H>.

Conversely, assume that el Mc H®:. Then L =simel McH. Since
0ANR" contains at least two points, Ae L. Hence it suffices to show
that L is stable. Clearly sim L = L. From 3.2 it follows that L*= (cl M)*.
Since cl Mc H?, L? = cl M, and thus L? is compact. O

3.4. THEOREM. For ¢ =1 let L, be the family of all A€ K" such
that R"\\A 1is c-plump. Then L, is compact and stable. Conversely, for
every stable family LC K™ there is ¢ = 1 such that LCL,.

ProOF. Assume that A;e L, and that A; > Ae K". To prove that
L, is compact we must show that U = R"\ A is ¢-plump. Suppose that
xe UNR" and that 0 < r < d(U). We may assume that the sets U; =
R"\A,- have diameters greater than » and that xze U; for all 5. Since
U; is c-plump, we can choose z;€ B(x, ) with B(z;, r/c)c U;. We may
assume that z; > ze B(z, r). Then Bz, r/c)c U. Hence U is ¢-plump.

Clearly sim L, = L,. Assume that B;€ L and that B;—~>BeK". To
prove that L, is stable we must show that Be L:. By the first part of
the proof, B belongs to L,. Since {0, ¢, <dB;, d(R*\B;) = 1. For every
given r¢(0,1) we can choose ;€ B(0, r) with B(y;, r/e)c U;. We may
assume that y, — y e B(0, r). Then B(y, rle)cR*\B, and thus 0eaU.
Similarly e, eoU, and thus BeL: We have proved that L, is stable.

Assume that the last part of the theorem is false. Then there is a
stable family L C K" and sequences A;€ L, a;€0A;NR"* and r; €(0, d(04;))
such that d(z, A,;) < r;/j for all ze B(a;, r;); see 2.13. We may assume
that 04;N0B(a;, r;) = @. For every j choose a similarity «; such that

aja;) =0, a;Ba; r)=B0,1)=B", ecia;A;.
Then C; = a;A;€ L*. Since L* is compact, we may assume that C;—C e L%

Since d(z, C;) £1/j for all ze B”, we have B*CC. Hence 0¢oC, which
gives a contradiction C¢ L2 ]

3.5. COROLLARY. An open set UCR® is plump if and only if
R\ Ueco(K".

3.6. THEOREM. For ¢ =1 let M, be the family of all Ae K™ such
that R"™\A is a c-uniform domain. Then M, is compact and stable.
Conversely, if MCK™ is a stable family such that R*\ A is connected
for every Ae M, then MC M, for some ¢ = 1.

PROOF. Suppose that A;e M, and that 4;,—~ Ae K". To show that
D= R™\ A is a c-uniform domain let a, b€ DNR". Then a, be D; = R"\\A;
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for large j. Join @ and b by a c-cigar cig(E;, 1/¢) in D;. We may assume
that (F;) converges to a continuum FE with d(E) < cla — b|. It is easy
to see that cig(®, 1/c)cD. Hence AeM,, and M, is compact.

Clearly sim M, = M,. By 2.15, M,CL,, where L, is as in 3.4. Since
M, is compact, 3.4 implies that ¢l M?CL;,N M, = M?. Hence M, is stable.

Suppose that the last part of the theorem is false. By 3.4 there is
¢ =1 such that all members of M are c¢-plump. By 2.15 we ecan find
sequences of sets A;e€ M and c-pairs (B(x;, r;), B(y;, s;)) of balls in D; =
R*\\A; such that the centers z;, ¥; cannot be joined by a j-cigar in D;.
We may assume that r; <s;. Then

ry = |2, — yi| = 8er;

for all j.

Set Q; = dA;N B(x;, 10cry). If d(Q,) < r;, it is easy to join x; and y;
in D; by a j-cigar for large j. We may thus assume that d(Q;) = r; for
all j. Choose points a;, b; € @; with |a; — b;| = r;. For every j choose a
similarity «; such that a;(a;) = 0, a;(;) = e,. Since M is stable, the sets
C; = a;A; are in M*, and we may assume that C;—CeM. Setting
L;=la; — b;/™ =lipa; we have 1/20c < L;r; < 1. Passing again to a
subsequence we may assume that

aiw) —« , o y)—y , Liri—1r
with
a', Yy e€B0,20c), 120c<r <1, |& -y |=7r".

Then the balls B(x', #') and B(¥’, ") are contained in D = R*\C. Since
CeM, D is connected, and we can join 2’ and % by a continuum ECD.
Choose b = 1 such that d(F) < blx’ — ¥'| and cig(F, 1/b)cD. Let E; be
the union of E and the two line segments joining 2’ to «;(x;) and ¥’ to
a;(y;). Then for large j, cig(E; 1/2b) is a j-cigar joining a;(x;) and a;(¥;)
in R"\\.C;. Applying the map aj' we obtain a j-cigar joining z; and y;
in D;. This contradiction completes the proof. O

3.7. COROLLARY. Let H be the family of all Ae K" such that
I?"\A is connected. Then a domain DCR" is uniform if and only if
R*\Deo(H).

3.8. COROLLARY. A domain DCR" is not uniform if and ony if
there is a sequence (a;) of similarities such that

(1) {0, e}ca;0D,

(2) R~\a,D— AcK", and either Ocint A or R"\ A is not con-
nected.
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3.9. REMARK. The case 0e€int A in 3.8 occurs if the cigars are too
thin and the other case if they are too crooked. For example, let D be
the strip 0 < 2, <1 in R:. Setting a;(x) = z/j we have R*\ ;D — R:.
Next let D be the complement of the half line {re;:r = 0} in R*. For
a;(x) = j(x — e,) the sequence Rz\a,-D converges to the z,-axis.

Of course, the situation with arbitrary domains may be much more
complicated.

4. Local uniformity. In this section we show that the uniformity
of a domain D is a local property of 6D. This probably belongs to the
folklore.

4.1. THEOREM. Suppose that DCR" is a bounded domain and that
c=1, 0 < r<dD). Suppose also that if z€oD, then every pair of
points inm DN B(z, r) can be joined by a c-cigar in D. Then D is c-
uniform with ¢, = 40¢d(D)/r.

ProOF. We may assume that d(D) = 1. Observe first that if a, be D
with |@ — b| < /2, then a and b can be joined by a c-cigar in D. Indeed,
if d(a, 0D) < r/2, then a and b belong to B(z, r) for some ze€oD. If
d(a, D) = r/2, then B(a, r/2)C D, and there is even a 1l-cigar joining a
and b in D.

Let a and b be arbitrary points in D. We want to join them by a
¢,-cigar in D. By the remark above, we may assume that |a — b| > r/2.
Set ¢ =1/20c. Since D is connected, there is a finite sequence a =
Xy Xy +*+, X, = b of points in D such that

2qr < |x; — x| < Bgr

for all j=1,---,s. Since ¢ <1/20, |2; —x;_,| < r/4 for all j. Hence we
can join z;_, and ; by a c-cigar cig(E;, 1/¢) in D. By Lemma 2.5, there is
a continuum AC{x € E;: |x—a| < |x—=,|} containing a and a point u, with
|, — a| = |u, — x,|. Similarly choose a continuum BC{xeE, |x —b| =
| — x,_,|} containing b and a point u, with |u, — b| = |u, — 2,_,]. For
1< j7=<s—1weletu; be an arbitrary point in E; satisfying |u; —x;_,| =
|u; — x;|. Since
d(E;) = clw; — x| < 5gre = r/4

for all 7, |u;0n — u;] S 7/2 for 1< j <s—1. Hence there is a c-cigar
cig(F;, 1/¢) joining u; and u;,, in D. Then F= AUF,U---UF,_,UB is
a continuum joining a and b. We claim that it is the core of a c¢,-cigar
in D.

Since d(F') < d(D) = 1 and since |a —b| = r/2, F satisfies the turning
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condition d(F) < (2/r)|la—b|=¢,|a—b|. It remains to show that u(z) <¢,
for z€ F' where

min(|z — a|, |z — b))
d(z, oD)

Case 1. z€A or z6 B. Now u(z) <c¢=c,.

Case 2. zc F; for some j. Since d(D) =1, if suffices to show that
d(z, 0D) = 1/e,. Since cig(E};, 1/¢)C D and since |u; — x; | = |x; — x;_,|/2 = qr,
we have d(u;, 0D) = gr/c. Hence d(z, 0D) = qr/2¢ = 1/¢c, if |z —u,| < qr/2¢,
and the same is true if |z — u;,,| < qr/2c. If these distances are at least
qr/2¢c, the condition cig(F’;, 1/c)c D implies that d(z, 0D) = qr/2¢* = 1/e,. []

4.2. REMARKS. 1. It follows from 4.1 that the (g, §)-domains of
Jones [Jo,] are uniform if they are bounded. For unbounded domains
this is not true.

2. We obtain a version of 4.1 for unbounded domains by adding the
condition that each pair of points in D\ B(0, 1/r) can be joined by a c-
cigar in D. Then D is c¢,-uniform with some ¢, = ¢,(c, 7).

Alternatively, one can use the spherical metric. In fact, the spherical
metric gives the same class of uniform domains in R" as the Euclidean
metric. This follows from the fact that the identity map of R is a
Mobius transformation (preserves cross ratios) with respect to these
metrics and from the Mobius invariance of uniform domains.

8. Theorem 4.1 and its proof are valid in every metric space.

u(z) =

5. Null-sets for uniform domains.

5.1. We say that a closed set AC R" is a null-set for uniform domains
or an NUD set if int A = @ and if R"\A = D is a uniform domain. If
D is c-uniform, we say that A is ¢-NUD. The main result of this section
is Theorem 5.4 in which we show that removing an NUD set from a
uniform domain yields a uniform domain. We first give easy estimates
for the dimension of an NUD set. Let dim A and dimy A denote the
topological and the Hausdorff dimension of A, respectively.

5.2. THEOREM. If ACR" is ¢-NUD, then dimA<n—2 and dim, A <
a = ale, n) < n.

Proor. If dimA=n—1, R\ A is not locally connected on the
boundary. The theorem follows from [Mo, 6.5 and 6.7]. O

5.3. REMARKS. 1. If A is closed in R*!, it is easy to see that A
is NUD in R if and only if A is porous in R*!, that is, thereis ¢ =1
such that every ball B*'(x, r) contains a point z with B~ (2, r/c)N A = @.
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2. Let H be the set of all closed sets AcR* with dimA < n — 2.
It is easy to see that with the notation of 3.1, ¢(H) is precisely the

family of all NUD sets in R".
3. There exist countable sets which are not NUD. For example, the

set of integers is not NUD in R:.
4. From [GM, 2.4 and 2.18] it follows that a NUD set is always

NED (nullset for extremal distances).

5.4. THEOREM. Suppose that ACR" is ¢-NUD and that DCR" is a
c-uniform domain. Then D\ A is a ci-uniform domain with ¢, = 54c°.

ProOF. Let a,beDN\A. We show that there is a ¢,-cigar in D
joining a and b. Set ¢’ = 4¢/3. Applying Lemma 2.6 we find an arc E
from a to b such that cig(F, 1/¢’) is a c¢’-cigar in D. Let x,€ E be a
point for which |2, — a| = |z, — b|. Set

qg=1/8", A\x) = min(lz — al, |z — b)),
and define the sequence z,, x,, - -+ of points in E inductively as follows:
Orient E from a to b. Then z,,, is the last point of EN B(x; qn(x;)).
Similarly define x_,, x_,, -++ by letting z_;_, be the first point in EN
B(x_;, gn(x_;)). The sequence x,, x,, --- converges to a point b'e¢ E. For
k> j we have |z, — ;| = gn(x;), which implies \(3') = 0, and thus & =b.
Consequently, x; — b as j — o, and similarly x; > a as j — —oo.

Since R"\A = G is a c-uniform domain, it follows from 2.11 that
we can join «;_, and z; by a c-cigar cig(E; 1/c) in G for every integer
4. For each j choose y;e E; with |y; — x;_,| = |y; — «;|, and join ¥; and
Y;+. by a c-cigar cig(F;, 1/c) in G. We claim that the union F' of all F},
jeZ, and the pair {a, b} is the core of the desired ¢-cigar from a to b

in D\A.
We first estimate the diameters of the sets F;. If 5 > 0, we obtain

(5.5) d(Fy) = ¢|¥Yi — Y;| = c(d(E)) + d(Ej..)
= (@ — @] + (@0 — 25]) = PgOn(@;-) + N&y))
A similar argument gives
d(F;) = cfq(M@;) + M@i41))

for 5 <0, and
d(F) = 2c*qn(,) -
It follows that d(F;) —0 as j—c or j— —o. Hence F'is a continuum.
We next estimate the function A(2) for ze F. Suppose that ze F;
for some 5 > 0. Then (5.5) implies

|z — x;| = d(Fy) + d(E)) = c*q@2n(x;-,) + Mxy)) «
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Here \(x;_) < M) + oan(x;_,). Since g < 1/8, we obtain a(x;_,) = (8/T)\(x;).
Consequently,

(5.6) |z — a;| < N2 .

Thus

(5.7) Mz S A + 12 — x| < 3n(x)/2 .

Similar arguments show that (5.6) and (5.7) are true also for z € F; with
Jj=0.

Since cig(¥, 1/¢")c D, (5.6) implies for z ¢ F;:
(6.8)  d(z, 0D) = d(xj, 0D) — |z — x;| = Mxy)/e" — Nx;)/2¢ = Mxj;)/4e .

We next estimate d(z, A) for z€ F. We only consider the case z € F},
j > 0. Since cig(E;, 1/¢)CG, the ball B(y;, r;) is in G, where

ri = |yY; — x;lle = |x;_, — x;]/2¢ = Mx;_,)/16¢* .

Since A(x;_,) = (8/9)\(x;), we have r; = \(x;)/18¢".

Set n\i(2) = min(Jz — ¥, 12 — ¥; ). If n(2) < M(z;)/36¢*, we have

d(z, A) = \(z;)/36¢" .
If N;(2) = A(x;)/86¢*, then cig(F;, 1/c)C G implies
d(z, A) = N(2)]e = N(x;)/36¢° .

Together with (5.7) and (5.8) these estimates show that cig(F, 1/¢,)C D\ A.
We finally verify the turning condition d(F) < ¢,|a — b|. If zeFy,
(5.6) gives

lz —a|l= |z —a;| + |z; — a| = 3d(E)/2 .
Since d(F) < ¢'|a — b|, we obtain d(F') < 4c|la — b]|. O

5.9. COROLLARY. If A and B are ¢-NUD in R", then AUB 1is c¢;-
NUD with ¢, = b4¢®.

Added in proof. The recent paper [Ge] of Gehring contains several
characterizations for uniform domains.
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