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1. Introduction. For qϊzO and oc,βeR, the one-dimensional differential-

difference equation

(1.1) x\t)=-ax{t)-βx(t-q)

is a simple example of a delay-differential equation and has been studied from early

times in the development of the stability theory of delay-differential equations. For (1.1),

the theory of characteristic equations is valid and it is known that the zero solution of

(1.1) is uniformly stable if and only if α and β satisfy one of the following conditions:

(R2) cc = βsinη, Og>βq£\η + ̂ -J cosη,

(R3) -a = β9

that is, (α, β) is contained in the region (stability region) illustrated in Figure 1 with its

boundary except for the point (—l/q, l/q). Moreover, the zero solution of (1.1) is

uniformly asymptotically stable if and only if (α, β) is contained in the interior of R1 i)R2

(cf. [3], [7]). It is a feature that R2 and R3 become smaller as q increases, while Rx is

independent of q.

On the other hand, the theory of characteristic equations is not applicable to the

delay-differential equation such as

(1.2) x\t)= -a(ήx(t)-b(t)x(t-r(t)),

where a, b: [0, oo)->/? and r: [0, oo)->[0, q] are continuous functions. Liapunov's

method seems to be the only way to investigate the behavior of solutions of (1.2). For

(1.2), it is reasonable to expect a similar stability region for (α, β) under the conditions

(1.3)

or

(1.4)
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FIGURE 1

There are many works for the stability region which is independent of q like the
region Rx (cf. [6], [8], [9], [12], [13]). But there are few works for the stability region
corresponding to R2 ([2], [16]). In the case a(t) = 0 in (1.2), i.e., for the equation

(1.5) x'(t)=-b(t)x(t-r(t)),

the stability of the zero solution has been much studied (cf. [4], [5], [10], [11], [14]). It is
interesting that under the condition 0^b(ί)^β, the zero solution of (1.5) is uniformly
stable if βq-^3/2, but there are equations with unbounded solutions if βq>3/2. The
stability region O^βq-^3/2 for (1.5) does not coincide with the stability region
O^βqS π/2 for the differential-difference equation

x'(t)=-βx{t-q).

For a general delay-differential equation

(1.6) = F(t,xt),

where F: [0, oo)xCq^R, Yorke [17] has shown the uniform stability of the zero
solution under the conditions

-βM(φ)<,F(t,φ)<,βM(-φ) and 0^βq^3/2,(1.7)

where M((/>) = max{0, supse[_q>O]0(5)}. The author [15] proved the uniform stability for
(1.6) under conditions more general than (1.7).

For the special case
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x'(t)=-a{t)(x(t)-x(t-q))

of (1.2), Atkinson-Haddock [1] has shown the uniform stability under the conditions
including

\a(t)\^oc and aq<\ ,

which corresponds to (^3).
Recently, the author and Sugie [16] have established a stability region for an

equation more general than (1.2) under the conditions (1.4) and \a(t)\^b(t).
In this paper, we study the stability region which depends on q for an equation

more general than (1.2). Theorem 3.1 in Section 3 gives a stability region for (1.2) under
(1.3), which corresponds to (R2) with 0^^<π/2. Theorem 4.1 in Section 4 gives a
stability region for (1.2) under (1.4), which corresponds to (R2) with — π/2<τ/<0 and
includes the stability region given in [16]. The stability region obtained for (1.1) by the

FIGURE 2

results in this paper is illustrated in Figure 2. We also give some results on the
asymptotic stability of the zero solution of (1.2). If (α, β) is contained in the interior
of the regions Sx and S2 in Figure 2, it will be shown that the zero solution of (1.2) is
asymptotically stable. (Figures 1 and 2 were drawn accurately by a computer and an
X-Yplotter.) Thanks are due to the referee for valuable comments.

2. Definitions and assumptions. For q^O, let Cq be the space of continuous
functions on [ — q, 0], and define the norm
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for φeCq. For H>0, let

S(H) = {xeR:\x\<H} and Cq(H) = {φeCq: \\φ\\<H}.

If ψ( ) is a continuous function defined on [-#, Γ] for some Γ>0, then for 0 ^ t^ T, we

denote by φteC9 the function defined by ψt(s) = ψ(t+s) for se[-q, 0].

Consider the delay-differential equation

(DDE) x'(0 = *X',*f),

where F: [0, oo)x Cq(H)->R is continuous and *'(/) denotes the right-hand derivative

of x(t). For an initial function φ e Cq(H) at t0 ̂  0, we denote by x( /0, 0) the solution of

(DDE) such that xto = φ. We assume that F(t, 0) = 0 so that x(t)~0 is a solution of

(DDE), which is called the zero solution.

DEFINITION 2.1. The zero solution of (DDE) is said to be stable if for any ε>0

and to^0 there exists δ(t0, ε)>0 such that if φeCq(δ), then

\x(t;to,φ)\<ε for all ί^ίo

The zero solution of (DDE) is uniformly stable if the above δ is independent of t0.

DEFINITION 2.2. The zero solution of (DDE) is said to be asymptotically stable if

it is stable and if for any t0 ̂  0 there exists δo(to) ^ 0 such that if φ e Cq(δ0), then

x(t; t0, φ) -• 0 as / -> oo .

DEFINITION 2.3. The zero solution of (DDE) is said to be uniformly asymptoti-

cally stable if it is uniformly stable and if there exists <50 > 0 such that for each ε > 0, there

exists Γ(ε)>0 such that for any to^0 and φeC\δo\

\x(t;to,φ)\<ε for all t^ t0 + Γ(ε).

The following condition on F(t, φ) was given by Yorke [17]: There exists β^0 such

that

(AO -βM(φ)^F(t,φ)^βM(-φ) for all ί^0 and φeCq(H),

where M(^) = max{0, supse[-qt0]φ(s)}.

The author and Sugie [16] modified the above condition and proposed the

following condition to show a stability region of the delay-differential equation which

will be studied in Section 4: There exist β^0 and a non-negative continuous function

b(i) on [0, oo) such that

b(t)<*β and
(A2)

b φ



DELAY-DIFFERENTIAL EQUATIONS 221

for all t^0 and φeC%H).

We note that (A2) implies (A^, and if F(t, φ) satisfies (Ax) then F(t, 0) = 0 and

\F(t,φ)\^β\\φ\\ for all t^O and φeC%H).

EXAMPLE 2.1. Let / : [0, oo)x S(H)->R and r . [0, oo)x Cq(H)-+[0, q] be con-

tinuous functions such that 0 ̂ x/(ί, x) S β*2 for all (t, x) e [0, oo) x S(H). Then F(t, φ) =

-f{t, φ(-r(ί, φ))) satisfies (A^.

For other examples of F(t, φ) satisfying (AJ, we refer to [17].

EXAMPLE 2.2. Let b\ [0, oo)->[0, oo) be a continuous function such that

O^b(t)^β for some βi^O, and let r(t, φ) be a continuous function as in Example 2.1.

Then F(t, φ)= -b(t)φ(-r(t, φ)) satisfies (A2).

EXAMPLE 2.3. Let c(t, s) be a continuous non-negative function denned for all

^t such that

ί*0

c(t,

Then

l Γ°
F(t, φ)= c(ί, t + s)φ(s)ds

q j
satisfies (A2).

Finally we give a lemma which is useful in later sections.

LEMMA 2.1. Let x(t) be α continuously differentiαble function on [Tί9 T2] such that

x(/1) = 0 for some tx e[7\, T2] and

4\x(t)\^oι\x(ή\ + c for all te[Tv T2] ,
at

where α φ 0 and c ;> 0. Then

(2.1) Wί) l^ — ( e α | ί - ί l ! - l ) for all t e [ Γ 1 ? T 2 ] .
α

P R O O F . Let te[tu T2]. Then

and hence
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—

dt I J,, J
for all te[t1, T2]. Integrating both sides from ί, to t, we have

and therefore

—

which proves (2.1). The proof in the case te[Tί9 tj is similar.

3. Stability region in Quadrant I. In this section, we consider the delay-

differential equation

(3.1) xV) = G(t,x(t)) + F{t9xt)9

where G: [0, oo) x S(H)-*R and F\ [0, oo) x C\H)-+R are continuous. We assume that

there exists α > 0 such that

(3.2) xG(t, x)^ -ax2 for all (/, x)e [0, oo) x S(H),

and that F(t, φ) satisfies (At) for some β>0.

Let x(t) be a solution of (3.1) on [t1—q, tλ] such that x(/)>0 for all te(t1 — q, ίj).

Then M( — xtί) = 0 and hence

Similarly if x(0 is a solution of (3.1) on iΛ-g, ί j such that x(r)<0 for all te(t1 — q, ίx),

then ^(iJxXiJ^O. Thus we have the following:

LEMMA 3.1. For some tί^>0, let x(t) be a solution o/(3.1) on [t1-q, tx] such that

| JC(0I>0 for all tefa-q, tλ). Then

The above lemma shows that if x{t) = x(t\ tθ9 φ) is a positive (or negative) solution

of (3.1) defined on [/0, oo) for / 0 ^0 and φeCq(H), then |x(ί)| is a non-increasing

function on [to + q, oo). Therefore, in order to show the uniform stability of the zero

solution of (3.1), it suffices to investigate the behavior of solutions of (3.1) which cross

the /-axis.

From now on we assume that α ̂  β or
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and that (Ax) and (3.2) hold.

In the case β<α/(l -e~"q), we let fi=a/(l-e~*q). Then (AJ is also satisfied for β,

and the corresponding θ satisfies 0 = 1/(1 + (1 -oc2/β2)1/2)<\. Thus we may assume

without loss of generality that

(3.3) — (l-e-"q)^l.

Let x(ί) be a solution of (3.1) on \tγ-2q, T\ for some T>t1^0 such that

x(/i) = 0 and x(0>0 for all te(tί9T\,

and let r = supse[tι-2q,tί]\x(s)\ We shall show that

(3.4) \x(0\^θr for all /e[ί l 9 T].

It suffices to show that for each ε>0,

x(t)<θ(r+ε) for all te[tί9T].

Suppose that there exist ε>0 and t3e(tl9 T] such that

(3.5) x(t3) = θ(r+ε) a n d x(t)<θ(r+ε) for all te[tί9t3).

In practice, we have t3^tx + q by Lemma 3.1. By (AJ and (3.2),

(3.6) —\x(t)\^-—oι\x(t)\ + βr for all t€[tx—q9t{\9at

and

d
(3.7) -j-Wί)l^ -αx(ί) + jS(r + ε) for all ί e [ ί l 9 ί 3 ] .

It follows from Lemma 2.1 and (3.7) that

β - < - >
(3.8) x(t)S—(r + ε)(l-e α u ί l}) for all ίe[ίχ, ί 3 ] .

We also obtain by Lemma 2.1 and (3.6) that

β
WO = — K l ~ £ ) for all ί eLίi~^? l̂J

α

Hence, it follows from (At) and (3.2) again that for te[tί, ί3],
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(-Xt)^-αx(t) + /Ssup s 6 [ f-β ϊ f l ](-x(s))

(3.9) g α x ( ί ) +
α

By (3.3), we can choose t2^tι in such a way that

(3.10) i d - e - C - H . - . ^

Define a continuous function yε(t) on [tι, oo) by

β

for

α

for ί^ί2- Note that yε(t) is the solution of

on [t2, oo) with

Moreover let

for t^t2. Then >>ε(0^zε(0 for all t^t2 and

-e-*q),
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since

In particular,

β
β-a

since zE(t2)>0. Hence

-Λq

αV β-* J '

Observe that yE(t) is increasing on [tί, t2]. We have

(3.11) yB(t)<θ(r+ε) for all fetx .

If t3^t29 then by (3.8) and (3.11)

x(ή^yE(t)<θ(r+ ε) for all te[tu t3],

which yields a contradiction at t=t3. Hence t2 < t3 and x(t2) ^yE{t2). It follows from (3.9)
and (3.11) that

x(t)^yε(t) <θ(r+ ε) for all te [r2, ί3],

which contradicts (3.5) at t=t3. Thus (3.4) is proved.
In a similar way, under θ^ 1, we can show (3.4) for any solution x(t) of (3.1) on

[t1-2q, T] such that

x(t1) = 0 and x(t)<0 for all

(3.4) means that if a solution of x(t) for (3.1) crosses the /-axis at some tu then

l*(OI^0supS6[ f l_2βi ί l ] |x(y)| as long as |jc(r)|^O.

Therefore, together with Lemma 3.1, we obtain the following:

LEMMA 3.2. Assume that θ^l, and let x(t) be a solution o/(3.1) on [tι-2q, T\for
some Γ > / 1 ^ 0 such that c ^ ^ O . Then

ί i _ 2 ί M i ] | ^ ) | for all te(tuT].

We now state a theorem on the uniform stability of the zero solution of (3.1).

THEOREM 3.1. Suppose that there exist α>0 and β>0 such that (Ax) and (3.2)
hold and that a^β or
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Then the zero solution of (3.1) is uniformly stable.

P R O O F . For to^0 and φeCq(He~2βq\ let x{t) = x(t\ tQ, φ) be a solution of (3.1).

By (AO and (3.2),

and hence | |x, | | 2^ \\Φ\\2 + 2β Jjo \\xs\\2ds. Then GronwalΓs inequality implies that

| | j c t | | ^ | | 0 | | ^ ( ί " ί o ) . Therefore V(t)=supse{t-3qtt]x
2(s) is well defined for t^to + 2q. We

shall show that V(f) is non-increasing for all t^>to + 2q. Suppose not. Then there exist a

solution x(t)=x(t; t0, φ) and t2>t0 + 2q such that

(3.13) V'(t2)>0.

It is easy to see that V(t2) = x2(t2) and V/(t2)=2x(t2)x/(t2)>0. By Lemma 3.1, there

exists t1 e(t2 — q, t2) such that x(^) = 0. Then it follows from Lemma 3.2 that

[ t l _ 2 ί i f ι ] | x ( j ) | for all

and hence K X ^ ^ O , which contradicts (3.13). The proof is now complete.

R E M A R K 3.1. The condition (3.12) is also written as

(3.14) βqύ~~ lo
ω

where ω = oc/β. The region 5X of points (α, β) which satisfy the conditions of Theorem 3.1

is illustrated in Figure 2.

Letting α->0 in (3.12), we have βq—\/2^l. This coincides with Yorke's condition

below.

THEOREM [17, Theorem 1.1]. Suppose that there exists β^O such that (Ax) holds

and βq^3/2. Then the zero solution of

(3.15) x'(t) = F(t,xt)

is uniformly stable.

Yorke [17] also proved the uniform asymptotic stability for (3.15) under the

conditions (Aj), 0<βq<3/2 and

^ s e Q u e n c e s ^π"^ 0 0 a n d φneCq(H) converging to a constant
nonzero function in Cq(H), F(tn, φn) does not converge to 0.

j) and (3.2) hold, then the right hand side of (3.1) satisfies (3.16), and so the uniform
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asymptotic stability for (3.1) will be proved in a way similar to [17], but under (Aj) and

(3.2), the proof is slightly easier.

THEOREM 3.2. Suppose that there exist α>0 and β>0 such that (At) and (3.2)

hold and that oc^β or

Then the zero solution 6>/(3.1) is uniformly asymptotically stable.

PROOF. Suppose that the zero solution is not uniformly asymptotically stable.

Then there exist ε>0, sequences {τ^}, {φn}, {T'n} and a sequence {*( ;τw» Φn)} of

solutions on [τ^, oo) such that τ,jΞ>0, φneCq(He~2βq), T^-too as /i->oo and

l*(τ« + τήl τ'n, Φn)\>£- Let x\t) = x{t\ T'„ φn). Then by the proof of Theorem 3.1 υn(t) =

swPse[t-3q,t]\χn(s)\ ^s non-increasing for all ϊέiτ'n + 2q and

Hence there exist sequences {τπ} and {Tn} such that

τj; + 2 ί g τ l l < τ I ι + 7 ; g τ ; + Γ ; , Tn^oo as n -+cc

and

(3.17) vn(τn+Tn)>θvn(τn).

We show that

(3.18) *"(/)* 0 for all te[τn,τn+Tn].

Suppose that there exists tns[τn, τn+ Tn] such that xn(tn) = 0. Note that by the monoto-

nicity of vn(t), we have

It follows from Lemma 3.1 that

s u p ^ J x w ( * ) | ^ 0 s u p s e [ , n _ 2 , 5 ί J * ^

which contradicts (3.17). Therefore (3.18) is proved, and then by Lemma 3.1, \xn(t)\ is

non-increasing on [τn + q, τΛ+ Tn]. Hence

|x"(OI>e for all te[τn + q, τn+ Tn].

We may assume that xn(t)>ε for all te[τn + q, τw+ ΓJ. Then by (AJ and (3.2),

(3.19) 4~xn(t)ύ -αxM(ί) + jβM(-x^)< -αε
at

for all te[τn + 2q, τn+ ΓJ, which implies that
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τn-2q)-^ - oo as n -+ oo ,

since Tn-+oo. This is a contradiction and completes the proof.

REMARK 3.2. For (3.15), suppose that

(A2) holds for some 0<βq< 3/2 and lim inf, _ ̂  b(t) > 0 .

Then F(t, φ) satisfies (3.16), and hence by [17] the zero solution of (3.15) is uniformly

asymptotically stable. But we can also give a proof quite similar to the proof of Theorem

3.2 as follows: Suppose that xn(t)>ε for all te[τn + q, τ n + Tn\ Then by (A2)

^ [ t - q , t ] ( - x ( s ) ) < - ε b ( t )

for all te[τn+q, τ π + ΓJ, which yields a contradiction.

EXAMPLE 3.1. Let a, b: [0, oo)->[0, oo) and r: [0, oo)->[0, q] be continuous

functions such that

a(t)^a and O^b(t)^β,

for some α>0 and β>0, and let/,g: S(H)-+R be continuous functions such that

\f(x)\^\x\ for xeS(H) and xf(x)>0 for

and that

|0(x) |^ |* | for xeS(H) and xg(x)>0 for

Then the delay-differential equation

(3.20) x'{t)= -a{t)g(x{t))-b(t)f{x(t-r{t)))

satisfies (Ax) and (3.2). Hence, if

Theorems 3.1 and 3.2 imply that

(i) the zero solution of (3.20) is uniformly stable, and

(ii) if Θ< 1, then the zero solution of (3.20) is uniformly asymptotically stable.

4. Stability region in Quadrant II. In this section, we consider the delay-

differential equation

(4.1) x'(t) = G(t,x(t)) + F(t,xt),

where G: [0, oo) x S(H)-+R and F: [0, oo) x Cq(H)->R are continuous. We assume that

there exist α<0, β>0 and a non-positive function a(i) on [0, oo) such that
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(4.2) a(t)^oc and \G(t, x)\^-a(t)\x\

for all ί^O and xeS(H), and that F(t, φ) satisfies (A2). To avoid confusion, we let

y = — α and c(t) = —a(ή, so that we have

(4.20 <0^7 and \G(t,x)\^c(t)\x\.

We further assume that

(4.3) -a{i) = c(t)^b{t) for all / ^

and

(4.4) -(x = y<kβ and

For α<0 and β>0, the equation (1.1) is an example of (4.1) satisfying (4.2)-(4.3), and if

either — oc = y^β or yq>l, then the zero solution of (1.1) is unstable. Hence, it is quite

reasonable to assume (4.4). For a continuous function φ: [0, αo)-•/?, we let ψ + (t) =

max{0, φ(t)} and ^_(r) =

LEMMA 4.1. For some tγ ^ 0 β«rf Γ> ^ + ̂ , /̂ / x(t) be a solution of (4. l)on[tl9 T]

such that x(t)>0for all te(tu T\. Then

(4.5) x>+(s)ds£-JV— χ'+(s)ds
Jtι + q 1-yq Jtί

foralltefa + q, T\.

PROOF. For te[tι + q, T], choose ^ e [ 0 , q\ so that x(t-q1)=infse[-q0]x(t-\-s).

Then by (A2), (4.2) and (4.3),

x'(t) = G(ί, x(ή) + F(ί, x,) ^

x'+(s)ds.
t-qx Jt-q

Hence, integrating x + (t) from tx + q to /, we have

x+(5)αs^ y x +(u)dudsSy x Λύ) dsdu
Jίi+q *)t\+(l Js — q Jtx Ju

Jtι

which proves (4.5).

In a similar way, we have the following:

x'+(u)du + yq x\{u)du,
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LEMMA 4.2. For some t^O and T>tx + q, let x(t) be a solution of(4Λ) on [tu T]

such that x(t)<0for all te(tu T\. Then

P yq [tl+q

jtx+q A yq j ί x

P yq [
(4.6) X ' _ ( s ) ί ^ ^ _ x>_{s)ds

j A yq j

foralltefa + q, T\.

LEMMA 4.3. Fortί'^0andT>tι,letx(t)beasolutionof(4A)on[tι—2q, T\such

that \x(t)\>0for all / e ^ - ? , T\. Then

for allied, T\.

PROOF. It is clear from (4.2) and (A2) that

|x'(0l^(y+/0ll*,ll for all

Hence if x(t)>0 for all te(t1-q, T], then by Lemma 4.1,

x(t)^x{tι)+ I x'4s)ds^x(tl)+-^- I ' (γ+β)\\xs\\ds
A yq

yq2 \

The proof in the other case x(t) negative on (t1 — q, T] is similar.

LEMMA 4.4. Let x(t) be a solution of (4.1) on [t1 — 2q, T\ for some tι'^0 and

T^t1-\-q such that x(t1) = 0 and x(t)>0 for all te(tl9 T\, and let r = supse[tι-2q,tι] \x(s)\-

Suppose that there exists η^.0 such that

(4.7)
T

or

β β
(4.8) —(eγq-l)>l and —

Then

^\ x'+(s)ds^(l-η-yq)r for all te[tvtx+q~\ .

PROOF. We will carry out the proof in a way similar to that for Lemma 3.2.

Unfortunately we cannot assume β(eyq—l)/γ^ 1, and for this reason the conditions of

the lemma are complicated. Suppose that there exists t4.e(t1, tγ + q] such that
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x(t4) >(\—η- yq)r. Then we can choose t3 < t4 so that x(ή <(\-η — yq)r for all te(tu t3)

and

(4.10) x{h) = (\-η-yq)r.

By (A2) and (4.2),

x'{t)^y\x(t)\ + βr for all / e fc - 2?, ί 3],

and hence x(ί1) = 0 yields that x(t)<L(ey(t~t{ί- l)βr/y for all te[tί9 t3]. Therefore we have

(4.11) x'+iή^βreW-v for all te[tl9t3].

Further, it follows from Lemma 2.1 that

\x(t)\£—Ke7(fl"f)-1) for all te[tι-2q,t1'\ .

Then by (A2) and (4.2) again, we have for ίe[/ l s /3]

(4.12) ^/ίKβ y ( f " ί l ) -l) + — K ^ ( ί l + β " ° -

Therefore, by (4.11) and (4.12), we have for te[tu r3],

r, —

Suppose (4.7) holds. It then follows from /3<α1 + # that

g x'+(s)dsgiSr (β y ( s ~ ί l ) -l)Js+

Next suppose (4.8) holds and choose t2e[tι, tι-\-q) so that

Then we have for te[tu t3],

ft
x(t)ύ \ x'+(s)ds <βr

J

y \ y p

In either case, we have a contradiction to (4.10) at t = t3, and at the same time we have
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f x'+(s)ds^{l-η-yq)r for all te[tvtι+q~].

The proof is now complete.

Similarly,we have a lemma for negative solutions of (4.1):

LEMMA 4.5. Let x(t) be a solution of (4Λ) on [tί-2q, T] for some t^O and
T^tγ + q such that xψ^^O and x(t)<0 for all te(tί9 7], and let r = supse[tί-2q,tι] | *0) |
Suppose that there exists η^O such that (4.7) or (4.8) holds. Then

rj-yq)r for all te[tu tx+q\ .

THEOREM 4.1. Suppose that there exist α < 0, β > 0, a(t) < 0 and b{t) > 0 satisfying
(A2)flm/(4.2)-(4.4), and

β(β-oc)
(4.13) α 2 ^ " g

or

(4.14) - — ( ^ - α ^ l ) > l am/
0(

( ) U

0( CC \ OC

Then the zero solution of (4.1) w uniformly stable.

PROOF. AS above, we let y= — α, and show that

(4.15) \χ(t;t ̂ φ)\£\\ +
i - yq

for all 0 ̂  t0 ^ ί and 0 e C«(//). Let

and suppose (4.15) is false for some solution x(t)=x(t; t0, φ) of (4.1). Then there exists

t5>t0 such that \x(t5)\>p. By (A2) and (4.2), |x'(ί)|^(γ + β)\\xt\\ and hence

\x(t)\S\\Φ\\e2iγ+β)q for all te[to-q, to + 2q]9 which shows to + 2q<t5. Then it follows

from Lemma 4.3 that there exists tλ e[to + q, t5) such that x(t1) = 0. Choose t2, t3 and t4

so that ίo + qShSh<t3<U^t5^ x(t2) = Q> °<I4OI^P f o r a 1 1 ^[^2. ^] a n d

(4.16) \x(0\>P for all

We may suppose that x(/)>0 for all te(t2, U\ since the argument for the other case is
similar. By letting η = 0 in Lemma 4.4, we have
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q

for all te[t2, t2 + q] and by Lemma 4.1

jt2+q i — yq

which contradicts (4.16). This completes the proof.

REMARK 4.1. The region S2 of points (α, β) which satisfy the conditions of

Theorem 4.1 is illustrated in Figure 2. Letting α->0 in (4.13) and (4.14), we have

fa ̂ 3/2.

We shall study the asymptotic stability of the zero solution of (4.1). Consider the

equation (1.1) in which —0L=β<\jq. Then the zero solution is uniformly stable but not

asymptotically stable. So we have to add an assumption to insure the asymptotic

stability for (4.1). We assume for (4.1) that

(4.17) liminf (a(t) + b(t))>0.

Then there exist δ > 0 and Tx > 0 such that

(4.18) <*(t) + b(t)^δ for all / ^ 7 \ .

First, we consider an eventually positive solution of (4.1): Let x(t) be a solution of

(4.1) such that there exists T2^Tγ such that

(4.19) x(0>0 for all t^ T2.

Then by Lemma 4.1,

(4.20) x\(s)ds<oo.
Jτ2

Suppose that liminf,^aox(t)>0. Then there exist ε>0 and T3^T2 such that

x(ή>ε for all t^ T3.

By (4.20), we can choose Γ 4 ^ T3 so that

x'+{t)dt<εδ/y.

As in the proof of Lemma 4.1, by (A2), (4.2) and (4.18),
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x'(t) ^ c(ί)x(ί)+b(t) supS6 [ _ „, o] ( - x(t+s))

^y x'+(s)ds-(b(t)-c(t))mΐsel-q,O]x(t+s)^γ x'+{s)ds-εδ<0
Jt-q JT4

for all t^T± + q. Hence

x(ή -• — oo as t -* oo ,

which contradicts (4.19). Thus we have

(4.21) liminfx(ί) = O.
t~* 00

Suppose that l imsup,^ x(/)>0. Then by (4.21), there exist ε>0 and two sequences {τj

and {ίn} tending to oo such that τn<tn<τn + u x(τn) = ε/2, ε/2<x(t)<ε for all te(τn9 tn)

and x(tn) = ε. Hence by (4.20)

ε/2 = x(tn) - x(τn) <U x '+ (s)ds -+0 as n -• oo ,

which yields a contradiction. Thus we have

(4.22) \imx(t) = 0
ί->oo

for any eventually positive solution x(/) of (4.1). In a similar way, we can show (4.22) for

any eventually negative solution x(ή of (4.1). In order to complete the proof of the

asymptotic stability of the zero solution of (4.1), we show (4.22) for any oscillatory

solution of (4.1). Suppose that

β{y+β)( yq Λ

— (eγq -l-yq)<l-yq

or

— (eyq-ί)>l and — (eyq-
y y \

Then there exists η >0 such that (4.7) or (4.8) holds. Let x(t) be a solution of (4.1) such

that there exists a sequence {tn} tending to oo with χ(tn) = 0 and x(t)φθ for tφtn. Let

rn = supse[tn-2q,tn] \x(s)\ I n order to prove (4.22), it suffices to show that for each «,

\x(ή\^(\—η)rn for all te[tn, tn + ί].

We may assume that x(t)>0 for all te(tn, tn + 1), since the proof in the other case is

similar. If tn + 1^tn + q, then by Lemma 4.4,

- η)rn for all
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If tn + 1 >tn+q, then by Lemma 4.4,

x(t)S x'+(s)dsS(l-η-ϊq)rn for all te(tm tn + q]9

and by Lemma 4.1,

for te(tn, tn + 1). Thus we have the following:

THEOREM 4.2. Suppose that there exist α < 0, β > 0, α(0 < 0 α«ί/ ft(ί) > 0 satisfying

(A2), (4.2)-(4.4) and (4.17). Further suppose that

β(β-(X)
(4.23) α 2 ( ^ " α g -

(4.24) _ A ( β - « « _ i ) > i and -
( ) ^ g

Then the zero solution <?/(4.1) is asymptotically stable.

EXAMPLE 4.1. Let α, b: [0, oo)^[0, oo) and r: [0, oo)^[0, q] be continuous func-

tions such that

^β and

for some α<0 and i5>0, and let g: S(H)-+R be a continuous function such that

\g(x)\^\x\ for xeS(H) and jcgr(x) > 0 for x ^ O .

Then the delay-differential equation

(4.25) x\t)= -a{t)g{x{t))-b{t)x(t-r{t))

satisfies (A2) and (4.2)-(4.4). Hence it follows from Theorems 4.1 and 4.2 that

(i) if α and β satisfy (4.13) or (4.14), then the zero solution of (4.25) is uniformly

stable, and

(ii) if a(t) and b{t) satisfy (4.17) and if α and β satisfy (4.23) or (4.24), then the zero

solution of (4.25) is asymptotically stable.
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