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1. Introduction. For ¢=0 and «, fecR, the one-dimensional differential-
difference equation

(1.1 x'(t) = —ax(t)— x(t—q)

is a simple example of a delay-differential equation and has been studied from early
times in the development of the stability theory of delay-differential equations. For (1.1),
the theory of characteristic equations is valid and it is known that the zero solution of
(1.1) is uniformly stable if and only if « and f§ satisfy one of the following conditions:

(R)  az|pl,
(R,)  a=Psinn, 0§Bq§<n+—;~>/cosn, —%<n<%,

(Ry)  —a=p, 0=pg<l,

that is, (o, f) is contained in the region (stability region) illustrated in Figure 1 with its
boundary except for the point (—1/q, 1/q). Moreover, the zero solution of (1.1) is
uniformly asymptotically stable if and only if («, B) is contained in the interior of R, UR,
(cf. [3], [7]). It is a feature that R, and R, become smaller as ¢ increases, while R, is
independent of gq.

On the other hand, the theory of characteristic equations is not applicable to the
delay-differential equation such as

(1.2) X'(1)= — a()x(t)— b()x(t — (1)),

where a,b: [0, 0)=>R and r: [0, c0)—[0, g] are continuous functions. Liapunov’s
method seems to be the only way to investigate the behavior of solutions of (1.2). For
(1.2), it is reasonable to expect a similar stability region for («, f) under the conditions

(1.3) 0<a<a(r), |b()I<P
or

(1.4) x=a=0, 0=b(N=p.
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FiGURE 1

There are many works for the stability region which is independent of g like the
region R, (cf. [6], [8], [9], [12], [13]). But there are few works for the stability region
corresponding to R, ([2], [16]). In the case a(f)=0 in (1.2), i.e., for the equation

(1.5) x'(t)y= —b()x(t—r(2)),

the stability of the zero solution has been much studied (cf. [4], [5], [10], [11], [14]). It is
interesting that under the condition 0 <b(f) < f, the zero solution of (1.5) is uniformly
stable if fg<3/2, but there are equations with unbounded solutions if f¢>3/2. The
stability region 0=<Bg<3/2 for (1.5) does not coincide with the stability region
0= Bg=mn/2 for the differential-difference equation

x'()=—px(t—q).
For a general delay-differential equation
(1.6) x'(n=F1, x),

where F: [0, 0)x C?>R, Yorke [17] has shown the uniform stability of the zero
solution under the conditions

(L.7) —BM()=F(t, )< M(—¢) and 0=Pg<3)2,

where M(¢)=max{0, sup, (-, 0;¢(s)}. The author [15] proved the uniform stability for
(1.6) under conditions more general than (1.7).
For the special case
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x'(8)= —a(t)(x() — x(1—q))

of (1.2), Atkinson-Haddock [1] has shown the uniform stability under the conditions
including

la(f)|Sa and ag<l1,

which corresponds to (R;).

Recently, the author and Sugie [16] have established a stability region for an
equation more general than (1.2) under the conditions (1.4) and |a(?)| =< b(¢).

In this paper, we study the stability region which depends on g for an equation
more general than (1.2). Theorem 3.1 in Section 3 gives a stability region for (1.2) under
(1.3), which corresponds to (R,) with 0=<#<m/2. Theorem 4.1 in Section 4 gives a
stability region for (1.2) under (1.4), which corresponds to (R,) with —n/2<n<0 and
includes the stability region given in [16]. The stability region obtained for (1.1) by the

A

/

\

FIGURE 2

results in this paper is illustrated in Figure 2. We also give some results on the
asymptotic stability of the zero solution of (1.2). If («, ) is contained in the interior
of the regions S; and S, in Figure 2, it will be shown that the zero solution of (1.2) is
asymptotically stable. (Figures 1 and 2 were drawn accurately by a computer and an
X-Y plotter.) Thanks are due to the referee for valuable comments.

2. Definitions and assumptions. For ¢=>0, let C? be the space of continuous
functions on [—g¢, 0], and define the norm
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”¢”=supse[—q,011¢(s)'
for ¢ € C4 For H>0, let
S(H)={xeR:|x|<H} and CiH)={¢eC?: |¢||<H}.

If Y(-) is a continuous function defined on [—g¢, 7] for some 7> 0, then for 0=¢< 7, we
denote by ¥, e C? the function defined by y,(s)=y(¢+s) for se[—gq, 0].
Consider the delay-differential equation

(DDE) x'()=F, x,),

where F: [0, o) x C4(H)— R is continuous and x’(#) denotes the right-hand derivative
of x(¢). For an initial function ¢ € C4(H) at ¢, =0, we denote by x(-; t,, ¢) the solution of
(DDE) such that x, =¢. We assume that F(z,0)=0 so that x(#)=0 is a solution of
(DDE), which is called the zero solution.

DEFINITION 2.1. The zero solution of (DDE) is said to be stable if for any ¢>0
and 7, =0 there exists d(¢y, €) >0 such that if ¢ e C4(J), then

|x(t; to, )| <t forall t>¢,.
The zero solution of (DDE) is uniformly stable if the above ¢ is independent of ¢,.

DEFINITIO& 2.2. The zero solution of (DDE) is said to be asymptotically stable if
it is stable and if for any 7, =0 there exists ,(#,) =0 such that if ¢ € C4(J,), then

x(t; ty, §) =0 as t—o0.

DEFINITION 2.3. The zero solution of (DDE) is said to be uniformly asymptoti-
cally stable if it is uniformly stable and if there exists d, >0 such that for each ¢>0, there
exists T(¢)>0 such that for any 7,=0 and ¢ € C%(d,),

|x(¢; 8o, )| <€ for all >t + T(e).

The following condition on F(t, ¢) was given by Yorke [17]: There exists =0 such
that
(Ay) —BM(P)= K1, p)<pM(—¢)  forall 120 and ¢eCiH),

where M(¢)=max{0, supse(-4 0, P(5)}.
The author and Sugie [16] modified the above condition and proposed the
following condition to show a stability region of the delay-differential equation which

will be studied in Section 4: There exist §=0 and a non-negative continuous function
b(t) on [0, o) such that

b(t)<p and

—b(1) SUPse[-4,0) DS F(t, p) = b(2) SUD;e—g,01(— #(s))

(Az)
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for all =0 and ¢ € C(H).
We note that (A,) implies (A,), and if F(z, ¢) satisfies (A,) then F(z, 0)=0 and
| F(t, D) Bl forall t=0 and ¢eCYH).

ExXAMPLE 2.1. Let f: [0, 0)x S(H)—R and r: [0, o) x C4H)—[0, qg] be con-
tinuous functions such that 0 < xf(z, x) < fx? for all (¢, x) [0, 00) x S(H). Then F(¢, ¢) =
—f(t, ¢(—r(1, ¢))) satisfies (A)).

For other examples of F(t, ¢) satisfying (A,), we refer to [17].

EXAMPLE 2.2. Let b:[0, 0)—[0, 0) be a continuous function such that
0=b(r)< P for some =0, and let (¢, ¢) be a continuous function as in Example 2.1.
Then F(t, ¢) = —b(t)Pp(—r(¢, ¢)) satisfies (A,).

EXAMPLE 2.3. Let c(7, 5) be a continuous non-negative function defined for all
—q<s=tsuch that

0
J clt, t+s)ds < Pq .

-4

Then

0
F(t, ¢)= -—% J_ ot, t+s)P(s)ds

satisfies (A,).

Finally we give a lemma which is useful in later sections.

LEMMA 2.1. Let x(f) be a continuously differentiable function on [T, T,} such that
x(t,)=0 for some t, e[T,, T,] and

d
—dt—‘x(t)léfxlx(t)Hc for all te[T,, T,],
where o#0 and ¢=0. Then

2.1) |x(t)1s%(e“""n*—1) forall te[T,, T,].

PROOF. Let te[t,, T;]. Then

t

Ix(0)|=1x(5)| —x(t )| = j Ix(s)lds+ct—1y),

L3}

and hence
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t
_‘_i__{ae‘“"*'l’ j |x(s)lds}gac(t—tl)e_“('_") ,
dt "

for all ze[¢,, T,]. Integrating both sides from ¢, to ¢, we have

t

(Xe—a(t—t,) J‘ |X(S){d5§ _c(t_tl)e—a(n—tl)+_;_(1 _e—a(tvt,))

L3}
and therefore

! c

ozf |x(s)|ds < —c(t—t1)+7“—(e°‘“_'1’—— 1),

31

which proves (2.1). The proof in the case te[T}, t,] is similar.
3. Stability region in Quadrant I. In this section, we consider the delay-

differential equation

3.1 x'(H=G(t, x(1)+ F(¢, x,) ,

where G: [0, c0) x S(H)— R and F': [0, o0) x CYH)— R are continuous. We assume that
there exists o >0 such that

3.2) xG(t, x) £ —ax? for all (¢, x)e[0, 0)x S(H),

and that F(z, ¢) satisfies (A,) for some f>0.
Let x(7) be a solution of (3.1) on [t; —g, t,] such that x(#)>0 for all ze(¢, —q, t,).
Then M(—x,)=0 and hence

x(2)x (1) = x(t,(G(ty, x(1))+ F(t, x,,)) S —ox?(1;) 0.

Similarly if x(¢) is a solution of (3.1) on [¢, — g, ;] such that x(¢f) <O for all te (¢, —q, ¢,),
then x(#,)x’(t,) <0. Thus we have the following:

LEMMA 3.1. For some t, 20, let x(t) be a solution of (3.1) on [t, —q, t,] such that
|x(2)|>0 for all te(t;,—q, t,). Then

x(1)x'(4)=0.

The above lemma shows that if x(f)=x(; t,, ¢) is a positive (or negative) solution
of (3.1) defined on [¢,, o) for 1,=0 and ¢ e CYH), then |[x(f)| is a non-increasing
function on [f,+ ¢, o). Therefore, in order to show the uniform stability of the zero
solution of (3.1), it suffices to investigate the behavior of solutions of (3.1) which cross
the z-axis.

From now on we assume that a=ff or



DELAY-DIFFERENTIAL EQUATIONS 223

ﬂl _ 2 —a 1/2
gzﬁ{“ﬁﬁa<l+<ﬂf§>2" > }él’

and that (A,) and (3.2) hold.

In the case f<a/(1—e ™), we let f=a/(1 —e ™). Then (A,) is also satisfied for j,
and the corresponding 0 satisfies 0=1/(1+(1—a?/f?)"*)<1. Thus we may assume
without loss of generality that

(3.3) é(l—e‘““)gl.

Let x(¢) be a solution of (3.1) on [¢, — 24, T] for some 7>, =20 such that
x(t;)=0 and x(£)>0 for all te(t,, T,
and let r=sup;p, -24,¢,11%(s)|. We shall show that
3.4) |x(t)| £ 0r forall telt, T].
It suffices to show that for each £¢>0,
x(1)<0(r+¢) for all telsy, T1.
Suppose that there exist >0 and ¢, e(t;, T] such that
3.5) x(t;)=0(r+¢) and x(1)<O(r+e) forall relz, t3).
In practice, we have 1;<t,+ ¢ by Lemma 3.1. By (A,) and (3.2),

(3.6) %Ix(t)l.ﬁ_ —olxl+pr forall telt, =g, 6],
and
3.7 jd{ IX(Ols —ox()+pr+e)  forall et 1],

It follows from Lemma 2.1 and (3.7) that

(3.8) x(t)gg*(r+8)(1 —e M1 for all te[t,,t;].

We also obtain by Lemma 2.1 and (3.6) that
|x(t)|§ér(l—e"“"'””) for all te[t,—q,t,].

Hence, it follows from (A,) and (3.2) again that for telt,, 1],
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X ()< —ox(t)+ BM(—x) < — ax(t) + Bsupsei—g,1,0(— X(s))

B? ity -
S —“x(t)-f'ﬂsul)se[t—q,z,]|X(S)|§—Otx(t)+?rsups5[,_q,,l](l—-e 179

2
(39) < _ax(t)_’_;r(l_e—a(t1+q-t))‘
By (3.3), we can choose f, =1, in such a way that

(3.10) g—(l —e MitaT)
Define a continuous function y,(¢) on [z, c0) by
—_ ﬁ —a(t—ty)
ydt)=—_(r+ o)1 —e~=7)

for telt,, t,] and

2 - —_—
ys(t)=§§r{1—(Bz—ﬁa-f-ﬁiae_“‘1>e—a(z—t2)__ﬂz_ﬂa_ea(:—xz)}

+§8(1 —ﬁ'B e_““>e_“(‘_'2)

—

for t=1t,. Note that y,(¢) is the solution of

2
y=—ay+—r(l—e *tTa70)
o

on [t,, 00) with

ye(t2)=§<r+s)<1—,ﬁf’“")-

Moreover let

zs(t)=§—jr{l—(-B—;ﬁj-(—-!—ﬁiae‘aq>e—a(t—nz)_B_z—lg_oc_ea(z—tz)}+§8<1_ﬁﬁ e—aq)

—a
for t=t,. Then y(1)<z/(¢) for all 1=, and
1 20 _,
max,ey, 1 2(t) =2z, (tz +§& log <1 +W e ‘1>)
_ﬁz B—u 2up g 1/2 B B B ~aq>
—?r 1-— B 1+(ﬁ_a)2e +—a—£ 1 ﬂ—ae

=0r+§8<1 —Bfae_“‘*>,
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since

2 - p—
z;(t)=%V{<ﬂ2ﬁa+Bi_ae—aq)e~a(t—t2)_ﬂz—ﬁaeau-zz)}.

In particular,

ya(t2)=zs(t2)<0r+ég<1 ~BB e—aq> ,

—a

é(l—%e"“q><9.

Observe that y(f) is increasing on [, £,]. We have

since z/(f,) >0. Hence

(3.1 y.()<0(r+¢) forall =1, .
If 13=1t,, then by (3.8) and (3.11)
x() Sy (1) <O(r+¢) for all tefty, 1],

which yields a contradiction at £=1t;. Hence 1, <t and x(t,) £ y,(t,). It follows from (3.9)
and (3.11) that

x() Sy (t)<O(r+¢) for all tels,, 4],

which contradicts (3.5) at t=t;. Thus (3.4) is proved.
In a similar way, under 0 <1, we can show (3.4) for any solution x(¢) of (3.1) on
[, —2q, T] such that

x(4;,)=0 and x(¢)<0 for all te(t,, T].
(3.4) means that if a solution of x(¢) for (3.1) crosses the z-axis at some ¢,, then
[X(D)|SOsupsepy, —24.091X(s)| as long as  |x(2)[#0.
Therefore, together with Lemma 3.1, we obtain the following:

LEMMA 3.2. Assume that 0 <1, and let x(¢) be a solution of (3.1) on [t, —2q, T for
some T>t, 20 such that x(t,)=0. Then

[xX(£)| S Osupsepe, —2q.0,31X(5)] for all re(s, T1.
We now state a theorem on the uniform stability of the zero solution of (3.1).

THEOREM 3.1. Suppose that there exist a>0 and B>0 such that (A,) and (3.2)
hold and that o= 8 or
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Il
(3.12) 2 o

Then the zero solution of (3.1) is uniformly stable.

1.

IIA

PROOF. For #,=0 and ¢ e C9(He ?#4), let x(t)=x(t; t,, ¢) be a solution of (3.1).
By (A,) and (3.2),

x(1)x' (1)< Bllx,1?

and hence |lx,|><|@)>+2B ], Ilx,|°ds. Then Gronwall’s inequality implies that
[x ]I < |’ 7. Therefore V(1) =sup,.p -1, 4X°(s) is well defined for 1>1,+2g. We
shall show that V(¢) is non-increasing for all ¢=¢,+ 2¢g. Suppose not. Then there exist a
solution x(¢) =x(; ty, ¢) and t,>t,+ 2q such that

(3.13) V'(t,)>0.

It is easy to see that V(t,)=x%(t,) and V'(t,) =2x(t,)x'(t,)>0. By Lemma 3.1, there
exists ¢, € (¢,—q, t,) such that x(¢;)=0. Then it follows from Lemma 3.2 that

|X(1)| SOSUPser, 20,0y 1X(8)]  forall te(h, 1],
and hence V’(t,) <0, which contradicts (3.13). The proof is now complete.

REMARK 3.1. The condition (3.12) is also written as

(3.14) Bg = -—%;log(—;—(l—w)(Z—w—wz)),

where w=o/f. The region S, of points («, ) which satisfy the conditions of Theorem 3.1
is illustrated in Figure 2.

Letting «—0 in (3.12), we have fig—1/2 <1. This coincides with Yorke’s condition
below.

THEOREM [17, Theorem 1.1]. Suppose that there exists =0 such that (A,) holds
and Bq<3/2. Then the zero solution of

(3.15) x'(ty= F(t, x,)
is uniformly stable.

Yorke [17] also proved the uniform asymptotic stability for (3.15) under the
conditions (A,), 0<fg<3/2 and

For all sequences 7,—o0 and ¢, CYH) converging to a constant

3.16
(3.16) nonzero function in C4(H), F(t,, ¢,) does not converge to 0.

If (A,) and (3.2) hold, then the right hand side of (3.1) satisfies (3.16), and so the uniform
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asymptotic stability for (3.1) will be proved in a way similar to [17], but under (A,) and
(3.2), the proof is slightly easier.

THEOREM 3.2. Suppose that there exist >0 and >0 such that (A,) and (3.2)

hold and that a = or
BZ B_a zaﬂ —aq 1/2
&3{1— B <1+(ﬁ_a)2e ) }<1

Then the zero solution of (3.1) is uniformly asymptotically stable.

PROOF. Suppose that the zero solution is not uniformly asymptotically stable.
Then there exist ¢>0, sequences {t,}, {¢,}, {T,} and a sequence {x(-;7,, ¢,)} of
solutions on [t], ) such that ©,=0, ¢,eCYHe 9, T,-c0 as n—oo and
[x(to+ T 1., ¢,)|>e Let X"(£)=x(¢; T,, ¢,). Then by the proof of Theorem 3.1 v,(f) =
SUP;cpr—34.91X"(8)] is non-increasing for all £>7,+2q and

e<|X"(t,+ TP |0t + T) S0,(7,+29) < H .
Hence there exist sequences {1,} and {7,} such that
,+29=s1,<t,+T,81,+T,, T,— as n—
and
3.17) v,(t,+ T,)>6Ov,(z,) .
We show that
(3.18) x"(8)#0 for all telt,, 7,+7,).

Suppose that there exists ¢, €[z, 7,+ T,] such that x"(¢,)=0. Note that by the monoto-
nicity of v,(¢), we have

Ua(Ta+ T,) Sv,(8,) Ssupgs, [X"(5)] .
It follows from Lemma 3.1 that
Supsgtn Ixn(s) I g 0 supse[tn —2q,t,] |X"(S)| é 0 Supsgt" —3q lX"(S)l é 01],.(1'") ’

which contradicts (3.17). Therefore (3.18) is proved, and then by Lemma 3.1, |x"(¢)] is
non-increasing on [t,+ ¢, t7,+ 7,). Hence

|x"(£)|>¢€ for all reft,+4q,7,+7T,].
We may assume that x"(¢)>¢ for all te[7,+g¢, 1,4+ T,]. Then by (A,) and (3.2),

(3.19) % X"() S —ax"(t)+ BM(—x") < —ae

for all te[t,+ 2q, 1,+ T,], which implies that
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x"t,+T,)=x"(t,+q)—oe(T,—1,—2g) > — 0 as n— o0,
since T,,—co. This is a contradiction and completes the proof.
REMARK 3.2. For (3.15), suppose that
(A,) holds for some 0<pBg<3/2 and liminf,_,  b(£)>0.

Then F{(t, ¢) satisfies (3.16), and hence by [17] the zero solution of (3.15) is uniformly
asymptotically stable. But we can also give a proof quite similar to the proof of Theorem
3.2 as follows: Suppose that x"(f)>¢ for all te[t,+¢, 7,+ T,]. Then by (A;)

) SBOSUD,eg g~ X(9) < ()

for all te(t,+¢, t,+ T,], which yields a contradiction.

EXAMPLE 3.1. Let a, b: [0, 0)—[0, ) and r: [0, 0)—[0, g] be continuous
functions such that

a()za and 0=b(N=§,
for some a>0 and >0, and let f,g: S(H)— R be continuous functions such that
If(0)|=|x] for xeS(H) and xf(x)>0 for x#0,
and that
lg(x)|=|x| for xeS(H) and xg(x)>0 for x#0.
Then the delay-differential equation
(3.20) X'(6) = —a(t)g(x(1)) — BOSCx(t— (1)
satisfies (A,) and (3.2). Hence, if

azf or i-j{l—ﬂ;a <1+(ﬁ2_oc§)2 e_“">1/2}§1 )

Theorems 3.1 and 3.2 imply that
(i) the zero solution of (3.20) is uniformly stable, and
(i) if 6<1, then the zero solution of (3.20) is uniformly asymptotically stable.

4. Stability region in Quadrant II. In this section, we consider the delay-
differential equation

“.n x'(O=G(t, x())+ F(¢, x,),

where G: [0, o) x S(H)— R and F: [0, c0) x C4(H)— R are continuous. We assume that
there exist <0, #>0 and a non-positive function a(¢) on [0, o) such that
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4.2) a()=a and |G(t, X)|< —a(?)|x]|

for all 120 and xe S(H), and that F(t, ¢) satisfies (A,). To avoid confusion, we let
y= —a and c(t) = —a(?), so that we have

4.2') c®)<y and |G(t, x)|Sc(t)|x] .

We further assume that

4.3) —a(f)=c(t)Zb(r) forall =0
and
(4.9) —a=y<f and yg<l1.

For a <0 and >0, the equation (1.1) is an example of (4.1) satisfying (4.2)—(4.3), and if
either —a=7y=f or yg>1, then the zero solution of (1.1) is unstable. Hence, it is quite
reasonable to assume (4.4). For a continuous function ¥ : [0, 0)—R, we let Y ()=

max{0, Y(t)} and ¥ _(t)=max{0, —y(r)}.

LEMMA 4.1. For some t, 20 and T>t,+ q, let x(¢) be a solution of (4.1) on [t,, T]
such that x(t)>0 for all te(t,, T]. Then

t 'Yq t,+tq
4.5 j X'y (s)ds < j " (s)d
ey +(s) —y x'y(s)ds

forall te[t,+q, T).

PROOF. For te[t;+gq, T, choose ¢, €[0, q] so that x(t—gq,) =inf;_, o) X(t+5).
Then by (A,), (4.2) and (4.3),
x'(t) = G(t, x(t)) + F(t, x,) < c(t)x(t) + b(t) supse 4,01 (— x(t +5))
S c(0)x(8) = b(t)infycq_ oy (Xt + ) < c(e)x(t) — x(t — q4))

=y J x(s)ds=y J x4 (s)ds .

4 t—q

Hence, integrating x’, (¢) from ¢, + g to ¢, we have

t t S t utgq
J x't(s)ds < yj x'Au)dudsévJv x' () J dsdu
t s—q t

1ta tytq u

t

ty+q
<y j X't (wdu+yq j x'y (u)du,
ty tytq

which proves (4.5).

In a similar way, we have the following:
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LEMMA 4.2. For some t, 20 and T>t,+q, let x(t) be a solution of (4.1) on [t;, T
such that x(t)<0 for all te(t,, T). Then

J’t 7q t,+q
4.6 x'_(s)ds = j x'_(s)ds
(46) xS )

Jorall telt,+q, T).

LEMMA 4.3. Fort; 20 and T>t,, let x(f) be a solution of (4.1) on [t, —2q, T such
that |x(t)|>0 for all te[t,—q, T). Then

lx(t)l§<1 +%(v+ﬁ)>supse[,,-zq,u] Ix(s)]
Jorall telt,, TI.
PROOF. It is clear from (4.2) and (A,) that
X' ()= +Blx forall relr;—q, T].

Hence if x(¢#) >0 for all te(¢, —g, T, then by Lemma 4.1,
31

X(t)éx(t1)+j X’+(S)d5§x(t1)+lz—qu J (y+ B)lIx,llds

14
vq’ g’
<x(t)+—— 0+ sett—qurg 1% S T+—— 0+ st — :
—x( 1)+1_,yq(’y B)Sup [ty —q,1] ” “ < 1_yq(y ﬁ))sup [ty 2‘1,11]|‘x(s)|

The proof in the other case x(f) negative on (¢, —g, T] is similar.

LEMMA 4.4. Let x(t) be a solution of (4.1) on [t,—2q, T] for some t,=0 and
T=1t,+q such that x(t;)=0 and x(t)>0 for all te(t;, T], and let r =sup, (- 24.¢,31X(5)|.
Suppose that there exists n =0 such that

.7) ﬂ(y;ﬁ)(e”—l—vq)gl—n—vq
or
p n
(4.8) 7(6”—1)>1 and g(eyq‘¥bg%g>§1*—ﬂ—?q-
Then

t
x(t)éj xi(s)ds=(1—n—yg)r forall telt,,t;+4q].
ty

PROOF. We will carry out the proof in a way similar to that for Lemma 3.2.
Unfortunately we cannot assume S(e’?—1)/y=1, and for this reason the conditions of
the lemma are complicated. Suppose that there exists #,e(?;, ?;+¢g] such that
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x(t4)> (1 —n —yq)r. Then we can choose ¢; <1, so that x(¢) <(1 —n—yg)r for all te (¢, t3)
and

(4.10) x(L)=(1—n—yqg)r.
By (A,) and (4.2),
X' (OZy|x(0)|+ Br for all telt, —2q, 5],
and hence x(#,)=0 yields that x(z) < (e’ """ —1)Br/y for all t€[t,, t;]. Therefore we have
4.11) X () S Brertt forall telz, t5].
Further, it follows from Lemma 2.1 that

p

lx(t)lé—y—r(e“’l_‘)—l) for all tet,—2q,¢t,].
Then by (A;) and (4.2) again, we have for te(t,, t5]
X,(t) é yx(t) + ﬁ Supse[r—q,l]( - X(S)) § yx(t) + ﬂ Supse[r —q,14] lX(S)‘
Eﬁ ,.(ev(tﬁrq“r)_ 1) .
7
Therefore, by (4.11) and (4.12), we have for telt,, 5],

(4.12) <Pre’ " —1)+

t t t 2
x(t)gj x’+(s)ds§ﬁrj (e"‘“‘”—l)ds%—f min {ﬁr,—ﬁy—r(e”"“_s’—l)}ds.
t t) 1y

Suppose (4.7) holds. It then follows from ¢, <t, + ¢ that
2

1 tq ﬂ t,+q
x(t)<ﬁrj (ey("")—l)ds—k-;rj (e’ 979 —1)ds
L3 t

:E())T';_)(evq_l_yq)rg(l‘—n“ym"-

Next suppose (4.8) holds and choose ¢, €[t,, t; +¢) so that

e — (BB

Then we have for telt,, t5],

t tytq 1 ﬁz t,tq
x(t)éj x'y(s)ds < Br J ("7 — 1)ds+J‘ ﬁrds+—y~r j (e’ 179 —1)ds
t 1 t t

1 1 2

=%<em_z;;ﬁ]0gy;ﬁ>r§(l—11“7’51)7‘

In either case, we have a contradiction to (4.10) at t=1;, and at the same time we have
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t
J x'y(s)ds=(1—n—yg)r for all te[t,,t;+4q].
ty

The proof is now complete.
Similarly,we have a lemma for negative solutions of (4.1):

LEMMA 4.5. Let x(f) be a solution of (4.1) on [t,—2q, T] for some t, =0 and
T=1,+ q such that x(t;,)=0 and x(t)<O0 for all te(t,, T), and let r =supsc, —24,¢,11%(5)|.
Suppose that there exists n =0 such that (4.7) or (4.8) holds. Then

t
IX(t)Iéj x_(s)ds=(1—n—yq)r  forall te[t,,t,+q].
t

THEOREM 4.1. Suppose that there exist a <0, $>0, a(t) <0 and b(t) >0 satisfying
(A,) and (4.2)—(4.4), and

(4.13) ﬂ(i:“)(e—“q—uaq)glmq
or
4.14) —é(e“’"—lbl and —é(e‘“q+ﬁ;alogg;—a>§l+aq.

Then the zero solution of (4.1) is uniformly stable.

PROOF. As above, we let y= —a, and show that

2
(4.15) (5 tor D) < n¢u<1 e (v+ﬂ>)ez<v+ﬂ>q

for all 0£¢,<t and ¢ € CY(H). Let
2
P=||¢||<1+y—q—(y+ﬁ)>e2”+”"’
1—7yq

and suppose (4.15) is false for some solution x(¢) = x(t; t,, ¢) of (4.1). Then there exists
ts>1t, such that |x(t)|>p. By (A,) and (4.2), |x'(®)|=(y+P)|x] and hence
[x()| < ||p|| € TP for all te[t,—gq, t,+ 2q], which shows #,+2q<ts. Then it follows
from Lemma 4.3 that there exists ¢, €[¢,+ ¢, ¢5) such that x(¢,)=0. Choose t,, ¢; and ¢,
so that t,+¢=<t, <1, <t;<t, <15, x(t,)=0, 0<|x(¢)|<p for all te(t,, t;] and

(4.16) |x()|>p for all re(t, t].

We may suppose that x(f) >0 for all te(¢,, t,], since the argument for the other case is
similar. By letting #=0 in Lemma 4.4, we have
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x()= f )< (=g

for all te[t,, t,+¢] and by Lemma 4.1

s

x(t,) < x(t, +q)+J

, b
X'+ (s)ds S (1 =19+ (1= 9)p =,
ty+gq - W]
which contradicts (4.16). This completes the proof.

REMARK 4.1. The region S, of points («, f) which satisfy the conditions of
Theorem 4.1 is illustrated in Figure 2. Letting a—0 in (4.13) and (4.14), we have

Bg=3/2.

We shall study the asymptotic stability of the zero solution of (4.1). Consider the
equation (1.1) in which —a=p <1/q. Then the zero solution is uniformly stable but not
asymptotically stable. So we have to add an assumption to insure the asymptotic
stability for (4.1). We assume for (4.1) that

(4.17) lim inf (a(t)+ b(2))>0.

Then there exist 6 >0 and T >0 such that
(4.18) a)+b()=o forall =T, .

First, we consider an eventually positive solution of (4.1): Let x(¢) be a solution of
(4.1) such that there exists 7, > T, such that

(4.19) x()>0  forall t=T,.
Then by Lemma 4.1,

(4.20) va x4 (s)ds <0 .

T,

Suppose that liminf,_, , x(#) >0. Then there exist ¢>0 and 75 =T, such that
x(H)>¢ forall =>T;5.

By (4.20), we can choose T, = T; so that

jw x' (t)dt <ed/y.

T,

As in the proof of Lemma 4.1, by (A,), (4.2) and (4.18),
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X'(6) = c(t)x(2) + b(2) Supse -, 07 (— x(t +5))

§vj' x’+(s)ds—(b(t)—c(t))infse[-q,O]x(t+s)§yf x',(s)ds — 6 <0

-q T,
for all t=T,+q. Hence

x(t) > — 0 as t— oo,
which contradicts (4.19). Thus we have

(4.21) liminf x(£)=0.

t— o0

Suppose that lim sup,_, ,, x(¢) >0. Then by (4.21), there exist £ >0 and two sequences {1, }
and {t¢,} tending to oo such that 7,<t,<7,,, x(1,) =¢/2, ¢/2<x(t)<e for all te(z,, ,)
and x(¢,)=e¢. Hence by (4.20)

!'l
x4 (s)ds = 0 as n— oo,

n

8/2=X([,,)-X(Tn):.<_ J

T

which yields a contradiction. Thus we have

(4.22) lim x(1)=0
1= o0
for any eventually positive solution x(¢) of (4.1). In a similar way, we can show (4.22) for
any eventually negative solution x(¢) of (4.1). In order to complete ihe proof of the
asymptotic stability of the zero solution of (4.1), we show (4.22) for any oscillatory
solution of (4.1). Suppose that
By +B)
7 (e"—=1-yq)<1-ygq

or

log M) <l—vq.

B
Then there exists #>0 such that (4.7) or (4.8) holds. Let x(#) be a solution of (4.1) such
that there exists a sequence {#,} tending to co with x(z,)=0 and x(z)#0 for t#1¢,. Let
T'n=SUDse(, —24.1,1 | X(5)|. In order to prove (4.22), it suffices to show that for each n,

p

—(e’—=1)>1 and

B(M 7+ B
Ppa_THP
y y y

|x(t)|§(1"7)’n for all te[tm ln+l]~

We may assume that x(¢)>0 for all te(z,, t,+,), since the proof in the other case is
similar. If ¢,,,=<t,+ ¢, then by Lemma 4.4,

x(t)§(1—'l_)’q)rn§(l—'7)’n for all te(tm zn+1)‘
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Ift,,,>t,+q, then by Lemma 4.4,
1
x(1) = J x'i(s)ds<(1—n—yq)r,  forall te(t,t,+4ql,
tn

and by Lemma 4.1,

t
x(t) = x(t,+q)+ J X', ($)ds = (1= 1= 0+ —0— (1 = yq)ru=(1 = )r,
t,+tq 1- 79

for te(t,, t,+,). Thus we have the following:

THEOREM 4.2. Suppose that there exist a <0, f>0, a(t) <0 and b(t) >0 satisfying
(A,), (4.2)-(4.4) and (4.17). Further suppose that

B(B—0)

(4.23) 2 e =1+ag)<l+og

or

(4.24) —E(e‘“q—1)>1 and —£<e‘“q+ﬁlogﬁi—°‘.)<1+aq.
a o o B

Then the zero solution of (4.1) is asymptotically stable.

EXAMPLE 4.1. Leta, b: [0, 00)—[0, ) and r: [0, c0)—[0, g] be continuous func-
tions such that

aZa()20Zb(H)EP and a(r)+b(1)=0
for some a <0 and >0, and let g: S(H)— R be a continuous function such that
lg(x)|=|x| for xeS(H) and xg(x)>0 for x#0.
Then the delay-differential equation
(4.25) X'(f) = — a()g(x(1)) — b(D)x(t—r(1))

satisfies (A,) and (4.2)—(4.4). Hence it follows from Theorems 4.1 and 4.2 that

(i) if a and B satisfy (4.13) or (4.14), then the zero solution of (4.25) is uniformly
stable, and

(ii) if a(t) and b(¢) satisfy (4.17) and if « and S satisfy (4.23) or (4.24), then the zero
solution of (4.25) is asymptotically stable.

REFERENCES

[1] F. V. AtkinsoN AND J. R. HADDOCK, Criteria for asymptotic constancy of solutions of functional
differential equations, J. Math. Anal. Appl. 91 (1983), 410-423.



236

[2]

[31]
[4]

[51]
(6]

[7]
(8]

(91
(10]

[
(12
[13)
[14]
[15)
[16)

(171

T. YONEYAMA

D. I. BARNEA, A method and new results of stability and instability of autonomous functional
differential equations, SIAM J. Appl. Math. 17 (1969), 681-697.

R. BELLMAN AND K. L. Cookk, Differential-Difference Equations, Academic Press, New York, 1963.

K. L. CookE, Functional differential equations close to differential equations, Bull. Amer. Math. Soc. 72
(1966), 285-288.

K. L. CookEg, Asymptotic theory for the delay-differential equation u’(f) = —au(t —r(t)), J. Math. Anal.
Appl. 19 (1970), 160-173.

R. D. Driver, Existence and stability of solutions of a delay-differential system, Arch. Rational Mech.
Anal. 10 (1962), 401-426.

J. K. HALE, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.

J. K. HaLg, Sufficient conditions for stability and instability of autonomous functional-differential
equations, J. Differential Equations 1 (1965), 452-482.

N. N. Krasovskii, Stability of Motion, Stanford Univ. Press, California, 1963.

J. C. LiLLo, Oscillatory solutions of the equation y'(x)=m(x)y(x —n(x)), J. Differential Equations 6
(1969), 1-35.

A. D. Myskis, On the solutions of linear homogeneous differential equations of the first-order and stable
type with retarded arguments [Russian], Mat. Sb. (N. S.) 28 (1951), 641-658.

M. E. PArrOTT, The limitting behavior of solutions of infinite delay differential equations, J. Math.
Anal. Appl. 87 (1982), 603-627.

E. WINSTON, Asymptotic stability for ordinary differential equations with delay perturbations, SIAM J.
Math. Anal. 5 (1974), 303-308.

T. YoNEYAMA, On the stability for the delay-differential equation x(f)= —a(t)f(x(t—r(¢))), J. Math.
Anal. Appl. 120 (1986), 271-275.

T. YONEYAMA, On the 3/2 stability theorem for one-dimensional delay-differential equations, J. Math.
Anal. Appl. 125 (1987), 161-173.

T. YONEYAMA AND J. SUGIE, On the stability region of scalar delay-differential equations, J. Math. Anal.
Appl. 134 (1988), 408-425.

J. A. YORKE, Asymptotic stability for one dimensional differential-delay equations, J. Differential
Equations, 7 (1970), 189-202.

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF OSAKA PREFECTURE

SAKAIL OsakaA 591

JAPAN





