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A complex manifold X, dim X=3, is of Class L, if, by definition, X contains a
subdomain which is biholomorphic to a neighborhood of a projective line in a complex
projective space of dimension three. In [Ka2][Ka3], we have defined complex analytic
connected sum (which was called “connecting operation”) of manifolds of Class L. In
this paper, we shall consider how to factorize a compact manifold of Class L into prime
ones. To describe our results, we introduce Klein combination of manifolds of Class
L, which is a generalization of complex analytic connetted sum. Our first result is that,
if a compact manifold of Class L is of Schottky type; then it is a Klein combination of
Blanchard manifolds and L-Hopf inanifolds (Theorem A) (see §1 for the definitions).
This result is an analogue of Kulkarni’s [Ku]. We shall prove some properties of L-
Hopf manifolds (Theorem B, §4) and give a rough classification of Blanchard man-
ifolds (Theorem C, §5). There are many manifolds of Schottky type. In fact, we see
that a complex analytic connected sum of Blanchard manifolds and L-Hopf manifolds
is of Schottky type (Theorem D).

Our work is motivated and strongly influenced by that of Kulkarni [Ku]. Theorem
A and its proof is an analogue of his Theorem 6.3 and its proof.

I would like to express my hearty thanks to my colleague K. Yokoyama for the
helpful discussions.
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1. Definitions and Statements of Results. Let Q be a subdomain in a complex
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projective space of dimension three, which is denoted by P3. Let I' be a subgroup of
PGL(4, C) acting freely and properly discontinuously on Q2. We shall denote by I'\Q
the quotient space of Q by the action of I'. A compact manifold of Class L is called a
(P)-manifold if the manifold is of the form I'\Q and if Q is simply connected.

DEerFINITION 1.1. A compact manifold X of Class L is of Schottky type if X is
represented as a quotient space I'\Q, where Q is a subdomain in P3 such that any
connected component of the complement A:=P3—Q consists of a single projective
line, and that I’ is a group of holomorphic automorphisms of 2 whose action is properly
discontinuous and free.

Let us define two kinds of Schottky type manifolds, L-Hopf manifolds and
Blanchard manifolds.

A Blanchard manifold is a compact complex manifold whose universal covering is
biholomorphic to P*—{a single line}. For more information, see §5.

An L-Hopf manifold (Hopf-like manifold of Class L) is a compact complex manifold
whose universal covering is biholomorphic to P3 — {two lines without intersection}. An
L-Hopf manifold is said to be primary if its fundamental group is infinite cyclic. For
more information, see §4.

In the following, we shall use the term ‘“‘complex analytic connected sum”, which
is the same as the “connecting operation” introduced in [Ka2], [Ka3]. The term
“connected sum” will also be used, if there is not chance of confusion with the standard
connected sum in differential topology.

Klein combination of Class L manifolds is a generalization of complex analytic
connected sum, which is defined as follows. Let X,, v=1, 2, be manifolds of Class L.
Let X be a connected and simply connected smooth real hypersurface in P3, and W a
tubular neighborhood of X. Let W, and W, be the connected components of P3—X.
Put W, =W, uW and W,=W,uW. Suppose that there are open embeddings
Jv: W,—>X,. Then the Klein combination KI(X;, X5, j;, j,, ) of X; and X, is the union
XX, Xt=X,—j(W,— W), where j,(x)€j, (W), xe W, is identified with j,(x)€j,(W)
(see Figure 1). Note that we can define the Klein combination for any X and any pair
X,, X, of Class L manifolds, provided that both W, and W, are of Class L. For a
sequence of manifolds X, X,, ---, X, of Class L, we can consider their Klein
combination inductively as Y, =KI(Y,_, Xi, jk—1,Ji» Zx—-1), k=2, and Y, =X,. If, in
particular, W is biholomorphic to the domain

U={lz0:21:25:23]=P> | 2o > +|z, > <| 2, |* +| 25 *},

and if X is CR-isomorphic to dU, then the Klein combination KI(X, X, j;, j», 0U) is
nothing but a complex analytic connected sum of X; and X,, which we denote by
Sum(X,, X5, j;,/,)- When the explicit expression for the embeddings j,: U—-X, is not
necessary, we abbreviate Sum(X,, X, j;,/j,) as Sum(X,, X,). Note that the complex
structure of Sum(X;, X5, j;,j,) depends not only on X;, X, but also on the choice of
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identify

FIGURE 1.

J1» J2- See for example [Y].

A manifold X of Class L is said to be prime if X=Sum (X,, X,, j;,j,) for some
manifolds X;, X, of Class L implies one of X, X, is P3.

By a line I, we shall mean a non-singular rational curve in a manifold of Class L
which has a tubular neighborhood W and a biholomorphic map j: W—U such that
j() is a projective line in P3.

For groups G4, - - - , G5, we denote by G, * G, *. - - * G, their free product.

Now we shall state our results.

THEOREM A. Let X=I\Q be a compact manifold of Schottky type. Assume that
Q is simply connected and I is torsion free. Then I' can be written as a free product of
subgroups

r=r1*rz*.”*rr*rr+l*”'*Fs9
where r, 0<r<s, is an integer such that
(1) each I';, 1 Si<r, is an infinite cyclic group,
(ii) each I';, r<i<s, contains a rank 4 free abelian subgroup of finite index,

(iii) X is a Klein combination of r times primary L-Hopf manifolds and s—r times
Blanchard manifolds.

THEOREM B. Any L-Hopf manifold admits a primary L-Hopf manifold as a finite
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unramified covering. An L-Hopf manifold is primary if and only if its fundamental group
is torsion free. Any primary L-Hopf manifold is biholomorphic to M, (for the definition
of M, see §4).

THEOREM C. Let I'\Q be any Blanchard manifold. Then I is torsion free and
contains an abelian subgroup I', of rank 4 with [I":T'|]< + co. Moreover we can choose
I’y so that it is conjugate in PGL(4, C) to a subgroup of either

1 a b ¢
0 1
A) a b ; a,bceC
0 0 1 a
0 0 0 1
or
1 0 a b
0 1 d
(B) © % abcdeC
0 0 1 0
0 0 0 1

If I, is conjugate to a subgroup of (B), then any element geI'| except the identity
satisfies rank(I—g)=2.

THEOREM D. Suppose that X is a complex analytic connected sum of several copies
of L-Hopf manifolds and Blanchard manifolds. Then X is a (P)-manifold of Schottky
type.

Both Blanchard manifolds and L-Hopf manifolds are prime. But Theorem A does
not tell us that a manifold of Schottky type is a connected sum of several prime manifolds
of Class L. In fact, there is an example of Schottky type manifolds whose fundamental
group is a free group on two generators but not biholomorphic to a connected sum of
L-Hopf manifolds. It might be true that a Schottky type manifold is a complex analytic
deformation of a connected sum of Blanchard manifolds and L-Hopf manifolds. But
for the moment, we cannot prove this assersion.

NOTATION AND SIMPLE REMARKS. Let S be a subspace of a topological space T.
Then [S]; denotes the closure of S in T. The interior of S is denoted by (S);. The
boundary of S is defined to be [S];—(S)r and denoted by 0S;. By [S] (resp. 0S), we
shall mean [S]ps (resp. 8Sps).

An n-cell is denoted by B". An n-standard sphere is denoted by S”.

For a number ¢ 1, we put

Ue={[zo521122523]€P33|Zo]2+|21|2<3(|22|2+|23|2)} s
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and N,=U,—[U,,]. For ¢=1, we simply denote U=U,. We remark that U, is
biholomophic to U for any e. It is easy to show that [U,] is diffeomorphic to S? x B*
and that 6[U] is diffeomorphic to S% x S3.

2. Topological preparation. The following proposition says that a (P)-manifold
can be represented as a Klein combination of simpler ones. Essentially, this is a result
in topology. Our proof is an imitation of the argument of Hempel [H, pp. 60-62 and
pp. 66-67].

PROPOSITION 2.1.  Suppose that X=T'\Q is a (P)-manifold. Suppose further that
T is isomorphic to the free product of two groups G, and G, as an abstract group. Then
we have the following:

(i) There are two (P)-manifolds X,=T'\Q,, v=1, 2, such that I' /=G,

(ii) There are connected subdomains Y, in X with X=[Y,]xu[Y,]x, and with
connected, simply connected common boundaries 0[Y]ly and 0[Y,]x, O[Y{]x=0[Y,]x.

(iii) There are embeddings j,:[Y ) x—X, such that the induced morphisms
Jve: Ty (Y )x) =7 (X)) are isomorphisms.

(iv) The union (X, —j,(Y))U(X,—j,(Y3)) is biholomorphic to P3, if the boundary
0L (Y )]y is identified with O[j»(Y2)]x by jo°j1 "

Proor. For a subcomplex A4 in a complex, let Int 4 denote the interior and 64
the boundary in the sence of simplicial complexes. Choose simplicial complexes C,, v=1,
2, with n,(C,)= G, and n,(C,)=0 for g=2. Join a point of C; with a point of C, by a
1-simplex A4 to form a complex C=C, u 4u C,. Since n,(C)=G, * G, and 7,(C) =0 for
q=2, we can construct a continuous mapping f: X—C such that the induced map
Jfe i my(X)—>my(C) is an isomorphism. Take a point OelntA4 and put Z=f"1(0).
Modifying f within the homotopy class, we may assume that Z is a finite union of
smooth real hypersurfaces.

LEMMA 2.2. The map f can be chosen so that Z=f~1(0) is simply connected.
PrOOF. Put

Suppose that Z;,, contains a non-simply connected component. Let y be a loop in Z,
which represents a generator of n;(Z)). Since f, : n,(X)—n,(C) is bijective, and since
J101(Z10)) = {0}, y is homotopic to 0 in X. Since dimgX =6 > 5, we can choose a continuous
embedding h: (B, 6B*)—(X, Zo) with h(6B*)=y, where B denotes the 2-dimensional
ball. We may further assume that h(B?) intersects Z,, transversely. Then h™'(Z;y)
consists of a finite number of disjoint simple closed curves containing 6B as a connected
component. Let E be a 2-cell in B? such that Enh™!(Zo;)=0E and Z' be the component
of Z;o, containing h(3E). Let D®=B? x B* be a small regular neighborhood of h(E?)
in X such that N=D°nZ'>~S" x B* is a tubular neighborhood of A(SE?)=S"* (see
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[H, p. 7] for the definition of regular neighborhoods). Let T=6D—N and choose
E'>~B? x S properly embedded in D with §E’=4T (see Figure 2). We define f; : X—C

—_ 2
h(Bz) %V'y—h(éa )

N (e

6T=5E/
OE

N=DnZ'
FIGURE 2.

as follows. Put

fi|(X=(nt DulInt N))=f|(X—(Int DulInt N)).

We can extend f, |0E’ to the map which sends E’ to the point 0€ 4. Since 7, (C)=0
for all ¢g=2, we can extend f; over D—E’ in such a way that f7'(0)nD=E’. Then
110 =(f(6;(0)—N)UE'. Put Z, =f7'(0). Then the number of connected components
of h=1(Z,) decreases by one. By van Kampen’s theorem, there is a natural surjection
n3(Zjo)—m1(Z,). Again choosing a 2-cell E; in B such that E,nh™(Z;,)=0E,, we
can modify f; and Z, to obtain f,, Z,=f, }(0) and a natural surjection n,(Z,)—>n,(Z,).
Continuing this step as many times as the number of connected components of A~ (Z,o)),
we obtain fj;; and Z;;,: = f;}(0) such that A~ !(Z,,) is empty. At the same time we have
a surjection ,(Zo))—m,(Z;,;). Note that the element of 7, (Z;)) represented by y vanishes
in Z;;,. Replacing fio; and Z, of (2.3) by f;;; and Z,, respectively, we repeat the
argument from (2.3). Continuing this process, we have a sequence of surjections

n(Z) =7t1(Z[0]) - nl(Z[I]) g 7'51(2[21) i

In each step, at least one of the images of the generators of #,(Z) is mapped to 0. Since
each map in the sequence is surjective and since 7,(Z) is finitely generated, we see that
n1(Z,;) =0 for a sufficiently large n. This proves the lemma. [ |
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LEMMA 2.3. Themap f of Lemma 2.2 can be chosen so that Z=f~'(0) is connected
and simply connected.

Proor. By Lemma 2.2, we may assume that every component of Z is simply
connected. Suppose that Z is not connected. Then there is a path 8: [0, 1]- X such that
B(0) and B(1) lie in different components of Z. Now f-f is a loop in X and since
S Ty(X)—my(C) is surjective, there is a loop y based at (1) with the relation of
homotopy classes [f °y]=[f°B]~!. Then a=pf°7y is a path satisfying (i) «(0) and «(1)
are in different components of f~1(0), and (ii) the homotopy class [f o] is trivial in
n,(C). We may assume that o is a simple path which crosses Z transversely at each
point of a((0, 1)). Of all such paths satisfying the above conditions, we assume that
#{a~1(Z)} is minimal. We must have «((0, 1))nZ=¢¥. For, if not, we can write
a=o,-a, o (k=2) where for each i, 0,((0, 1))nZ=F and {0,(0), 2, (1)} =Z. Then
[f-o.]-[f-o,] - -[f -] is a representation of the identity element as an alternating
product in the free product I'y * I',. Thus for each i, [f-«;]=1 holds. If a,(0) and a,(1)
lie in the same component of Z, we could reduce #{a~*(Z)}. If «;,(0) and a,(1) do not
lie in the same component of Z, we contradict our minimality assumption. Thus we
have a((0, 1))nZ=(J. Let Z;, j=0, 1, be the components of Z containing «(j). Let N
be a small regular neighborhood of ([0, 1]) such that NnZ;=D; is a spanning 5-cell
of Nand NnZ=Dyu D;. Let B be the difference of spheres in N bounded by 6D,udD;,.
Push Int B slightly into Int N to obtain a difference of spheres B’ with 6B=0B’ and
Bu B’ the boundary of T=B?x S* in N. We define a map f; : X—C as follows. Put
fi|(X—P)=f|(X—P) and f,(B')=0, where P=Int Nulnt D,uInt D,. Since [f-a]=1,
we can extend f; across a 2-cell B% x {q}, where ge S*. Now it remains to extend f;
across the remaining two open 6-cells; this can be done since 75(C,)=0. The extension
can be so chosen that f7!(0)n N=B'. Thus f7*(0)=(f"1(0)— (Do u D,))u B’ is simply
connected and has one less component than f~1(0). The proof is completed by induc-
tion. B

Lemma 2.4. The map f of Lemma 2.3 can be so chosen that both of the two
connected components of the complement X —f ~'(0) contain lines.

ProOF. Suppose that we are given a line / in X. First we consider the case
In(X—f"1(0))=. In this case we can choose another line /' near / so that / and /'
are in the same connected component. Now we are going to modify f so that f~!(0)
separates these two lines. Let ¥ be a small tubular neighborhood of /, which does not
intersect /’. Let a:[0, 1] X be a path connecting a point «(0) on f~!(0) and a point
a(1) on 0¥y satisfying a((0, 1)) n (' u[V]x uf ~1(0)) = &. Let N be a regular neighborhood
of «([0, 1]) such that Do=Nnf"'(0)=B> and D,=NndVy=B>. Put M=0Vyx—
Int D,)uéN, which is diffeomorphic to S2x S> with a 5-cell deleted and M =6D,,.
Push Int M slightly into Int(V'uN) to obtain a real 5-manifold M’ with dM'=6M
embedded properly in Int(VuN). We define a map f;: X—»C as follows. Put
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fi|(X—=P)=f|(X—P) and f,(M’)=0, where P=Int(V'u N)uInt D,. Now it remains to
extend f; across the remaining two open sets, the set W, ~ B! x (S% x 3 — B®) bounded
by M and M’, and the set W,~B*x S? bounded by M’ and D,,. Since 7,(C)=0 and
n3(C)=0, f, can be extended across W,; and W, so that f71(0)n(VUN)=M’ and
1Y 0)=(f"1(0)—Dy)uM’. Thus f;: X—C separates / and I'. Next we shall consider
the case where the given line / intersects f ~ }(0). In this case, using the method employed
in the proof of Lemma 2.2, we can modify f so that f~!(0) does not intersect /. Thus
we have proved the lemma. [ ]

We insert here a gereral remark on fundamental regions. Suppose that a group I’
acts on a differentiable manifold @ and that the action is free and properly discontinous.
A closed subset F in Q is a fundamental region for the group I if

(1) IntF is connected and F=[Int Flg;

(2) Not two distinct points of Int F belong to the same I'-orbit;

(3) Every I'-orbit intersects F.

Assume that the quotient manifold X'=I'\Q is compact. Fix a triangulation of X such
that each simplex is evenly covered by the natural projection Q- X. Lifting this
triangulation to Q, we get a triangulation of Q. We can construct easily a fundamental
region for I' as a connected finite subcomplex. Assume further that a simply connected
subcomplex S is given in X. Let § be a lift of S in Q. Then the above fundamental
region can be so chosen that the interior contains S.

Now we go back to the proof of Proposition 2.1. By Lemma 2.4, there is a continuous

mapping f : X—C such that
(v) Z=f"1(0) is a connected, simply connected real 5-manifold,

(vi) the complement X—f~!(0) has two connected components Y, and Y,,

(vii) Y, contains lines and #,(Y,)=G,, v=1, 2.
Then it is clear that Y, and Y, satisfies (ii). Let i,: [Y,]y— X be the natural inclusion
and I',=Im(n,(Y,)-»n,(X)). Then I'=I', *I', holds. Let p: 2—X be the canonical
projection. Fix a connected component Z of p~*(Z). Then there is a fundamental region
F in Q with respect to I' such that Int F contains Z as a closed hypersurface. Let
F*% v=1, 2, be the component of F— Z such that p(F¥)c ¥,. Obviously, the complement
P3— Z has two connected components. Let K,, v=1, 2, denote the connected component
of P3—Z which contains F}, p#v. Put F,=K,uF and Q,=J yer,Y(Fy). Then we see
that X, =T \Q,, v=1, 2, is a (P)-manifold. By construction, F, is a fundamental region
of I', in Q,. The quotient of the set Q}={J, . y(F}) in X, is biholomorphic to [¥,]x
whose boundary considered in X, is isomorphic to Z. Thus it is clear that (iii) and
(iv) hold. [ |

3. Properties of I" of Schottky type manifolds. Let [z,:z,:z,:2;] be a standard
system of coordinates on P3. We fix the notation as follows.
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points e; : e=[1:0:0:0] e;=[0:1:0:0] e,=[0:0:1:0] e3=[0:0:0:1],
lines Ly @ zj=2=0 7, k=0,1,2,3, j<k,
planes H;: z;=0 Jj=0,1,2,3.
Suppose that a line / in P is given by the equations

agZo+ayz, + a5z, +a3z,=0,
3.1

bozo+byz,+by2,+b32;=0.
Then the Pliicker coordinates

Co():&:(D): &) : &) EaD): Es(D] e PP

of [ are given by

boll)= det(ZO Zl> , &)= det(ao a2> s &)= det(aO a3) ,

3.2) o D1 by b, by bs
a a, a, as a, as
I)=det , D =det , D =det .
&) <b1 b2> A0 <b1 b3> &s() € <b2 ba)

In terms of these coordinates, we regard the Grassmann manifold Gr(4,2) as a
hypersurface in P°. We denote by / the corresponding point on Gr(4,2). let
y:SL(4, C)—» PGL(4, C) denote the canonical projection. Let

%oo Go1 Go2 Oo3

(.3) M= 0 O11 L5%) Oq3
) 0 0 Oy Oy ’

0 0 0 033

be an element of SL(4, C). The Pliicker coordinates [£{: ¢ : &5 &5: &, : EY] of the line
I'=y(M)~ 1l are given by

Eo="00%1180
&1 =0g0%1 280+ 20002281
$a =001 30+ U023 + o033,
(34) &i=(xo1012—gp%11)0+o1%5581 + 01125585
Ca=1(001013— o301 1) 0+ o1 02381 + o1 0338, + 0110383+ 110338,
5= (002013 — %0301 2)E0 + (X023 — %03022)E 1 +X020338 2
(012003 — 01 30022)8 3+ 2120338 4 + 22033 5

where &,=¢,(0), v=0,1, ---, 5.
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Let {g,:v=1,2, ---,r} be a set of generators of I', and M, a representative of
g, in SL(4, C). Denote by I the subgroup of SL(4, C) generated by M,, v=1,2, - - -, r.
For an elment M e SL(4, C), we write the Jordan canonical form as

0 & O 0

(3.5) J(M)= g 0:)‘ Z‘z :)2,
0 0 0

where

(3.6) loay |= oy 4q]s

(3.7 (@y+1—a)e,=0,

3.8 &,=0 or 1,

for v=0, 1, 2.

In the following throught this section, we assume that I'\Q is a manifold of
Schottky type.

LemMMA 3.9. For any Mel, we have either

(3.10) lao | Sy [<[ay|=as],
or
(3.11) lag|=lay|=|az|=]as].

ProoF. Take any Me[l, and fix it. Taking a suitable system of homogeneous
coordinates on P3, we can assume M =J(M), where J(M) is the Jordan canonical form
(3.5) satisfying (3.6), (3.7) and (3.8). Suppose that M satisfies neither (3.10) nor (3.11).
Then M or M~ ! satisfies

(3.12) log | <|oy |=]az|=]as]
or
(3.13) log | <|oy [=]az|<|as].

Replacing M with M~ if necessary, we may assume that M is one of the following.

a O 0 0

0 a O 0
(3.14) s
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3.15 0 o
3.15) ol

oy 0

(3.16)
0 o 1
0 o

SUBLEMMA 3.17. In the case (3.12), M is not of the form (3.14).

PrOOF. Suppose that M is of the form (3.14). Take any line / in Q and a small
compact subset K in @ which contains a neighborhood of the point /n H,. Then, since
|oy |=]ay|=|as|, and since H, is y(M)-invariant, we see that the set {neZ:
YM)Y(K)n K# &} is infinite. Hence the action of the infinite subgroup <{y(M)) on Q is
not properly discontinuous. This is a contradiction. [ |

SUBLEMMA 3.18. In the case (3.12), M is not of the form (3.15).

PrOOF. Suppose that M is of the form (3.15). Let / be a line in ©Q such that
In(lUL)=9 and put &,=¢(), v=0,---,5 By (3.4), the Plicker coordinates
(6™ E™ g™ ey L™ 857 of p(M)™"(l) are

Eo M=aduily, CM=nagalT o +adeil;, Y V=aball,,

Em=aley,  ECM=alait,, £ =not oy afaits

Since £y, E,E5E,E5#0, we see easily that lim,_, , , Y(M)"(1)=1I,, and lim,_, _ , p(M)"(l)=
1,5. This implies that [,, u/,5 is contained in A. Since any connected component of A is
a single line, this is impossible. [ ]

SUBLEMMA 3.19. In the case (3.12), M is not of the form (3.16).

PROOF. Suppose that M is of the form (3.16). We let / be a line in Q such that
In(Ul)=< and put &,=¢(1),v=0, - -+, 5. By (3.4) the Pliicker coordinates [5{,‘"?:
ECMETM L ET L ECDECM] of (M) () are

¢ =apailo,
ETM =nalat ¢y +albaié,,
¢S =(1/2)(n* —naga” 2o +naga T +adail,

6(3_'0=a%n§3 ’
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EE M =nadn g bl
E6 M =(1/2)(r% + M2 4 ol 4 s

Since £ E,E3E4E5#0, we see easily that lim,. . pM)'()=Ily; and lim,,_,
y(M)"(l)=1,;. This implies that l,;ul,; is contained in A. Since any connected
component of A is a single line, this is impossible. [ ]

Next we consider the case (3.13).
SUBLEMMA 3.20. In the case (3.13), M is not of the form (3.14).

PROOF. Suppose that M is of the form (3.14). Let /' and /" be distinct two lines
in Q. Put &,=¢,(I') and &, =¢ (1), v=0, - - -, 5. We can choose these two lines so that
the condition £o¢] — &€ #0 is satisfied. There is a sequence {n;} ;5 of positive integers
with limn;= + oo and lim(x,/a,)"=1. Put I’y =lim y(M)"(l") and [, =lim p(M)™(I").
By (3.4), the Pliicker coordinates [E{™™: &M EGMEGM M EC M) of y(M) ™ "(I') are

EM=adaily,  EM=adagdi, G =adads,
EM=afagls,  EM=afaddh, G =agends
Hence we have

[Eolle0) 1 E1(00) 1 62(05) 1 €3(0) 1 €all') : E5(I0)]=[¢5: €1:0:0:0:0] .

"

Combining this with the similar calculation for /7, we see that the condition
£l —E&1E5#0 implies that the limit lines /') and /7, intersect transversely. Since
I',ul’, < A, this is a contradiction. [ ]

SUBLEMMA 3.21. In the case (3.13), M is not of the form (3.15).

The proof is the same as that of Sublemma 3.18. The following sublemma is trivial.
SUBLEMMA 3.22. In the case (3.13), M is not of the form (3.16).

The proof of Lemma 3.9 is now clear from Sublemmas 3.17-3.22.

LEMMA 3.23. Suppose that M eI satisfies (3.11). If M is of infinite order, then its
Jordan canonical form J(M) is of the form

% 1 0 0

24
(.24 .t

or
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(3.25)

0 0 0

Proor. Taking a suitable system of homogeneous coordinates on P3, we may
assume that M is (3.24), (3.25) or one of the following:

0 0 0 0
(3.26) 00
. e

0 0 0 oy

K
-

o

(=]

(3.27) 0
' 0 1|

% 0 0 0

31

(3.28)
0 o 1
0 0 o

Suppose that M is of the form (3.26) or (3.27). Then, among /;, there are distinct two
lines /,,;,, A=1, 2, with ; ; n[; ;, # & on which y(M) acts as a projective transformation
defined by a diagonal matrix. There are sequences {n,,} %, A=1, 2, of positive integers
withlim, , , n;,= + oo such that lim,_, ,, y(M)"*+| [, ;, = 1. This implies Qu/, ;, = &, since
the action of (y(M)) on Qn/;,;, must be properly discontinuous. Thus /;;,, 1=1,2,
are contained in 4, a contradiction. Hence M is neither of the forms (3.26) and (3.27).
Suppose that M is of the form (3.28). Then M acts on /,5. By the same reason as above,
l,3 is contained in A, since there is a sequence {n;}3.; of positive integers with
lim,_, ,, n, = 0o such that lim, , ,(xo/a;)"*=1. Choose a line /in Q such that In(|J/;))= .
Put ¢,=¢(), v=0,1,---,5. Then the Pliicker coordinates of the limit line
I, :=lim,_ . y(M)"() are given by [0:0:&,:0:0: &;] (cf. the calculation in the proof of
Sublemma 3.19). From &, #0, it follows that /, n/,;={e,}. Since [, Ul,3<= A, this is a
contradiction. This completes the proof of the lemma. [ ]

Combining Lemmas 3.9 and 3.23, we have the following:
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PROPOSITION 3.29. Let X=I'\Q be a manifold of Schottky type. Let I be a
subgroup of SL(4, C) such that y | [: [>T is surjective, where y: SL(4, C)— PGL(4) is
the canonical projection. Then, for any M eI of infinite order, the Jordan canonical form
J(M) of M is one of the following:

Type 1

where |ag|S|ay | <|oy |S|as], and (ag—ay)eq=(a; —3)e;=0.

Type 11
o 1 0 0
0 o 0 0
o o g 1|
0 0 0 B

where |a|=]|B]|.

Type 111
o 1 0 0
0 o 1 0
0 0 1
0 0 o

4. L-Hopf manifolds (Hopf-like manifolds of Class L)

DEerFINITION 4.1. A compact complex manifold is called an L-Hopf manifold if its
universal covering Q is a subdomain of P3 such that the complement A : = P3—Q, called
the limit set, consists of two projective lines without intersection. An L-Hopf manifold
is said to be primary if its fundamental group is infinite cyclic.

It is easy to check that an L-Hopf manifold is of Class L. Therefore an L-Hopf
manifold is of Schottky type.

PROPOSITION 4.2. A (P)-manifold I'\Q of Schottky type is an L-Hopf manifold if
and only if its fundamental group I contains an infinite cyclic group of finite index.

Proor. A theorem of Hopf [Ho, Satz Va] says that Q has two ends if and only if
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I’ contains an infinite cyclic subgroup of finite index. Therefore we see that I' contains
an infinite cyclic subgroup of finite index if and only if the limit set consists of two lines
without intersection, i.e., I'\Q is an L-Hopf manifold. [ ]

We shall use the notation of § 3. We may assume that the two lines in the limit set
Aarely, and l,5. For any heI', we have h(ly;) =1y, and h(l,5)=1,5. Indeed, if h(ly,)=1,3
and h(l,3)=1,,, then A is represented by a matrix

0 B
(C 0> , B, CeGL(2,C).
Then we can find a non-zero vector z” € C? such that CBz” = Az" for some Ae C—{0}.
Then the point z='[Bz", uz"]€ Q is fixed by h, where u>=21. This is a contradiction.
Hence both /;, and /,; are I'-invariant.

An element geI' is called a contraction if g"(Uu 0U) converges to the line /,,. The
group I' contains a contraction. To prove this we borrow an argument of Kodaira
[Ko2, p. 695]. Note that there is an element geI" such that g(0U)noU= . Since g
leaves the line /,, invariant, either g(UudU)<= U or UudU =g(U) holds. Replacing g
with g~! if necessary, we may assume that g(UudU)cU holds. Then we have
g"(UvdU)cg" ' (U),n=1,2,3, - - -. We have to show that (] ,g"(UudU)=1I,,. Suppose
that z¢/y, is a point on the boundary of (] ,¢"(U v dU) and let W be a small neighborhood
of z. It is clear that W is not contained in g"(Uu dU) for a sufficiently large n, while z
is an interior point of W. Hence W meets g"(UudU) for all sufficiently large n. This
contradicts the proper discontinuity of G. By the subsequent argument of Kodaira [Ko2,
p. 695], we can also show that, if geI is a contraction, then there exists a positive
integer n such that g” belongs to the center of I

Now every element A€ " has a representative of the form

A 0
(0 D)’ A,DeGL(2,C).
We define

4.3) e(h)=det(4D™ ).

It is easy to see that g is a contraction if and only if

@.4) Max{absolute values of the eigenvalues of 4}
' < Min{absolute values of the eigenvalues of D} .

LEMMA 4.5. An element heI is a contraction if and only if |e(h)| < 1.

Proor. If his a contraction, then we have | e(h) | <1 by (4.4). Conversely, suppose
that A satisfies | e(h)| <1 while (4.4) is not satisfied. Choose a contraction g in I'. Then
the infinite cyclic subgroups {g» and <{4) generated by g and A, respectively, have only
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the identity in common. This contradicts the fact that the index of {g) in I is finite.

PROPOSITION 4.6. The fundamental group of an L-Hopf manifold is a semi-direct
product of a finite group and an infinite cyclic group.

ProOF. Define a group homomorphism p: I'-R by

p(g)= —logle(g)| (gerl).

Let g, be a contraction. Then the index d of the infinite cyclic group {p(g,)) generated
by p(g,) is finite. Hence d~'p(g,) is a minimum positive element of p(I'). Let go€I” be
an element such that p(go)=d 'p(g;). Then we have the semi-direct product
decomposition I'x (g, - Ker p. [ |

As we have seen above, a primary L-Hopf manifold is biholomorphic to the
manifold M, defined as follows (see [Ka4] for more general characterization of L-Hopf
manifolds, where the arguments are carried over without the assumption that Q is a
subdomain in P3).

Fix a standard system of homogeneous coordinates [z,:z, : z,:z;] on P3. Let [,
and /,; be the two lines defined by zo=z;=0 and z,=z,=0, respectively. Let
ge PGL(4, C) be the automorphism of P3—(l,, ul,;) defined by the 4 x 4 matrix

a0 Ao O 0

0 o O 0
“.7 ,

0 0 a, 4,

0 0 0

with the conditions

(4.8) (xo—ay)A; =(ay—03)A,=0,
and
4.9 O<|og|=lay <oy |S|az].

Let {g) denote the infinite cyclic subgroup in PGL(4, C) generated by g. Then M, is
defined to be the quotient space (P3—(ly; Ul,3))/<g).

Thus we have easily:
THEOREM B. Any L-Hopf manifold admits a primary L-Hopf manifold as a finite
unramified covering. An L-Hopf manifolds is primary if and only if its fundamental group

is torsion free. Any primary L-Hopf manifold is biholomorphic to M, where g€ PGL(4, C)
is of the form (4.7) and satisfies the conditions (4.8) and (4.9).

L-Hopf manifolds with torsions are found among the twistor spaces over compact
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conformally flat non-primary Hopf surfaces (cf. [Kal]).

5. Blanchard manifolds. In this section, we shall carry out a rough classification
of Blanchard manifolds. We use the notation in § 3.

DEFINITION 5.1. A compact complex manifold is called a Blanchard manifold if
its universal covering Q2 is a subdomain in P3 such that the complement A:=P3—Q,
called the /imit set, consists of a single projective line.

It is easy to check that a Blanchard manifold is of Class L. Therefore a Blanchard
manifold is of Schottky type.

LEMMA 5.2. Let K=2 be a positive constant. Let G be a subgroup of GL(2, C) such
that |trace(g) | < K for all elements g in G. If G contains an element which is not conjugate
in GL(2, C) to a diagonal matrix, then G is conjugate in GL(2, C) to a subgroup which
consists of upper triangular matrices.

Proor. Replacing G by a conjugate subgroup in GL(2, C) if necessary, we can
assume that G contains

1
g0=<a ), where |a|=1.
0 a

Since | trace(g) | <K for n— + o0, we have |«|=1. Let

)

be an arbitrary element in G. Since |trace(ghg)|=|a"a+no""c+a"d| < K for n— + o0,
we infer ¢ =0. Therefore G is contained in the upper triangular subgroup of GL(2, C).
n

In what follows in this section, X=I\Q always denotes a Blanchard manifold.
The complement P3—Q, indicated by /, is a single line by definition.

LEMMA 5.3. T is torsion free.

Proor. If geI'—{id} is of finite order, we can easily find a fixed point outside /'
as an intersection of three g-invariant planes, a contradiction. ]

PROPOSITION 5.4. The Jordan canonical form of a representative M of any element
of I —{id} is either of Type 11 or Type 111 in Proposition 3.29.

PrOOF. By Lemma 5.3, every element of I' — {id} is of infinite order. Suppose that
Merl is of Type I. Choose a line / in © such that /n (U%Lj)=9. Then we have
lim,_, , y(M)'(1)=1y, and lim, _, , p(M)~"()=1,5 (cf. L-Hopf manifolds case, §4). Hence
ly; Ul,5 is contained in A, a contradiction. ]
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In what follows in this section, we say that an element ge I'— {id} is of Type II
(resp. Type II), if g is represented by a 4 x 4 matrix which is conjugate to a matrix of
Type II (resp. type III).

PROPOSITION 5.5. There is an abelian subgroup T'y of I such that [I":T',] is finite.

Our proof proceeds by a series of lemmas. Choose a system of homogeneous
coordinates [zy:z,:2,:z3] on P> such that / is given by /,;={z,=z;=0}. Let G
be the group defined by

{(g ﬁ)eSL(4, C):A,DeGL(2,C), Be M(2, C)} .

Let y: G->GL(2, C)xGL(2,C) be the homomorphism defined by Y=, ¥,),

R R

Then I is a subgroup of G.

LEMMA 5.6. There is a subgroup I’y of I with [[F:T,]< + oo such that y,(I',) is
conjugate in GL(2, C) to a subgroup which consists of upper triangular matrices.

PrOOF. We assume that

(5.7) for any subgroup Iy of I with [I":',]< + oo, any conjugate of the image group
Y ,(F,) in GL(2, C) cannot be contained in the set of upper triangular matrices.

The lemma will be verified, if we derive a contradiction.

Step 1. Pick any element ge I’ of infinite order. Suppose that both ¥ ,(g) and
V,(g) are not conjugate to diagonal matrices in GL(2, C). Then by Proposition 5.4,
neither ¥/,(g) nor Y,(g) is conjugate to a diagonal matrix, and there are complex numbers
o, B with |a|=|B|=1 such that y,(g) (resp. ¥,(g)) is conjugate to

6 2) (== (5 3))

Then, by Lemma 5.2, both Imy/, and Imy, are conjugate to subgroups which consist
of upper triangular matrices, a contradiction.

Step 2. Pick any element geI” of infinite order. By Step 1, we may assume that
both y/,(g) and ¥ ,(g) are conjugate to diagonal matrices in GL(2, C). Thus by Proposition
5.4, we infer that both (g) and y,(g) are conjugate to

a 0
(0 ﬂ)’ la|=|Bl=1.
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Since (f)>=1, it follows that f=a or f= —a. In particular, we see that the equality
det /,(g)=det y,(g9)= + 1 holds for all ge I'. Taking a subgroup I, of I' with [I": [',]<2,
we may assume that the equality dety,(g)=det y,(g)=1 holds for all geI,.

Step 3. By Step 2, we may assume that,

(5.8) for all gefl,, both y,(g) and Y,(g) are conjugate to
o 0
((") ) |olg) =1
0 alg)
In particular,
(5.9) trace(Y,(g9)), v=1,2, arereal forall gel,.
Moreover, by (5.7),
(5.10) both W (I'y) and Y(F,) are infinite groups .

Indeed, this is obvious for y,(I",). If y,(I,) is finite, then there is a subgroup I", of
finite index in I, such that y,(I",) is trivial. Since the set of eigenvalues of /,(g) coincides
with that of y,(g), we see that y,(I,) is also trivial. This implies that I, is conjugate
to a subgroup which consists of upper triangular matrices, a contradiction. Hence y,(I,)
is also infinite.

SUBLEMMA 5.11.  The group y,(I",) is a subgroup of either SU(2) or SU(l, 1).

ProOF. The infinite group y,(I";) contains an element h, of infinite order by
a theorem of Burnside. By a suitable change of a system of homogeneous coordinates
on P3 preserving /=1,5, we may assume that 4, is of the form

(5 2)
0 &)/’

where «,, |a,|=1, is not roots of unity. If y,(I",) contains an element 4, of the form

0
c a

1 0
hy*hTthh, = .
2o (ac(a%—l) 1)

then

Therefore, by (5.8), we have a, = + 1, a contradiction. Thus we conclude that y,(I*,)
contains no elements of the form

(a ?) c#0.
c a
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Similarly, ,(I";) contains no elements of the form

a b
, b+#0.
G2 v
h=(a b)
c d

be any element of y,(I,). By (5.9), trace(h"h)e R for all ne Z. Hence a=4d follows.

Let
h=<" b )
¢ a
be another element. Then we have
(5.12) be'=¢b" .

Let

If bb' #0, then 5’ '¢’=b"'c. Set h’=h. Then we see that b~ 'c is real. Moreover, the
value 5 !¢ does not depend on the elements of (). Put p=—b"1c#0.
Then every element of y,(I",) is of the form

(s o)

lzo:2%:25:25)=[z0:2, : p?2,: 23] .

If p>0, then put

Then we see that ,(I",) is a subgroup of SU(2). If p<0, then put
[zo:24:25:25]=[20:2y 1/ —11p Y225 : 23] .
Then we see that ,(I",) is a subgroup of SU(1, 1). This proves Sublemma 5.11. W
By the same argument, we have:
SUBLEMMA 5.13. The group y,(I',) is a subgroup of either SU(2) or SU(1, 1).

Step 4. We assume that I, is torsion free, replacing I"; with its torsion free
subgroup of finite index, if necessary. This is possible by a theorem of Selberg.

SUBLEMMA 5.14. There is a system of homogeneous coordinates on P> such that
I=1,5 and that y,(g)=V(g) for all geT,.

PrOOF. Fix g, eI, such that y,(g,) is of infinite order. Choose coordinates on’
P3 such that /=1/,, and that y,(g,)=¥,(g,)- By (5.8) and (5.9), we can write g, as
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A B
= eSL#4,C),
91 <O A> @4,0)

A=(“ ‘f>, lal=1,
0 «

where o is not a root of unity. Take any geI’,. Then, by Sublemmas 5.11 and 5.13,

we can write g as
P Q
= eSL@4, O),
g (0 R) 4, C)
(7 2) m=( 7).
PiP2 D1 Pala Ty

_{—1 if y(F)=SUQ),
PR i w(Fyesua, ).

with

where,

For any ne Z, we have
ap=( 0 72) ang wr=( 007,
P1&Py XDy p28&"F,  &"Fy
Since ¥,(g1g) and y¥,(gig) are conjugate to each other, we have tr(y,(g%g))=
tr(¥,(g19)). Hence Re(a"(p; —r,))=0 for all ne Z. Since a is not a root of unity, we

have

(5.15) Di=r1.

Now we claim that

(5.16) if either Y,(g) or Y,(g) is a diagonal matrix, then both are diagonal matrices .
Indeed, if P=1y,(g) is a diagonal matrix, then 1=|p,|=|r,| by (5.15). Then r,=0

follows from 1=det(y¥,(g))=|r; |2 —p,l7r,|>. Then (5.16) is verified.

Therefore, by the assumption (5.7), there is g, eI, such that neither y,(g,) nor
V,(g,) is a diagonal matrix. Put

p q * *
pd B+

g=|"" , o qr#0,
0 0 4 r
0 0 par p
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and let

*

1)
-~
*

K * *
0 0 s u
0 0 pou K

be any element of I",. Then, applying (5.15) to g,g, we have p,qf=p,ri. In particular,

letting g=g,, we have p,|q|2=p,|r|?. Hence the equalities p, =p, and |g|=|r| hold.
Put p7=g, where |p|=1. Then, for any geI’,, we have

S t * *
plt_ .S_' * *
9= 0 0 s pt
0 0 ppt 3§
Letting
1 0 0 O
01 0 O
T= ,
0 0 2 0
0 0 0 71
where A2=p, we have Y, (T 'gT)=y,(T 'gT) for any gel,. This proves
Sublemma 5.14. B

Step 5. We fix a system of homogeneous coordinates on P> as in Sublemma 5.14.
By this sublemma, we see that y/,(I",) =y ,(F,). Put K=y, (I";) =¢,(I",). By Sublemmas
5.12 and 5.13, K is a subgroup of either SU(2) or SU(1, 1). In this step, we consider
the case K= SU(2).

SUBLEMMA 5.15. If K< SU(2), then K contains an abelian subgroup K, of finite
index.

ProOF. The following argument is due to Wolf [W, pp. 100-102] (see also Charlap
[C]). Let
P
G= {(0 g) PeSUQ2), Qe M(2, C)}

P O\/I T
={<0 P)(() I).PeSU(Z),TeM(2, C)}

and ¢ : G—SU(2) the homomorphism defined by
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{9

To prove the sublemma, we shall use the following four facts.

(5.16) There is a neighborhood V of 1 in SU(2) such that, if g, AeV and
lg, [g, h]]=1, then [g, h]=1.

(5.17) There is a neighborhood ¥V’ of 1 in SU(2) such that, whenever g, he V",
[ga h] » 19,19, h]] » 19,19, 19, h]]] s T
is a sequence in ¥’ which converges to 1.

(5.18) Any neighborhood of 1 in SU(2) contains a neighborhood V" such that
gV"g~t=V" for all ge SU(2) .

(5.19) The identity component of the closure of K in SU(2) is abelian .

For the proofs of (5.16), (5.17) and (5.18), see [W, pp. 100-101]. We shall give a
proof of (5.19). Our proof is essentially a copy of [C, pp. 12-14]. Suppose that Wis a
neighborhood of 1 in SU(2) satisfying the conditions on V, V', V" in (5.16), (5.17) and
(5.18). Let g4, g, € I", with @(g,)e W, and define g;,, =[g,, g;] for i=2. Write

_<P,- Qi)
9:= 0 P

with P;=¢(g;)e SU(2) and Q,e M(2, C). Then
_(Pi+1 Qi+l>
g‘“‘( 0 P

Pi+1=[Pla Pi]

where

and
Qi+1=_PIPiPI—IPi—lQiPi_l_PIPiPI_lQIPI_lPi_l
+P QPP +QPPTIPTT.
Taking the norms, we obtain
|Qiv1|SI—P\PPTPTIQPT 4 PLQPT P

+|—=P,PPT'QPT'P{ '+ QPP P
SIQPT - Qi+ Q= PP PTIQ|+| Q=P PPTQ |41 -0+ 0, P
S2{1=PrYIQil+2[1=P;|1 Q1 IS2[1=P || Qi +2] 1P| Q4] .
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If [1—P;|<1/4,then|Q;y 1 |S(1/2) Q| +21 =Pl @, . By (5.17), lim;, 4 | 1— P;|=0.
Hence, for a given ¢>0, there is an integer n>0 such that 2| 1 — P,|| Q, | <¢ for all i=n.
Therefore, if i=n, we have |Q,;,,|=(1/2) Q;|+¢. Hence, for i=n, k=0, the in-
equality

19k | S/2)4 Qi +€X.1 25 (1/2) (1/2)4 Q| +2¢

holds. Thus we have lim, , , ., |Q,|=0. Therefore
<I O) as k- +o0
— — .
Ik 0 I ’ ,

Since I, is a discrete subgroup in G, this implies that g, =id for a sufficiently large k.
Then, by (5.16), we have |=P,=P,_,="-:=P,=[P,, P,]. Since P, and P, were
arbitrary in Kn W, we see that Kn W is abelian, and hence so is [Kn W]y.. Therefore
the identity component K, of K:=[K]syz, is abelian. Thus (5.19) is proved.

Since K is compact, we see that the index [K: K,] is finite. This implies the sub-
lemma. [ ]

By this sublemma, taking a suitable conjugate of K, in SU(2), we may assume that
K, consists of diagonal matrices. This contradicts the assumption (5.7). Thus we conclude
that y,(I",) =y ,(I",) cannot be contained in SU(2).

Step 6. In the final step, we consider the case where K=y ,(I",)=y,(I",) is
a subgroup of SU(1, 1).

SuBLEMMA 5.20. If K= SU(1, 1), then taking a suitable conjugate of K in SU(1, 1),
we may assume that K consists of diagonal matrices.

Proor. By (5.10) and a theorem of Burnside, K contains an element of infinite
order. By (5.8), g may be assumed to be of the form

0
(“ ) la|=1,
0 «

where a is not a root of unity. Let e K be any element. Put

)

By (5.8), we have | Rea”p|<1 for any ne Z. Since a is not a root of unity, this implies
that |p|<1. Since 1 =deth=|p|?>—|q|?, we obtain g=0. Thus 4 is a diagonal matrix.
This proves Sublemma 5.20. [ ]

By Sublemma 5.20 and the assumption (5.7), we conclude that y,(I",)=y,(I"})
cannot be contained in SU(1, 1).
Thus the assumption (5.7) leads to contradictions in all cases. Hence Lemma 5.6
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is proved. |

We quote here results on compact complex surfaces. The following theorem is a
part of [Ko 1, Theorem 19].

THEOREM 5.21 (Kodaira). Let S=G\C? be a compact complex surface, where G
is a properly discontinuous group of holomorphic automorphisms without fixed points of
C2. If the canonical bundle of S is trivial, and if the fundamental group of S does not
contain any abelian subgroup of finite index, then G is a nilpotent group generated by
Sfour elements g,, g,, g; and g, with relations g,9,=g,9, for (4, W#@3.4) and
g39s=929493, where m is a fixed non-zero integer. Moreover, with respect to a suitable
system of coordinates on C2, the four generators are represented by affine transformations
of the following form:

] &V ﬁv
=10 1 o,
0, 0 1

where the a, and B, are complex numbers such that
(i) a=a,=0,
(i)' o3, o, are linearly independent over R,
(iii) By, B, are linearly independent over R, and
(iv) 30, —A403=mP,#0.

The following result is due to Suwa.

THEOREM 5.22 [Su, p. 245, Corollary]. Let S=G\C? be a compact complex
surface, where G is a properly discontinuous group of affine transformations without fixed
points of C>. Then G contains a nilpotent subgroup G, of finite index such that, by a
suitable linear change of coordinates on C?, the linear part of G, consists of upper triangular
matrices.

Now we shall prove:

LEMMA 5.23. There is a nilpotent subgroup I'y of I such that [I":I,] is finite.
Moreover, by a suitable choice of homogeneous coordinates on P3, all elements of I,
can be expressed as upper triangular unipotent matrices.

Proor. By Lemma 5.6, we can choose a system of homogeneous coordinates on
P? such that y,(I",) consists of upper triangular matrices. Then the plane Hj is
y(I')-invariant. The quotient (H;—I,5)/y(I",) is a compact non-singular surface. Since
H,—1,;2C? it follows from Theorem 5.22 that, by a suitable linear change of
coordinates on H;— 1,3, the linear part of all elements of p(I",) | H, is represented by
upper triangular matrices, and that y(I",) contains a nilpotent subgroup of finite index.
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By Proposition 5.4, we see that y~!(y(I",)) contains a desired subgroup. |

LEMMA 5.24. The group I", of Lemma 5.23 contains an abelian subgroup of finite
index.

PrROOF. Since any member of I'; can be represented by an upper triangular
unipotent matrix, the canonical mapping | [y: [,-I, is an isomorphism. Suppose
that I', I"; does not contain any abelian subgroup of finite index. Let I'y denote the
group whose elements are the restrictions to H; of elements of I';. In view of Theorem
5.21, there is a biholomorphic mapping @ = (¢, ¥): C>*— H;—1,, such that

(5.25) D(g,(W1, w3))=hy(P(wy, wy))

for v=1, 2, 3, 4, where the A, are the generators of I'y corresponding to g,. By Lemma
5.23, we can express A, in the form

h,{ull =u,+au,+b,

uh= u,+c,,

where u, =z,/z, and u,=z,/z,. The equality (5.25) is then written as

(5.26) oWy +a,wy+ By, wy+0,)=p(wy, wy) +ay(w;, wy)+b,
(5.27) Yy(wy+a,w,+ B, wy+a,)= Y(wy, wy)+c,.
From (5.27), we have

Y=piw,+pwi+pswa+p,, r.€C,

and
(5.28) P&, +2p0, =0
(529) plﬁv+p2a3+p3av=cv

for all v. Then equality p, =p, =0 follows from the condition (iv) and (5.28). Hence we
have

(5.30) Y=psw,+p,, pr3#0,
where,
(5.31) P30, =c, .

It follows from (5.26) that
P=qw1+q:w3+qsw2+qs,  q,€C,

with the relations



COMPACT COMPLEX 3-FOLDS 385

(5.32) P3a,=4q10,+2q,a, ,
Paa,+b,=q:B,+ 4,07 + 45, .
Since @ is biholomorphic, g, ;éOvholds. If «,=0, then a,=c¢,=0 follows from (5.31),
(5.32) and p;#0. Thus by the condition (i) we have
(5.33) a,=ci=a,=c,=0.

Since the mapping I', » 'y is bijective, there is a unique %, I'; corresponding to 4, for
each v. Note that the h, satisfy the relations hh,=hh, for (A, u)#(3,4) and
hyh, =h7h,h,. Suppose that A, is represented by

1 a, b, r,

0 1 ¢, S,
H,=

0 o0 1 t,

0o 0 0 1
By Proposition 5.4 and (5.33), we infer that H, and H, are of Type II. Hence

(5.34) 11=t2=0,
and
(5.35) b,b,s,5,#0 .

By the relations 71,171‘, = 71,}1,1 for (A, u) # (3, 4) and h3h, =h7h,hs, and by (5.33) and (5.34),
we obtain the following equations:

(5.36) azs, =t3b, a,s,=1t4b,
(5.37) a;s,=t3b, a,s,=1t,b,
(5.38) asca=ayuc3+mb,
(5.39) Cyly=Cyul3+ms, .

If a3#0, then #;#0 and b,/s, =b,/s, =a,/t; follows from (5.35), (5.36) and (5.37).
Hence c4t3=c;t,+ms, follows from (5.36) and (5.38). Therefore we have s,=0 by
(5.39). This contradicts (5.35). Thus a; =0 and hence 7, =0. Similarly, a, =7, =0 holds.
‘Combining these with (5.33) and (5.34), we see that I'y is abelian. This contradicts the
assumption. [ |

The proof of Proposition 5.5 is now clear by Lemma 5.24.

PROPOSITION 5.40. Suppose that I is abelian. Then, with respect to a certain system
of homogeneous coordinates [zy:zy:z,:23] on P* satisfying |={z,=z,=0}, I' is
represented by a subgroup I of either
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1 a b c
0 1 a b
A) . abceC
0 0 1 a
0 0 0 1
or
: 1 0 a b
0 1 c d
(B) ; ab,c,deC
0 0 1 0
0 0 0 1

If [ is in (B), then any element geI' except the identity satisfies rank(I—g)=2. In any
case, the rank of I is 4.

PrOOF. By Proposition 5.4, every element of I' — {id} is either of Type II or Type
III. Since I is abelian, and since I'" leaves the line / invariant, there is a system of
homogeneous coordinates [z, : z, : z, : z3] on P such that

(5.41) I1={z,=2,=0}.
Put §={z,=0} —/, which is biholomorphic to C2. Note that the restriction I'>I" | Sis

bijective and that (I'| $)\Sis a complex torus of dimension 2, where I'| S={g| S:geT}.
Hence we see that rank I'=4 and that

(5.42) every element of I' is represented by an upper triangular unipotent 4 x4
matrix.

First suppose that I' contains no elements of Type III. Let g be any element of I' — {id}
and let

1 a b, ¢
0 1 b
(5.43) G= N
0 0 1 a,
0o 0 o0 1

be a representative of g. Since (I—G)? =0, we have
(5.44) a\a,=aaz;=a,b,+azb, =0.

Suppose that a; #0. Then a, =0 follows from (5.44). Moreover, [a, : b, :a;: 0] is a fixed
point of G outside /. This is absurd. Hence we obtain a;=0. By rank(I—G)=2, a; =0
follows from (5.44). Thus we are in the case (B). Next suppose that I' contains an
element g of Type III. Let G be a representative of ge I’ — {id} of the form (5.43). Then
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we have a,a,a;#0. Replace I' with 1~ 1I't, where 7 is represented by

a,a,a; aib,+azb, c 0
0 a,a; b, 0
0 0 a, 0
0 0 0 1

Then 7~ 1grt is represented by

1 1 0 0

0 1 1 0
J=

0 0 1 1

0 0 0 1

Let

1 P q r

0 1 K} t
H=

0 0 1 u

0 0 0 1

be a representative of an arbitrary element heI'—{id}. Since I' is abelian, we have
easily H/=JH. From this equation it follows that p=s=u and g=t. Thus we are in
the case (A). [

Combining Lemma 5.3, Propositions 5.5 and 5.40, we have the following theorem,
which givés a (rough) classification of Blanchard manifolds up to finite unramified
coverings.

THEOREM C. Let I'\Q be any Blanchard manifold. Then I is torsion free and
contains an abelian subgroup I'| of rank 4 with [ :I';]< + c0. Moreover we can choose
I’y so that it is conjugate in PGL(4, C) to a subgroup of either (A) or (B) in Proposition
5.40.

In the following, a Blanchard manifolds is said to be of type A (resp. type B) if
its fundamental group contains an abelian subgroup of finite index which is conjugate
to a subgroup of (A) but not (B) (resp. a subgroup of (B)).

ExampLE 1. First we shall give an example of Blanchard manifolds of type A.
Let I" be a subgroup of SL(4, C) generated by G, =I+ N, G,=I+iN, G3=I+N? and
G,=I+iN?, where i=+/—1, and
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0 0 0
0 1 0
0 0 1

S O O =

0 0 o0

Put I'=y(I"), I={z,=23=0} and Q=P>—[. Then I'\Q is a (P)-manifold of Schottky
type. A proof of this fact will be given in Appendix.

ExaMpPLE 2. Next example is a Blanchard manifold of type B, which is classical.
We define a group of automorphisms of P*—1/,, as follows. Let 4;, j=1, 2, 3, 4, be the
elements of GL(2, C) satisfying det(z;.‘= ,1iA;)#0 for all (r)e R*—{(0,0,0,0)}. It is
not difficult to find such matrices. Define G;e GL(4, C) by the 4 x 4 matrix

o 7)
0o 1)’

where I is the 2 x 2 identify matrix. Let I’ be the abelian subgroup generated by the
four elements G, j=1,2,3,4. PutI'= y(I") and Q=P3—1,,. Then I'\Q is a (P)-manifold
of Schottky type, which is a classical Blanchard manifold defined in [B].

ReMARK. Blanchard manifolds of type (A) and type (B) are not biholomorphic
to each other. Indeed, if they were biholomorphic, the representation of their
fundamental groups in PGL(4, C) defined by their flat projective structures must be
conjugate to each other in PGL(4, C), since a manifold of Class L admits only a unique
flat projective structure [Ka3].

6. Proof of Theorem A. Our proof goes along almost the same line as Kulkarni’s
[Ku, p. 266]. Let X=TI\Q be a compact manifold of Schottky type. Assume that Q is
simply connected and I is torsion free. By a theorem of Hopf[Ho, Satz I}, the cardinality
of the ends of Q is one, two or that of a continuum. Suppose that Q has an uncountable
number of ends. Since [Q2]= P3 and since I is finitely generated, we can apply a theorem
of Kulkarni [Ku, Theorem 5.1], and see that I' has an uncountable number of ends as
an abstract group. Hence by a theorem of Stallings [St], I' can be written as a free
product of two proper subgroups, I'=I", *I',. By Proposition 2.1, X is a Klein
combination of two manifolds, X,=I'\Q,, v=1, 2, of Schottky type. Since [2,]= P>
and since the I', are torsion free and finitely generated, I',(resp. I';) can be written
again as a free product of proper subgroups I'y=Iy*I', (resp. I',=I3*TI,), when
Q,(resp. 2,) has an uncountable number of ends. Grushko’s theorem says that, if a
group G is a free product of groups G, and G,, then the minimal number of the
generators for G is the sum of the corresponding numbers for G; and G,. Hence the
above process of factoring I' terminates in a finite number of steps. Thus I' is written as
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= *«Ty*- - *[ %Ly % *1,

where r, 0<r<s, is an integer such that
(i) each I';, 1 <i<r, has two ends,
(ii)) each I';, r<i<s, has one end,
(iii) X is a Klein combination of I' \Q,, v=1, - -, s.
In case (i), I',\Q, is a primary L-Hopf manifold by Proposition 4.6. In case (ii),
' \Q, is a Blanchard manifold. Hence the theorem follows from Theorems B and C.

7. Proof of Theorem D. To prove Theorem D, first we prepare elementary
topological facts. Let 2 be a domain in P* and put 4= P> —Q. Let « be any connected
component of A.

LEMMA 7.1. P3—u is open and connected.

PROOF. Since A is closed in P3, so is any connected component of A. Hence P3 —«
is open. Since P?—a is locally connectéd, any connected component of P3—a is open
in P3>—o and hence in P3. Let V be any connected component of P3—a which does
not intersect 2. The boundary 0V is contained in a. Therefore au V'=ou[V]is connected.
Then, since au V<= A and since « is a connected component of A, V is contained in «.
This is absurd. Hence every connected component of P3—a meets Q. Thus P3—u« is
connected, since 2 is connected. [ ]

LemMMA 7.2. Suppose further that Q contains a line I,. Then there is a system of
open neighborhoods {A,},en of & in P3which has the following properties,

(0) P3— A, contains I, for all n,

(1) A, is connected for all n,

(2) P3—A, is connected for all n,

(3) A,oA,, for all n, and

@ N, Ao

ProoOF. Itis easy to construct a system of open neighborhoods {4’,} which satisfies
(0), (1), (3) and (4). Denote by A¢ the unique (closed) connected component of P3— A4/,
which contains /;. Put 4,=P*— A4¢. Obviously {4,]} satisfies (0), (1) and (3). Now we
shall show that {4,} is the desired system. First we shall prove (2). Put
P*—A4,=4;ulJ, L,; where the L,; are non-empty (closed) connected components of
P3— 4, other than A:. Then we have

A,=A,0UL,;.
A

It suffices to show that d4, n L,, # & holds for any 1. Suppose that 04,n L,; = & holds
for some A=4,. Then by A, nL,;,= &, we have [4,]n L,; = . Let L be the connected
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component of P*—[4;] such that L,, =L. From the relation L,,,c Lc P*>—A4,, we
infer that L,, = L. Since L,,_ is closed in P3, so is L. On the other hand, since P> —[4]
is locally connected, L is open in P3>—[A4.] and hence in P3. Therefore we conclude
that L is empty by L+# P>. This is a contradiction. Thus (2) is verified. Next we shall
prove (4). Put A=), 4,. It suffices to show that 4 ca. Suppose that there is a point
x€A—a. By Lemma 7.1, P3—a is pathwise connected, because so is a connected open
set of a manifold. Let C be a path in P*—« joining x with a point yel,. By [],4,=q«,
it follows that there is an integer n, such that xe 4,— A, for all n=n,. Note that
CnA,= for n=n, holds, since otherwise C would be contained in 4%, and
consequently x e A45. This is absurd. Let z,e Cn 4,. Choosing a suitable subsequence,
we may assume that lim,_, , z,=ze€ C exists. Since z,e 4, and (), 4,=a, this implies
that zea. Hence ze Cnac(P*—a)na=, a contradiction. This proves (4). Thus the
lemma is proved. [

For a subset W of P3, we denote by W the subset in the Grassmann manifold
Gr:=Gr(4, 2) which parametrizes lines in W. Similarly, we denote by / the point in Gr
which corresponds to a line / in P3. The next lemma is a key to the proof of Theorem
7.6, from which Theorem D follows immediately.

LEMMAa 7.3. Let X=TI\Q be a (P)-manifold and o. a connected component of the
limit set A. Then o is a line if the following conditions (i) and (ii) are satisfied.
(i) There is a compact subset K in Q which has the following properties.
(i-a) Through any point in K, there passes a line contained in K.
(i-b) For any point vedo and for any neighborhood V of v on P3, there
is an element ge I such that Vng(K)+# .
(ii) There are subdomains W,, Wy, W, € W, in P>, and a sequence {g;} of distinct
elements of I' which have the following properties;
(ii-a) W, and W, are biholomorphic to U,
(ii-b) some neighborhood of [W,,— W] is contained in Q,
(ii-c) acgW)cg(Wi )W and ;s \(W)=gj (W) =g (W) =g (W1,
for all j.

ProOF. Let v be any point on da and {¥;} >, be a system of open neighborhood
of v in P? such that ¥V;>V¥;,, and ();¥;={v}. By (i-b), for any j, there is an h;e I’
such that V;n h(K)# . Therefore by (i-a) there is a line /}in K such that V;nh'(l}) # .
Since the action of I" on Q is properly discontinuous, we can choose a subsequence of
{I} such that {/;}, [;=h(l}), converges to a line /, in A. Obviously, we have
vel,ndacl,na. Hence [, —a. This implies that, for any point of 0a, there is a line
passing through the point. Therefore to prove the lemma it suffices to show that & is a
single point. From the argument above it follows in particular that & is not empty. In
Sublemma 7.5 below, we shall show that 4 is indeed a single point.

Each g; induces an injective holomorphic mapping §;: W,;,— W,. Since W, is
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biholomorphic to a bounded domain, {g;} forms a normal family. Taking a convergent
subsequence, we assume that {g;} itself converges to a holomorphic mapping
dw: W,,— W, uniformly on any compact subset of ¥,,.

SUBLEMMA 7.4. d=4 (W,,).

ProoF. First we shall show d< g, (W,,). Let [ed be any point. Since /< g;(W,),
for any j, there is a line /;c W, such that /=g,(/;). We can choose a subsequence {g’}
of {g;} such that the corresponding subsequence {/;} of {/;} converges to a point in
[W,],. Put fo=limj i}. Then, since the convergence §;—§,, is uniform on [W,lg, We
have 7=lim;§(7)=1lim;§(lo) =G (l). Hence [e g (W,ls) <dw(Wy,). Thus we ob-
tain 4 =g (W,,). Conversely, we shall show >4 (W,,). Put T= W, ,—[W,], which is
a subdomain in Q by (ii-b). Take any line / in T. Since the action of I" on Q is properly
discontinuous, we see that the limit line /., [, : =g (/) =lim ;d j(i), does not intersect €,
ie., I,cA. Let I' be another line in T. There is a path € in T which joins / and 7".
Since the action of I' on Q is properly discontinuous, §(C)<=A holds. Since C is
connected, there is a connected component g of A such that both § (/) and §. (") are
on the same f. Therefore we have

do(T)=h.

Now we claim §,(W,,) = f. By Lemma 7.2, there is a system of neighborhoods {B,},.x
of B in P3 which has the following properties;

(1) B, is connected for all n,

(2) P3*—B, is connected for all n,

(3) B,>B,., for all n, and

@ NB,=. )
Put T"=[W,;— W], where 1 <46’ < <e. Since §;—§,, is uniformly convergent on 7",
we see by the above argument that, for any n>0, there is an integer j, such that
g{(T’)<= B, for all j>j,. Then g(W,) < B, follows for j>j,, since g(W,)< W, and since
P3—B,is connectgd. Tl}is implies that iz09 (W)= B. ’l:hus we have §(W,) < f. This
together with §. (7)< p verifies the claim. Since d =4 (W,,) as shown above and since
d is not empty, there is a line in o which is parametrized by a point of §(W,,). Hence
anpB#J, ie., a=p. This implies §(W,,) =d. Thus the sublemma is proved. |

SUBLEMMA 7.5. d is a point.

ProOF. Since a is compact, the corresponding set & is compact. Therefore, by
Sublemma 7.4, the holomorphic mapping §., has a compact image in W,. Since W, is
biholomorphic to a bounded domain, §, is a constant mapping. Consequently, & is a
single point. [ ]

Clearly Lemma 7.3 follows from Sublemma 7.5.

PROPOSITION 7.6. A Klein combination of (P)-manifolds is a (P)-manifold.
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Proor. Let X,=TI;\Q2, and X,=I,\Q, be (P)-manifolds and X=KI(X;, X,,
J1>J2» 2) the Klein combination of them. By the definition of the Klein combination,
there is a tubular neighborhood W of X such that the mappings j, are holomorphic
open embeddings of W,=Wu W, into X,, where the W', are the connected components
of P? — X. The manifold X is the union X% u X%, X* =X, —j (W,— W), where j,(x) e, (W),
x € W, is identified with j,(x)€j,(W). Let j,: W,—»Q, = P? be a lift of j,. Note that J, ex-
tends to an element of PGL(4, C) [Ka3, Lemma 3.2]. Put W,=j(W,) and £, =/(Z).
Let F, be a fundamental region for I', in 2, which contains W,. By j, !, we regard
Fv as a subset in P3 which contains W, and fv as . Put F= (Fl - W’,)U(Fz— %)
and Q=) ge rg(F), where I is a subgroup of PGL(4, C) generated by j, 'I",j,, v=1, 2.
Then it is easy to see that Q is the universal convering of X, F is a fundamental region
for I' and that I' is isomorphic to the free product of I’y and I', (cf. [Ma, p. 302]). Thus
X is a (P)-manifold. |

THEOREM 7.7. Suppose that X, =I\Q, and X, =TI ,\Q, are (P)-manifolds. Then
X=Sum(X,, X,, ji, j,) is a (P)-manifold of Schottky type if and only if both X, and X,
are of Schottky type.

Proor. The “only if”’ part follows from the fact that every connected component
of A, is a connected component of A. The rest of this section is devoted to the proof
of the “if”” part. Suppose that X; and X, are (P)-manifolds of Schottky type and X is
represented by X=I'\Q. In view of Proposition 7.6, it is enough to show that any
connected component o of A=P3*—Q is a line. Put £=9U. Then N,=U,—[U,,] is a
tubular neighborhood of X in P3. Let W, and W, be the connected component of
P3—X. Put W,.=W,uUN,. By choosing a suitable ¢>1, we can form the manifold X
as the union X3,uX3%,, where X* =X, —j(W,,—N,), and, for xeN,, j,(x)€j,(N,) is
identified with j,(x) € j,(N,). Let p: Q— X be the covering projection. By our construction
of X, Q contains the hypersurface X.

For K=2, the condition (i-a) of Lemma 7.3 is satisfied.

Now we shall construct a sequence of distinct elements of I satisfying the condition
(ii-c). Coose a fundamental region F for I' in Q2 so that F contains N,. The set F,=Fu W,
is a fundamental region in Q, for I',. Let Q% be the connected component of p~1(X¥)
such that dQ¢ contains K as a connected component, where X*=X,—j((W,]). Note
that Q% = W, and Q% < W,. We have

(7.8) PP-Qi=A,0 U g(w) v=1,2,

gel,
where the right-hand side is a disjoint union. Let a be a connected component of A. If
o is contained in g(A;) or g(A,) for some geI', then « is a line, since both X, and X,
are of Schottky type. Thus we assume that o is contained in neither g(A,) nor g(A,) for
any ger. Since an[N]=, we may assume a < W, —[N,] without loss of generality.
By (7.8) togehter with an Q% =f and an A, =, there is an element g’ € I', such that
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acg’i((W,). By (7.8) together with ang (Q%)=¢ and angy(4,)=F, there is an
element g7 eI’y such that acg’gi((W,]). Put g, =gg7. Obviously g,([W,,])= W;. By
(7.8) together with ang(2%)= and ang,(4,)=, there is an element g,el’, such
that acg,g52((W,]). By (7.8) together with ang,g5(Q%)=C and ang,g5(4,)=C,
there is an ¢lement g5€l’; such that acg,gg95((W,]). Put g,=g,9595. Obviously
g((W1D<=g,: (W) <=g,(W,])c W,. Continuing this process, we obtain a sequence
{g;} 2, of distinct elements of I" which satisfies the condition (ii-c).

To apply Lemma 7.3, it remains to check the condition (i-b). Take a point v on
dx and its spherical open neighborhood B in P3 with the center v. We claim that
Bn({J ser 9K)# . To verify this, assuming the equality Bn (|J ger9(K)) =, we derive
a contradiction. Let ¥ be a connected component of Bn Q. Then V is open. Since the
image set p(V) in X is connected and does not intersect X = j)(K ), p(V) is contained
either in X§ or X%. We may assume p(V)c X% without loss of generality. Then there
is an element ge I' such that ¥'<=g(2%). Replacing Q% with another suitable connected
component of p~(X?%) if necessary, we may assume that g=1, i.e.,

(1.9) Vet =P3—(A1 v U g([Wl])) .

gel'y

If 0V Q,thenve Bc 2, a contradiction. Hence 0V 5 & Q. Take any point xe dVy— Q.
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Suppose that x € Q3. Since Q% is an open set, there is a connected neighborhood V' of
x such that ¥V'< BnQ{<BnQ. Since xe V'—V and since ¥'n V' # (&, this contradicts
the fact that V is a connected component of BnQ. Hence x is not contained in Q%.
Since V= Q%, we have xedV <[Q%]. Note that 44, = A, holds by the assumption that
X, is of Schottky type. Hence it follows from (7.9) that

(7.10) x€59§=3</11 v U g([Wd))CAan( U g([W1])>-
gel; gel'y

Suppose that xe d(|J ger, 9(W1D). If xe Q2,, then we can choose a system of relatively
compact neighborhoods {V,}, k=1,2,---, of x in Q, such that V,oV,,, and
N, Vi={x}. For any k, there is g,€I'y such that V,ng(W,])# . Since [W,] is a
compact subset contained in €,, and since the action of I'y on Q, is properly
discontinuous, the set {g,:k=1,2, -- -} is a finite set. Hence we have xe g,.([W,]) for
some k’. Since x ¢ Q%, this implies x€g,(K), a contradiction. Hence we have x¢Q,,
i.e., xe A,. Thus from (7.10), xe A, follows in any case. Since x is an arbitrary point
in 0V5—Q, we have 0Vyz—Qc A,. Since [2,]=P? because of the assumption that X
is of Schottky type, this inclusion implies that the connected component V is dense in
BnQ. Hence BnQ is connected. Now replace ¥ with BnQ and repeat the above
argument. Then we obtain the inclusion relation d(BnQ);— Q< A,. Hence we have

vEdaNBc(0Q)NB—Qcd(BnQ)g—Qc A, .

Since v is an arbitrary point on da, we see that ducA;. Then a= A, follows easily.
Since we have assumed that « is contained in neither g(A4,) nor g(A4,) for any geI', this
is a contradiction. Hence the condition (i-b) is verified.

Thus the “if” part of the proposition follows from Lemma 7.3. [ |

As a corollary we have:

THEOREM D. Suppose that X is a complex analytic connected sum of several copies
of L-Hopf manifolds and Blanchard manifolds. Then X is a (P)-manifold of Schottky
type.

Appendix. We shall prove that the pair (2, ') in Example 1, §5, defines a
(P)-manifold. It suffices to show that the action of I' on Q is free and properly
discontinuous and that the quotient space is compact.

Any element Gel is given by G=G7G3G3G% with m,n,p,qeZ. For
a=(ay, a;, a,, a;)€ C*, put Ga=(ap, a}, ay, a’;). Then we have
(A.1) apy=ay+(m+in)a, +(m(m—1)/2—n(n—1)/2—imn+p+ig)a,

+ (m(m— 1)(m— 2)/6 —mn(n— 1)/2 + i(m(m — 1)n/2 —n(n — 1)(n — 2)/6)
+mp—nq+i(mq +np)as ,
(A.2) ai=a,+(m+in)a, +mm—1)/2—n(n—1)/2—imn+p+iq)a, ,
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(A.3) ay=a,+(m+in)a;,
(A4) ay=a;.
It is easy to show the following:
LEMMA A.5. The action of T on Q is free.
LEMMA A.6. The action of I on Q is properly discontinuous.

PrROOF. It is easy to see that for any compact subset K in @, there is a positive
number M such that K is contained in the set

K'={lzo:2y:2,:2;3]€ P? 1| 2o |+ 2, |[S M( 25 | +| z3 )} -

Put A={gel:g(K')nK'#}. It suffices to show that A is a finite set. Suppose that
{g9,},v=1,2,3, - --,is a sequence of elements of 4. Let {a,} = K’ be a sequence of points
such that g (a,) € K’. Choosing a subsequence of {g,}, we may assume that {a,} converges
to a point a=[ag:a;:a,:a3] in K'. Note that (a,, a3) #(0, 0). If a3#0, then we may
assume oy = 1. Then there is an integer v, such that a,=[a$’:a{’:a$’: 1] holds for all
v2v, and that lim,_, a}=a; j=0,1,2. Then it follows easily from the relations
(A.1), ---,(A.4) that g,=g,,,=""- hold for all v=v,. The argument is the same for
the case a3 =0 and a, #0. [ ]

LemMMA A.7. The quotient space I'\Q2 is compact.

ProoF. It is enough to show that, for any point a=[ag: &, : &, : 3] in @, the orbit
I'a intersects the compact set

(A.8) K={[z0:21:25:23]€ P*:| 20|+ 2, |£410(| 2, |+ z3 )} -
First we consider the case a; =1. By (A.2) and (A.3), we may assume that |a, |< 1/\/ 2
and lazlél/\/Z . We put

P(m, n, ay, a,) =(m+in)a; +(mm—1)/2—n(n— 1')/2—imn)oc2
+m(m—1)m—2)/6 —mn(n— 1)/2 + i(m(m — 1)n/2 —n(n— 1)(n—2)/6) ,

Q(m, n, a,)=(m+in)o, + m(m—1)/2—n(n—1)/2 —imn ,
and
R(m, n, ay, a,)=P(m, n, oy, o) —(m+in+o,)o, + Q(m, n, a5)) .

Regarding m and n as real variables, we can show the inequalities

S(m|+|nl+1)%,

R
‘a—m‘(ma n, oy, o)

and
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S(ml+|n|+1)%.

OR
—é;(m’ n, oy, o)

Here we have used |a,; |1 /\/ 2 and lay =1 /\/ 2. 1tis easy to check that the mapping
defined by z=x+iy— R(x, y, ,, @,) is a surjection of C to itself. Hence we can find
(my, no) € Z? such that

(A9) [otg + R(mo,ng, oy, %5) | < 8(mg |+ 1o |+ 1) .

Suppose that (m,, ny) #(0, 0). Using |a, | <1 /\/ 2, we have the inequality
(A.10) Img |+ ng |+ 1 <57 2 |oy+mg+ing)| .

Combining (A.9) and (A.10), we obtain

(A.11) | (cto + R(mo, no, 0y, 0,))/(0 +mo+ing) | S403/ 2 (1mg |+ 1o | +1) .

Put A(p, q)=a, + Q(mg,ny, @,)+p+ig. Then by (A.11) we can choose (po, go) € Z? so
that both inequalities

| A(po, 40) | S 40N 2 (1mg | +]mo | +1)
and
(@0 +R(mo, 1o, oy, @3))/(@tz +mo +ing) + A(po, 4o) | SV 2

hold. Put a'=[ag: &) s ay: 1]=p(GT°GRPGEG)a. Then we have

latg | =g+ P(mo, no, 61, a3) +(otz +mg+ing)( po+iqo)|

= &g+ R(mo, 1o, aty, ) + (&3 +mo +ing) A(po, 40) | SV 2 (Imo | +mo ] +1)

|y | = ety + Q(mo, no, ) +(Po+iqo) | =| Ao, 4o) | S40N 2 (Imo | +mo | +1) .

Hence, using (A.10), we obtain
oo +103 S @IV 2)( mo | +1m | +1) S410( a3 [ +1) .
Thus (A.8) is satisfied. If (mq, ny) =(0, 0), then by (A.9) we have
log—0ag0, | 8.

We can choose (po, go)€Z?% so that |a,+po+ige|<2. Put o' =[ag:a):ab:as]=
PG5°GP)a. Then we have

log | =]ao+ax(po+iqo) | =0 —ayoy |+ |0y ||ty +po+ige| =10,
oy |=]a;+po+ige|=2.

Hence we obtain
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laol+lay[£122410(az[+1).

Thus (A.8) is satisfied. Next consider the case a3 =0. In this case we may assume that
a,=1. Then we can find my, ny, py, o€ Z easily such that |ap|<2 and |a} |<2. Hence
(A.8) is satisfied. |

By the above three lemmas, we see that the manifold I'\Q is a (P)-manifold of
Schottky type.
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