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A complex manifold X, dim X= 3, is of Class L, if, by definition, X contains a
subdomain which is biholomorphic to a neighborhood of a projective line in a complex
projective space of dimension three. In [Ka2][Ka3], we have defined complex analytic
connected sum (which was called "connecting operation") of manifolds of Class L. In
this paper, we shall consider how to factorize a compact manifold of Class L into prime
ones. To describe our results, we introduce Klein combination of manifolds of Class
L, which is a generalization of complex analytic connected sum. Our first result is that,
if a compact manifold of Class L is of Schottky type, then it is a Klein combination of
Blanchard manifolds and L-Hopf manifolds (Theorem A) (see § 1 for the definitions).
This result is an analogue of Kulkarni's [Ku]. We shall prove some properties of L-
Hopf manifolds (Theorem B, §4) and give a rough classification of Blanchard man-
ifolds (Theorem C, § 5). There are many manifolds of Schottky type. In fact, we see
that a complex analytic connected sum of Blanchard manifolds and L-Hopf manifolds
is of Schottky type (Theorem D).

Our work is motivated and strongly influenced by that of Kulkarni [Ku]. Theorem
A and its proof is an analogue of his Theorem 6.3 and its proof.

I would like to express my hearty thanks to my colleague K. Yokoyama for the
helpful discussions.
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1. Definitions and Statements of Results. Let Ω be a subdomain in a complex
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projective space of dimension three, which is denoted by P3. Let Γ be a subgroup of
PGL(49 C) acting freely and properly discontinuously on Ω. We shall denote by Γ\Ω
the quotient space of Ω by the action of Γ. A compact manifold of Class L is called a
(P)-manifold if the manifold is of the form Γ\Ω and if Ω is simply connected.

DEFINITION 1.1. A compact manifold X of Class L is of Schottky type if X is
represented as a quotient space Γ\Ω, where Ω is a subdomain in P3 such that any
connected component of the complement Λ: = P3 — Ω consists of a single projective
line, and that Γ is a group of holomorphic automorphisms of Ω whose action is properly
discontinuous and free.

Let us define two kinds of Schottky type manifolds, L-Hopf manifolds and
Blanchard manifolds.

A Blanchard manifold is a compact complex manifold whose universal covering is
biholomorphic to P3 — {a single line}. For more information, see §5.

An L-Hopf manifold (Hopf-like manifold of Class L) is a compact complex manifold
whose universal covering is biholomorphic to P3 — {two lines without intersection}. An
L-Hopf manifold is said to be primary if its fundamental group is infinite cyclic. For
more information, see §4.

In the following, we shall use the term "complex analytic connected sum", which
is the same as the "connecting operation" introduced in [Ka2], [Ka3]. The term
"connected sum" will also be used, if there is not chance of confusion with the standard
connected sum in differential topology.

Klein combination of Class L manifolds is a generalization of complex analytic
connected sum, which is defined as follows. Let XV9 v = 1, 2, be manifolds of Class L.
Let I" be a connected and simply connected smooth real hyper surf ace in P 3 , and W a
tubular neighborhood of Σ. Let W\ and W'2 be the connected components of P3 — Σ.
Put Wγ = W'1ΌW and W2 = W'2 u W. Suppose that there are open embeddings
j v : Wv-+Xv. Then the Klein combination K l ^ , X2,j\J2, Σ) °f %Ί a n d Xi is the union
X\ uX\9 X*v = Xv-jv(Wv- W\ where j\(x)ej\(W), xe W, is identified with j2(x)ej2(W)
(see Figure 1). Note that we can define the Klein combination for any Σ and any pair
Xl9 X2 of Class L manifolds, provided that both Wx and W2 are of Class L. For a
sequence of manifolds X1,X2, •• , I S of Class L, we can consider their Klein
combination inductively as Yk = Kl(Yk_u Xk,jk_l9jk9 Σk_ί)9 fc^2, and Yί = Xί. If, in
particular, W\ is biholomorphic to the domain

and if Σ is CR-isomorphic to dU, then the Klein combination Kl(Z l5 X2Jl9j2, dU) is
nothing but a complex analytic connected sum of A\ and X2, which we denote by
Sum(JΓl5 XiJiJi)- When the explicit expression for the embeddings j v : U^XV is not
necessary, we abbreviate S u m ^ , X2J\Ji) as S u m ^ , X2). Note that the complex
structure of S u m ^ , X2JuJi) depends not only on Xu X2 but also on the choice of



COMPACT COMPLEX 3-FOLDS 361

JnJi See for example [Y].

A manifold X of Class L is said to be prime if Jf=Sum (Xl9 X2,j\,j2) for some

manifolds Xl9 X2 of Class L implies one of Xl9 X2 is P3.

By a line I, we shall mean a non-singular rational curve in a manifold of Class L

which has a tubular neighborhood W and a biholomorphic map j : W-> £/ such that

j(l) is a projective line in P3.

For groups Gl9 * * , (JS, we denote by Gx * G 2 *. * Ga their free product.

Now we shall state our results.

THEOREM A. Let X=Γ\Ω be α compact manifold of Schottky type. Assume that

Ω is simply connected and Γ is torsion free. Then Γ can be written as a free product of

subgroups

= Γ1*Γ2* ••• *ΓS,

where r, O^r^s, is an integer such that

(i) each Γh l^i^r, is an infinite cyclic group,

(ii) each Γh r<i^s, contains a rank 4 free abelian subgroup of finite index,

(iii) X is a Klein combination ofr times primary L-Hopf manifolds and s — r times

Blanchard manifolds.

THEOREM B. Any L-Hopf manifold admits a primary L-Hopf manifold as a finite
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unramified covering. An L-Hopfmanifold is primary if and only if its fundamental group
is torsion free. Any primary L-Hopf manifold is biholomorphic to Mg (for the definition
of Mg9 see §4).

THEOREM C. Let Γ\Ω be any Blanchard manifold. Then Γ is torsion free and
contains an abelian subgroup Γ1 of rank 4 with [Γ\ Γ J < + oo. Moreover we can choose
Γ t so that it is conjugate in PGL(4, C) to a subgroup of either

(A)

or

(B)

/I

0

0

Vo

IΛ

0

0

Vo

a

1

0

0

0

1

0

0

b

a

1

0

a

c

1

0

b

a

1/

b\

d

0

a,b,ceC

a9b,c,deC

If Γ1 is conjugate to a subgroup of (B), then any element g€Γ1 except the identity
satisfies rank(7— g) = 2.

THEOREM D. Suppose that X is a complex analytic connected sum of several copies
of L-Hopf manifolds and Blanchard manifolds. Then X is a (P)-manifold of Schottky
type.

Both Blanchard manifolds and L-Hopf manifolds are prime. But Theorem A does
not tell us that a manifold of Schottky type is a connected sum of several prime manifolds
of Class L. In fact, there is an example of Schottky type manifolds whose fundamental
group is a free group on two generators but not biholomorphic to a connected sum of
L-Hopf manifolds. It might be true that a Schottky typς manifold is a complex analytic
deformation of a connected sum of Blanchard manifolds and L-Hopf manifolds. But
for the moment, we cannot prove this assersion.

NOTATION AND SIMPLE REMARKS. Let S be a subspace of a topological space T.
Then [S]τ denotes the closure of S in T. The interior of S is denoted by (S)τ. The
boundary of S is defined to be [S]T — (S)T and denoted by dSτ. By [S] (resp. dS), we
shall mean [S]P3 (resp. dSps).

An «-cell is denoted by Bn. An ^-standard sphere is denoted by Sn.
For a number ε ^ 1, we put
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and Nε=Uε — [Uι/ε\. For ε = l , we simply denote U=U1. We remark that Uε is
biholomophic to U for any ε. It is easy to show that [Uε] is diffeomorphic to S2 x B4

and that d[Uε] is diffeomorphic to S2 x S3.

2. Topological preparation. The following proposition says that a (^-manifold
can be represented as a Klein combination of simpler ones. Essentially, this is a result
in topology. Our proof is an imitation of the argument of Hempel [H, pp. 60-62 and
pp. 66-67].

PROPOSITION 2.1. Suppose that X=Γ\Ω is a (P)-manifold. Suppose further that
Γ is isomorphic to the free product of two groups Gx and G2 as an abstract group. Then
we have the following:

(i) There are two (P)-manifolds XV = ΓV\ΩV, v= 1, 2, such that ΓV^GV.
(ii) There are connected subdomains Yv in X with X=[Y\\χU[Y2]χ, and with

connected, simply connected common boundaries d[Y^\x

 and d[Yi]χi S[Y1]x = d[Y2]x.

(iii) There are embeddings j v : [Yv]x-+Xv such that the induced morphisms

Λ* : π i P v ϋ ^ π i ( ^ v ) are isomorphisms.
(iv) The union (Xί —j\(Yι)) u (X2 —7*2(^2))is biholomorphίc to P3

9 if the boundary
S\Ji(Yi)]χ is identified with d\j2(Y2)]x byj2oj~\

PROOF. For a subcomplex A in a complex, let Int A denote the interior and δA
the boundary in the sence of simplicial complexes. Choose simplicial complexes Cv, v = 1,
2, with πί(Cv)^Gv and πq(Cv) = 0 for q^l. Join a point of Cγ with a point of C2 by a
1-simplex A to form a complex C= Cx u A u C2. Since πx(C) ̂  Gx * G2 and nq(C) = 0 for
q^2, we can construct a continuous mapping/: X-+C such that the induced map
f+: πί(X)->πί(C) is an isomorphism. Take a point Oelnt,4 and put Z=f~1(0).
Modifying / within the homotopy class, we may assume that Z is a finite union of
smooth real hypersurfaces.

LEMMA 2.2. The map f can be chosen so that Z=f~1(0) is simply connected.

PROOF. Put

(2.3) fm=f and Z[0] = Z.

Suppose that Z [ 0 ] contains a non-simply connected component. Let 7 be a loop in Z [ 0 ]

which represents a generator of π^Z^). Since f^: π1(X)^>πΐ(C) is bijective, and since
/ [ 0 ](Z [ 0 ]) = {0}, γ is homotopic to 0 in X. Since dimΛAr= 6 > 5, we can choose a continuous
embedding h: (B2, δB2)^>(X, Z[0]) with h(δB2) = γ, where B2 denotes the 2-dimensional
ball. We may further assume that h(B2) intersects Z [ 0 ] transversely. Then A"1(Z[0])
consists of a finite number of disjoint simple closed curves containing δB2 as a connected
component. Let E be a 2-cell in B2 such that En h~ 1{Z{0^ = δE and Z' be the component
of Z [ 0 ] containing Λ(<5ii). Let Z)6 = J β 2 χ J β 4 b e a small regular neighborhood of h(E2)
in X such that N=D6nZ'5^S1 xB4 is a tubular neighborhood of htfE^^S1 (see
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[H, p. 7] for the definition of regular neighborhoods). Let T=δD-N and choose
E'^B2 x S3 properly embedded in D with δE' = δT(see Figure 2). We define f±: X^C

KB2)
h(δB2)

FIGURE 2.

as follows. Put

Λ I (X- (Int D u Int N)) =f \ (X- (Int D u Int N)).

We can extend fx \ δE' to the map which sends E to the point OeA. Since πq(C) = 0
for all q^2, we can extend fx over D-E in such a way that/f 1(0)nZ) = £". Then
/ - ^O) = (/(ojHO) - N) u £ r . Put Z x =/i" ̂ O). Then the number of connected components
of h~ί(Z1) decreases by one. By van Kampen's theorem, there is a natural surjection
πi( z jo])->πi( zi) Again choosing a 2-cell Ex in B2 such that E1nh~1(Z1) = δE1, we
can modify fx and Zx to obtain/2, Z 2 =fχ x(0) and a natural surjection π1(Z1)-^π1(Z2).
Continuing this step as many times as the number of connected components of h~ 1(Z [ 0 ]),
we obtain/m and Z m : = /["I]1(0) such that Λ" 1(Z [ 1 ]) is empty. At the same time we have
a surjection π^Z^ ^π^Z^). Note that the element of π ^ Z ^ ) represented by γ vanishes
in Z U ] . Replacing / [ 0 ] and Z [ 0 ] of (2.3) by / t l ] and Z U ] respectively, we repeat the
argument from (2.3). Continuing this process, we have a sequence of surjections

π1(Z)=π1(Z[0]) -+

In each step, at least one of the images of the generators of πx(Z) is mapped to 0. Since
each map in the sequence is surjective and since πx(Z) is finitely generated, we see that
π1(Z[n]) = 0 for a sufficiently large n. This proves the lemma. •
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LEMMA 2.3. The map f of Lemma 2.2 can be chosen so that Z=f~1(0) is connected

and simply connected.

PROOF. By Lemma 2.2, we may assume that every component of Z is simply

connected. Suppose that Z is not connected. Then there is a path β: [0, 1]^>Xsuch that

β(0) and β(\) lie in different components of Z. Now/°j? is a loop in X and since

fm: π1(X)-+πί(C) is surjective, there is a loop y based at β(l) with the relation of

homotopy classes [f°y] = [f°β]~ί. Then <x = β°γ is a path satisfying (i) α(0) and α(l)

are in different components o f/ - 1 (0 ) , and (ii) the homotopy class [/°α] is trivial in

nx{C). We may assume that α is a simple path which crosses Z transversely at each

point of α((0, 1)). Of all such paths satisfying the above conditions, we assume that

#{α - 1 (Z)} is minimal. We must have α((0, l ) ) n Z = 0 . For, if not, we can write

α = α1 α2 ock (k^2) where for each /, αf((0, l ) ) n Z = 0 and {αf(0), αj(l)}cZ. Then

[/ ' α i ] "[/" α 2]""" *[/'αjJ *s a representation of the identity element as an alternating

product in the free product Γί*Γ2. Thus for each i, [/ αj = 1 holds. If αf(0) and α f(l)

lie in the same component of Z, we could reduce ^{α'^Z)}. If αf(0) and α f(l) do not

lie in the same component of Z, we contradict our minimality assumption. Thus we

have α((0, l ) ) n Z = 0 . Let Zj9j=09 1, be the components of Z containing α(/). Let N

be a small regular neighborhood of α([0,1]) such that NnZj = Dj is a spanning 5-cell

of N and N n Z = D o u D x. Let B be the difference of spheres in δN bounded by δDo u δD x.

Push Inti? slightly into intN to obtain a difference of spheres Bf with δB=δB' and

BΌB' the boundary of T^B2xS4 in N. We define a mapΛ: X-+C as follows. Put

fi\(X-P)=f\(X-P) and/1(5') = 0, where i>=IntiVuIntZ)ouIntZ)1. Since [/ α] = l,

we can extend /i across a 2-cell i?2 x {#}, where ^ e 5 4 . Now it remains to extend/\

across the remaining two open 6-cells; this can be done since π5(Cv) = 0. The extension

can be so chosen thsitfϊ1(0)nN=Bf. Ίhusf^1(0)^(f~\0)-(DouD1))uB' is simply
connected and has one less component than/" 1 ^). The proof is completed by induc-

tion. •

Lemma 2.4. The map f of Lemma 2.3 can be so chosen that both of the two

connected components of the complement X—f'1^) contain lines.

PROOF. Suppose that we are given a line / in X. First we consider the case

/n(Z—/~1(O)) = 0 . In this case we can choose another line /' near / so that / and /'

are in the same connected component. Now we are going to modify / so that/" 1 ^)

separates these two lines. Let V be a small tubular neighborhood of /, which does not

intersect /'. Let α:[0, l ] - * ^ be a path connecting a point α(0) o n / " 1 ^ ) and a point

α(l) on d Vx satisfying α((0, 1)) n (/' u [V]x u/~ ^O)) = 0 . Let Nbe a regular neighborhood

of α([0, 1]) such that Do = Nnf-ί(0)^B5 and D^NndVx^B5. Put M=(dVx-
intD^uδN, which is diffeomorphic to S2xS3 with a 5-cell deleted and δM=δD0.

Push IntM slightly into Int(KuΛΓ) to obtain a real 5-manifold M' with δM' = δM

embedded properly in Int(FuiV). We define a map fx: X-+C as follows. Put
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/i \(X-P)=f\(X-P) and/1(Mr) = 0, where P=Int(FuiV)uInt Do. Now it remains to
extend fx across the remaining two open sets, the set Wt = B1 x (S2 x S3 — B5) bounded
by M and AT, and the set W2^B* x S2 bounded by M' and Do. Since π2(C) = 0 and
π3(C) = 0, fx can be extended across Wx and W2 so that fϊ1(0)n(VuN) = M' and
/Γ1(0) = (/" 1 (0)-i)o)uM'. ThusΛ: Jlf->C separates / and /'. Next we shall consider
the case where the given line / intersects/" ^O). In this case, using the method employed
in the proof of Lemma 2.2, we can modify/so t h a t / " 1 ^ ) does not intersect /. Thus
we have proved the lemma. •

We insert here a gereral remark on fundamental regions. Suppose that a group Γ
acts on a differentiable manifold Ω and that the action is free and properly discontinous.
A closed subset F in Ω is a fundamental region for the group Γ if

(1) Int F is connected and F= [Int F\Ω;
(2) Not two distinct points of Int F belong to the same Γ-orbit;
(3) Every Γ-orbit intersects F.

Assume that the quotient manifold X= Γ\Ω is compact. Fix a triangulation of X such
that each simplex is evenly covered by the natural projection Ω->X. Lifting this
triangulation to Ω, we get a triangulation of Ω. We can construct easily a fundamental
region for Γ as a connected finite subcomplex. Assume further that a simply connected
subcomplex S is given in X. Let S be a lift of S in Ω. Then the above fundamental
region can be so chosen that the interior contains S.

Now we go back to the proof of Proposition 2.1. By Lemma 2.4, there is a continuous
mapping/: X^C such that

(v) Z=f~1(Q) is a connected, simply connected real 5-manifold,
(vi) the complement X—f~l{0) has two connected components Yx and Y2,

(vii) Yv contains lines and π1{Y^^Gy9 v= 1, 2.
Then it is clear that Yγ and Y2 satisfies (ii). Let iy: [Yv]x-+X be the natural inclusion
and Γv = Im(π1(yv)-^π1(Ar)). Then Γ^Γί*Γ2 holds. Let p: Ω^X be the canonical
projection. Fix a connected component Z of p~ X(Z). Then there is a fundamental region
F in Ω with respect to Γ such that intF contains Z as a closed hypersurface. Let
Fl, v= 1, 2, be the component of F—Z such that/?(Fj5)cz Yv. Obviously, the complement
P3 — Z has two connected components. Let KV9 v = 1, 2, denote the connected component
of P3-Z which contains F*μ9 μφv. Put Fv = KyuF and Ωv= \JyeΓj(Fv). Then we see
that XV = ΓV\ΩV, v= 1, 2, is a (P)-manifold. By construction, Fv is a fundamental region
of Γv in Ωy. The quotient of the set Ωl=\JγeΓj(Fl) in Xv is biholomorphic to [Yv]x

whose boundary considered in Xv is isomorphic to Z. Thus it is clear that (iii) and
(iv) hold. •

3. Properties of Γ of Schottky type manifolds. Let [z0: zx: z2: z3] be a standard
system of coordinates on P 3 . We fix the notation as follows.
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p o i n t s ej : eo = [l : 0 : 0 : 0 ] ^ = [ 0 : 1 : 0 : 0 ] e 2 = [ 0 : 0 : 1 : 0 ] έ?3 = [ 0 : 0 : 0 : 1 ] ,

lines ljk : Zj = zk = 0 j , k=0, 1, 2, 3 , j<k,

planes Hj : Zj = 0 y=0, 1, 2, 3 .

Suppose that a line / in P 3 is given by the equations

aozo + a1z1+ α2z2 +
 β 3 z 3 = ° >

bozo + bιz1+ b2z2 + &3z3 = 0 .

Then the Plucker coordinates

( 3 . 1 )

s(0] e P 5

of / are given by

(3.2)

ΐ) f i ( " " d e "

, a3

h b3

a2 a3

In terms of these coordinates, we regard the Grassmann manifold Gr(4, 2) as a
hypersurface in P5. We denote by / the corresponding point on Gr(4,2). let
γ:SL(4, C)-+PGL(4, C) denote the canonical projection. Let

(3.3) M =

f<*oo
0

0

V o

α o i

« 1 1

0

0

α O 2

α 1 2

α 2 2

0

α O3

be an element of SL(4, C). The Plucker coordinates [ξ'o: ξ\ : ξ'2: ξ'3: {'4: ξr

5] of the line

Γ = γ(M)~ίl are given by

2 = αOOαl 3^0 + « 0 0 α 2 3 ί 1

(3.4)

ί 5 = (
a
O2

a
13 —

+ (a 1 2 a 2 3 -

where ξv = ξv(l),v = 0 , 1 ,

+ (
a
O2

a
23 ~

 a
O3

a
2

ξ 4 + a 2 2 a 3 3 ξ

•,5.
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Let {#v: v = 1, 2, , r} be a set of generators of Γ, and M v a representative of
# v in SX(4, C). Denote by f the subgroup of SX(4, C) generated by M v , v = 1, 2, , r.
For an elment MeSL(4, C), we write the Jordan canonical form as

(3.5)

where

(3.6)

(3.7)

(3.8)

J(M) =
0

0

\o
0

0

0

α 2

0

0

ε2

(αv + 1 - α v ) ε v = O,

εv = 0 or 1 ,

for v = 0, 1,2.

In the following throught this section, we assume that Γ\Ω is a manifold of
Schottky type.

LEMMA 3.9. For any MeΓ, we have either

(3.10) I «o I = I α i I < I α21 ^ I α31 >

or

PROOF. Take any MeΓ, and fix it. Taking a suitable system of homogeneous
coordinates on P3, we can assume M=J(M), where J(M) is the Jordan canonical form
(3.5) satisfying (3.6), (3.7) and (3.8). Suppose that M satisfies neither (3.10) nor (3.11).
Then M or M~1 satisfies

(3.12) I « o l < | α i l = | α 2 | = | α 3 l

or

(3.13) | α o l < l « i H « 2 l < l « 3 l .

Replacing M with M ~1 if necessary, we may assume that M is one of the following.

/ α 0 0 0 0 \

0 αx 0 0

0 0 α 2 0

\ 0 0 0 α 3 /

(3.14)
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(3.15)

(3.16)

/ « 0

0

0

\ 0

/«o

0

0

V o

0

0

0

0

« 1

0

0

0
1

« 1

0

0

1

« 1

0

0 \

0

0

aj

o\
0

1

α,/

SUBLEMMA 3.17. In the case (3.12), M is not of the form (3.14).

PROOF. Suppose that M is of the form (3.14). Take any line / in Ω and a small

compact subset K in Ω which contains a neighborhood of the point lr\H0. Then, since

I αx I = I α2 I = I α3 I, and since Ho is γ(M)-invariant, we see that the set {neZ:

y(M)n(K)(\KΦ0) is infinite. Hence the action of the infinite subgroup <y(M)> on Ω is

not properly discontinuous. This is a contradiction. •

SUBLEMMA 3.18. In the case (3.12), M is not of the form (3.15).

PROOF. Suppose that M is of the form (3.15). Let / be a line in Ω such that

/n((J/y) = 0 and put ξv = ξv(l\ v = 0,- ,5 . By (3.4), the Plϋcker coordinates

KίΓ"*: ξ(i~n): ξ(2~n): ̂ : ^ : ξ(

5~
n)] of y(MΓ"(J) are

= αiα3S4 9

( — π )
v

5 ' =

Since { o f i ί i ί a W s ^ 0, we see easily that limπ^ + „ y(M)Λ(/) = /0 2 and limΛ_ _,, y{M)\l) =

/2 3. This implies that l02 u / 2 3 is contained in Λ. Since any connected component of A is

a single line, this is impossible. •

SUBLEMMA 3.19. In the case (3.12), M is not of the form (3.16).

PROOF. Suppose that M is of the form (3.16). We let / be a line in Ω such that

y) = 0 a n d P u t £v = £%(/), v = 0, , 5. By (3.4) the Plϋcker coordinates [ξ(

0~
n):
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Since ί o ί i ^ a f ^ s ^ we see easily that limn^+ aDy{M)%l) = l03 and l i m ^ . ^
y(M)n(l) = l23. This implies that /o 3u/ 2 3 is contained in A. Since any connected
component of A is a single line, this is impossible. •

Next we consider the case (3.13).

SUBLEMMA 3.20. In the case (3.13), M is not of the form (3.14).

PROOF. Suppose that M is of the form (3.14). Let /' and /" be distinct two lines

in Ω. Put ξ'v = ξv(Γ) and ξ'; = ξv(I"), v = 0, , 5. We can choose these two lines so that

the condition ξ'oζ'[ - ξ \ξ"0 φθ is satisfied. There is a sequence {ΛJJ/JQ of positive integers

with l i m ^ = + o o and Iim(α 1 /α 2 )^=l. Put //

00 = limy(M)^(//) and l^ = limy(Mp(Γ).

By (3.4), the Plΰcker coordinates [ξ^*: {(f">: ξ2~
n) ξ(3~n)' ξ(4n)' ξ{

5~
n)] of ΆM)'\V) are

, ς 4 —a 1 a 3 ς4, ς 5 — a 2 a 3 ς 5 .

Hence we have

Ko(/'J: ίi(/'co): ̂ (/'co): ί3(/«): W/'oo): W/ 'J ] = KΌ: ί Ί : 0 : 0 : 0 : 0 ] .

Combining this with the similar calculation for /^, we see that the condition

£'o<Γί — f ' i fo#0 implies that the limit lines /'„ and /^ intersect transversely. Since

'̂oo u C c ^ » this is a contradiction. •

SUBLEMMA 3.21. /« ίΛ^ case (3.13), M is «o/ of the form (3.15).

The proof is the same as that of Sublemma 3.18. The following sublemma is trivial.

SUBLEMMA 3.22. In the case (3.13), M is not of the form (3.16).

The proof of Lemma 3.9 is now clear from Sublemmas 3.17-3.22.

LEMMA 3.23. Suppose that MeΓ satisfies (3.11). If M is of infinite order, then its

Jordan

(3.24)

canonical form AM) is of the form

/«o

0

0

\o

1

0

0

0

0

0

0 \

0

1

α,/

or
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/ « 0

0

0

1

α0

0

0

0

1

α0

0

0\

0

1
(3.25)

PROOF. Taking a suitable system of homogeneous coordinates on P3, we may

assume that M is (3.24), (3.25) or one of the following:

(3.26)

(3.27)

(3.28)

/ « 0

0

0

\o

0

0

\o

0

0

Vo

0

0

0

0

« 1

0

0

0

« 1

0

0

0

0

α2

0

0

0

α2

0

0

1

« 1

0

0 \

0

0

J
o >
0

1

αj
0\

0

1

α /

Suppose that M is of the form (3.26) or (3.27). Then, among lip there are distinct two

lines liλjλ, λ= 1, 2, with lhh n h 2 h Φ 0 on which y(M) acts as a projective transformation

defined by a diagonal matrix. There are sequences {nλv}™=1, λ= 1, 2, of positive integers

with limv_oo «λ v = -I- oo such that limv_> ̂  y(M)ΠAv | / . ^ = 1. This implies Ω u liλjλ = 0 , since

the action of <y(M)> on Ωnliλjλ must be properly discontinuous. Thus liχjλ, λ= 1, 2,

are contained in Λ, a contradiction. Hence M is neither of the forms (3.26) and (3.27).

Suppose that M is of the form (3.28). Then M acts on /2 3. By the same reason as above,

/2 3 is contained in A, since there is a sequence {nλ}f=1 of positive integers with

limλ^ n nλ = oo such that limA_00(α0/α1)
Λλ = 1. Choose a line / in Ω such that /n (\J/fJ ) = 0 .

Put ξv = ξv(l), v = 0, 1, *,5. Then the Plύcker coordinates of the limit line

/^ : = limJI^00 y(M)w(/) are given by [0:0: ξ0:0:0: ξ3] (cf. the calculation in the proof of

Sublemma 3.19). From ξo¥Ό, it follows that /^ n/23 = {e1}. Since /^ u/23<=Λ, this is a

contradiction. This completes the proof of the lemma. •

Combining Lemmas 3.9 and 3.23, we have the following:
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PROPOSITION 3.29. Let X=Γ\Ω be a manifold of Schottky type. Let Γ be a

subgroup of SL(4, G) such that y\Γ: Γ-+Γ is surjective, where y: SL(4, C)—>PGL(4) is

the canonical projection. Then, for any MeΓ of infinite order, the Jordan canonical form

J(M) of M is one of the following'.

Type I

/αo

0

0

\o

εo

0

0

0

0

« 2

0

0\
0

ε2

where | α 0 1 ^ | α j | < | α 2 | 5 Ξ | α 3 | , α« ί/(α o -α 1 )ε o = ( α 2 - α 3 ) ε 2 = (

Type II

0

0

\o
0

0

7>/>e III

0

0

β

0

0\

0

1

β>

/OL

0

0

VO

1

α

0

0

0

1

α

0

0

1

α/

4. L-Hopf manifolds (Hopf-like manifolds of Class L)

DEFINITION 4.1. A compact complex manifold is called an L-Hopf manifold if its

universal covering Ω is a subdomain of P 3 such that the complement A: = P3 — Ω, called

the limit set, consists of two projective lines without intersection. An L-Hopf manifold

is said to be primary if its fundamental group is infinite cyclic.

It is easy to check that an L-Hopf manifold is of Class L. Therefore an L-Hopf

manifold is of Schottky type.

PROPOSITION 4.2. A {P)-manifold Γ\Ω of Schottky type is an L-Hopf manifold if

and only if its fundamental group Γ contains an infinite cyclic group of finite index.

PROOF. A theorem of Hopf [Ho, Satz Va] says that Ω has two ends if and only if
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Γ contains an infinite cyclic subgroup of finite index. Therefore we see that Γ contains
an infinite cyclic subgroup of finite index if and only if the limit set consists of two lines
without intersection, i.e., Γ\Ω is an L-Hopf manifold. •

We shall use the notation of § 3. We may assume that the two lines in the limit set
A are /01 and /23. For any A e Γ, we have A(/01) = l01 and A(/23) = /23 Indeed, if A(/01) = /23

and A(/23) = /01, then A is represented by a matrix

c o)
Then we can find a non-zero vector z"eC2 such that CBz" = λz" for some λeC— {0}.
Then the point z = *[Bz", μz"]eΩ is fixed by A, where μ2 = λ. This is a contradiction.
Hence both /01 and /23 are Γ-invariant.

An element geΓ is called a contraction if gn(UudU) converges to the line /01. The
group Γ contains a contraction. To prove this we borrow an argument of Kodaira
[Ko2, p. 695]. Note that there is an element geΓ such that g(dU)nδU=0. Since g
leaves the line /01 invariant, either g(UudU)c:U or UudUczg(U) holds. Replacing g
with g'1 if necessary, we may assume that g(UudU)^U holds. Then we have
tf(UudU)<=tf-1(U),n=l,293, • • -.We have to show that Γ\ntf(UudU) = l01. Suppose
that z £ /0 x is a point on the boundary of f] n g\ U u 3 U) and let ^ be a small neighborhood
of z. It is clear that Wis not contained in gn(UudU) for a sufficiently large n, while z
is an interior point of W. Hence W meets gn(UudU) for all sufficiently large n. This
contradicts the proper discontinuity of G. By the subsequent argument of Kodaira [Ko2,
p. 695], we can also show that, if geΓ is a contraction, then there exists a positive
integer n such that gn belongs to the center of Γ.

Now every element heΓ has a representative of the form

(A 0\

\0 Dj9
A,DeGL(2,C).

We define

(4.3) e(h)

It is easy to see that g is a contraction if and only if

Max{absolute values of the eigenvalues of A}

< Min{absolute values of the eigenvalues of/)} .

LEMMA 4.5. An element heΓ is a contraction if and only if | e(h) | < 1.

PROOF. If A is a contraction, then we have | e(h) | < 1 by (4.4). Conversely, suppose
that A satisfies | e(h) \ < 1 while (4.4) is not satisfied. Choose a contraction g in Γ. Then
the infinite cyclic subgroups <#> and <A> generated by g and A, respectively, have only



374 MA. KATO

the identity in common. This contradicts the fact that the index of <#> in Γ is finite.

•
PROPOSITION 4.6. The fundamental group of an L-Hopf manifold is a semi-direct

product of a finite group and an infinite cyclic group.

PROOF. Define a group homomorphism p: Γ-+R by

(geΓ).

Let gx be a contraction. Then the index d of the infinite cyclic group <p(#i)> generated

by p(gι) is finite. Hence d~γp(g^) is a minimum positive element of p(Γ). Let goeΓ be

an element such that p{g^) = d~ιp{g1). Then we have the semi-direct product

decomposition Γ« <#0> Kerp. •

As we have seen above, a primary L-Hopf manifold is biholomorphic to the

manifold Mg defined as follows (see [Ka4] for more general characterization of L-Hopf

manifolds, where the arguments are carried over without the assumption that Ω is a

subdomain in P3).

Fix a standard system of homogeneous coordinates [z0: zx: z2: z3] on P3. Let /0 1

and / 2 3 be the two lines defined by z o = z 1 = 0 and z 2 = z 3 = 0, respectively. Let

gePGL(49 C) be the automorphism of P3 — (/01 u /23) defined by the 4 x 4 matrix

(4.7)

λ0 0 0\

0 ax 0 0

0 0 α 2 λ2

\ 0 0 0 α3/

with the conditions

(4.8) ( α o - α i μ i = ( α 2 - α 3 μ 2 = 0,

and

(4.9) 0 < | α o | ^ | α 1 | < | α 2 | ^ | α 3 | .

Let <#> denote the infinite cyclic subgroup in PGL(4, C) generated by g. Then Mg is

defined to be the quotient space (P3 — (/01 u/23))/<gf>.

Thus we have easily:

THEOREM B. Any L-Hopf manifold admits a primary L-Hopf manifold as a finite

unramified covering. An L-Hopf manifolds is primary if and only if its fundamental group

is torsion free. Any primary L-Hopf manifold is biholomorphic to Mg where g E PGL(4, C)

is of the form (4.7) and satisfies the conditions (4.8) and (4.9).

L-Hopf manifolds with torsions are found among the twistor spaces over compact
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conformally flat non-primary Hopf surfaces (cf. [Kal]).

5. Blanchard manifolds. In this section, we shall carry out a rough classification
of Blanchard manifolds. We use the notation in §3.

DEFINITION 5.1. A compact complex manifold is called a Blanchard manifold if
its universal covering Ω is a subdomain in P3 such that the complement A : = P 3 — Ω,
called the limit set, consists of a single projective line.

It is easy to check that a Blanchard manifold is of Class L. Therefore a Blanchard
manifold is of Schottky type.

LEMMA 5.2. Let K^. 2 be a positive constant. Let G be a subgroup ofGL(2, C) such
that I trace(gf) | ̂ Kfor all elements g in G.IfG contains an element which is not conjugate
in GL(2, C) to a diagonal matrix, then G is conjugate in GL(2, C) to a subgroup which
consists of upper triangular matrices.

PROOF. Replacing G by a conjugate subgroup in GL(2, C) if necessary, we can
assume that G contains

/ l

L )> w h e r e

Since | trace(#S) | ^K for «-• 4- oo, we have | α| = 1. Let

(a

be an arbitrary element in G. Since \tt2ice(gn

0g)\ = \(xna+noin~1c + <xnd\tkKtor /i-» + oo,
we infer c = 0. Therefore G is contained in the upper triangular subgroup of GL(2, C).

•
In what follows in this section, X=Γ\Ω always denotes a Blanchard manifold.

The complement P3 — Ω, indicated by /, is a single line by definition.

LEMMA 5.3. Γ is torsion free.

PROOF. If geΓ—{id} is of finite order, we can easily find a fixed point outside / *
as an intersection of three ^-invariant planes, a contradiction. •

PROPOSITION 5.4. The Jordan canonical form of a representative M of any element
of Γ-{id} is either of Type II or Type III in Proposition 3.29.

PROOF. By Lemma 5.3, every element of Γ — {id} is of infinite order. Suppose that
MeΓ is of Type I. Choose a line / in Ω such that /n((J/i/) = 0 . Then we have
limn^ooy(M)π(Z) = /ol and limw_ooy(M)"/I(Z) = /23 (cf. L-Hopf manifolds case, §4). Hence
ôi u^23 is contained in A, a contradiction. •
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In what follows in this section, we say that an element geΓ — {id} is of Type II
(resp. Type III), if g is represented by a 4 x 4 matrix which is conjugate to a matrix of
Type II (resp. type III).

PROPOSITION 5.5. There is an abelian subgroup Γx ofΓ such that [Γ: JΓJ is finite.

Our proof proceeds by a series of lemmas. Choose a system of homogeneous
coordinates [zo\z1:z2:z3] on P3 such that / is given by /23 = {̂ 2 = Z3 = }̂ Let G
be the group defined by

* ζ\eSL(4,C):A,DeGL(2,Q,BeM(2,C)\.

Let φ: G-+GL(2,C)xGL(2,C) be the homomorphism defined by φ = (φ1,φ2),
where

Then Γ is a subgroup of G.

LEMMA 5.6. There is a subgroup Γx of Γ with [Γ.Γ^K +oo such that φ2(Γι) is

conjugate in GL(2, C) to a subgroup which consists of upper triangular matrices.

PROOF. We assume that

(5.7) for any subgroup Γx of Γ with [Γ.f1\< + oo, any conjugate of the image group
ψ2(Γι) in GL(29 C) cannot be contained in the set of upper triangular matrices.

The lemma will be verified, if we derive a contradiction.
Step 1. Pick any element geΓ of infinite order. Suppose that both φx{g) and

φ2(g) a r e not conjugate to diagonal matrices in GL(2, C). Then by Proposition 5.4,
neither φχ(g) nor ψ2(g) is conjugate to a diagonal matrix, and there are complex numbers
α, β with I α | = | β \ = 1 such that φι(g) (resp. φ2(g)) is conjugate to

0

Then, by Lemma 5.2, both lτnφ1 and lmφ2 are conjugate to subgroups which consist
of upper triangular matrices, a contradiction.

Step 2. Pick any element geΓ of infinite order. By Step 1, we may assume that
both φi(g) and φ2(d)are conjugate to diagonal matrices in GL(2, C). Thus by Proposition
5.4, we infer that both φi(g) and φ2(g) are conjugate to

ία

o β
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Since (α/?)2 = l, it follows that β = ΰ or β= — α. In particular, we see that the equality

detψ1(g) = detψ2(g) = ± 1 holds for all g e Γ. Taking a subgroup Γx of Γ with [f Γ J g 2,

we may assume that the equality det 1/̂ (0) = det 1/̂ (0) = 1 holds for all geΓί.

Step 3. By Step 2, we may assume that,

(5.8) for all geΓuboth φ^g) and \//2{g) are conjugate to

("?> -°_), lαfcOI-l.
\ υ oc(gy

In particular,

(5.9) trace(ιAv(α)), v = l , 2 , are real for all geΓ,.

Moreover, by (5.7),

(5.10) both <Ai(A) and Φii^i) are infinite groups.

Indeed, this is obvious for φ2(fi)' If *Ai(/\) is finite, then there is a subgroup Γ2 of

finite index in Γ1 such that ^(Γ^) is trivial. Since the set of eigenvalues oίφ^g) coincides

with that of ψ2(y)> w e s e e Λat ψ2(f2) is also trivial. This implies that Γ 2 is conjugate

to a subgroup which consists of upper triangular matrices, a contradiction. Hence ^i(Γi)

is also infinite.

SUBLEMMA 5.11. The group ^ 2 ( Λ ) *s a subgroup of either SU(2) or SU(l, 1).

PROOF. The infinite group ^ 2 (^i) contains an element hί of infinite order by

a theorem of Burnside. By a suitable change of a system of homogeneous coordinates

o n ? 3 preserving / = / 2 3 , we may assume that hx is of the form

,0

where α l 5 | αx | = 1, is not roots of unity. If φ2(ft) contains an element h2 of the form

ί*
\c a)

then
-1-1 ( ι

h2 h, M i - ^ ( α J _ 1 } χ

Therefore, by (5.8), we have α x = ± 1 , a contradiction. Thus we conclude that

contains no elements of the form

°%
c a)
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Similarly, ψ2(Γx) contains no elements of the form

a b\

0 a)

Let

b

be any element of ^ 2 (Λ) BY (5 9 ) ? trace(ΛiΛ)€/? for all neZ. Hence a = 3 follows.
Let

be another element. Then we have

(5.12)

If bb'φO, then B'~ιcf = B~1c. Set h' = h. Then we see that B~xc is real. Moreover, the
value B~1c does not depend on the elements of ^ ( A ) - P u t p=—B~1c
Then every element of \I/2(F\) *s °f Λe form

a b\

-pB a)'

If p > 0, then put

Then we see that ψ2(Γi) is a subgroup of SU(2). If p<0, then put

[z'o:z'1:z'2:z'3] = [ r 0 : z t : T ^ ϊ | p | ^ 2 z 2 : z 3 ] .

Then we see that φ2(f1) is a subgroup of SU(l, 1). This proves Sublemma 5.11. •

By the same argument, we have:

SUBLEMMA 5.13. The group φχ{Γx) is a subgroup of either SU(2) or SU(\, 1).

Step 4. We ass.ume that ft is torsion free, replacing Γx with its torsion free
subgroup of finite index, if necessary. This is possible by a theorem of Selberg.

SUBLEMMA 5.14. There is a system of homogeneous coordinates on P3 such that
/ = / 2 3 and that ψί(g) = ψ2(g)for all geΓ1.

PROOF. Fix g1eΓ1 such that ψ2(9i) is of infinite order. Choose coordinates on
P 3 such that / = / 2 3 and that Ψι(gi) = ψ2(9i)' BY ( 5 8) and (5.9), we can write gγ as
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[A B\
eSL(4,C),

with

a 0

0 α 1*1 =

where α is not a root of unity. Take any gef1. Then, by Sublemmas 5.11 and 5.13,

we can write g as

Pi Pi

PiPi PJ '
R =

where,

For any n e Z, we have

AnP=

Pv =

ocnp1

- 1 if

1 if φXΓ^SUiXΛ).

ocnp2
and AnR =

<xnrΛ α r*

p2otnr2 ocnrί

Since φι{g\g) and φ2(dni9) are conjugate to each other, we have tr(ψί(gn

1g)) =
tr(ψ2(glg)). Hence Reία"^!—r1)) = 0 for all neZ. Since α is not a root of unity, we
have

(5.15) P l = r i .

Now we claim that

(5.16) if either φ^g) or φ2{g) is a diagonal matrix, then both are diagonal matrices .

Indeed, if P = φ1(g) is a diagonal matrix, then 1 = \pγ \ = | rx | by (5.15). Then r2 = 0

follows from 1 =det(φ2(g)) = \r1\
2-p2\r2\

2. Then (5.16) is verified.

Therefore, by the assumption (5.7), there is g2eΓί such that neither φγ{g2) nor

Φi(gi) is a diagonal matrix. Put

92 =

( p

PiV

0

V 0

q

P

0

0

*
*

P

p2f

*
*

r

P

qrφO,
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( s

pj

0
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t

S

0

0

KATO

*

*

s

*\

u

s

be any element of Γί. Then, applying (5.15) to g2g, we have p1qt = p2ru. In particular,

letting g = g2, we have Pι\q\2 = p2\r\2. Hence the equalities Pi = p 2

 a n d I#I = M hold.

Put pr = q, where | p | = 1. Then, for any geΓl9we have

9 =

s

pj

0

V o

t

s

0

0

Letting

T=
0

0

\o

0

1

0

0

s

Pipt

0

0

λ

0

* \

pt

s /

0\

0

0

1/

where >!2 = ρ, we have φί(T~1gT) = \l/2(T~1gT) for any 0e/\. This proves
Sublemma 5.14. •

Step 5. We fix a system of homogeneous coordinates on P3 as in Sublemma 5.14.
By this sublemma, we see that ^ 1(Γ 1) = ι/r2(Γ

r

1). Put K=\l/1(Γ1) = ψ2(ft

1). By Sublemmas
5.12 and 5.13, K is a subgroup of either SU{2) or SU(l, 1). In this step, we consider
the case K<=SU(2).

SUBLEMMA 5.15. If KaSU(2), then K contains an abelίan subgroup Ko of finite
index.

PROOF. The following argument is due to Wolf [W, pp. 100-102] (see also Charlap
[C]). Let

G =
0 P

P 0

0 P

PeSU(2),QeM(2,C)

I

0

and φ: G^SU(2) the homomorphism defined by
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c
To prove the sublemma, we shall use the following four facts.

(5.16) There is a neighborhood V of 1 in SU(2) such that, if g, heV and

[g,[g, h]]= I, then [g,h]=l.

(5.17) There is a neighborhood V of 1 in SU(2) such that, whenever g, heV,

[g, h], [g, [g, h]], [g, [g, [g, h]]]

is a sequence in V which converges to 1.

(5.18) Any neighborhood of 1 in SU(2) contains a neighborhood V" such that

gV"g-ι = V" for all geSU(2) .

(5.19) The identity component of the closure of K in SU{2) is abelian .

For the proofs of (5.16), (5.17) and (5.18), see [W, pp. 100-101]. We shall give a

proof of (5.19). Our proof is essentially a copy of [C, pp. 12-14]. Suppose that W is a

neighborhood of 1 in SU{2) satisfying the conditions on V, V, V" in (5.16), (5.17) and

(5.18). Let gu g2eΓί with φigje IV, and define gi+1 = [gu 0ί] f o r * ^ 2 Write

[Pi Qt

with Pi = φ{gι)eSU{2) and β f eM(2, C). Then

+ 1 Qi+ί
0

where

and

Taking the norms, we obtain

+ \-P1PiP:1Q1P^ιPΓι + QιPiP~x

 ιPΓ11

i-ΛΛΛ-1βil + l
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If I l-Pί | ^ l / 4 , then |Q i + 1 |£(1/2) | βil + 2 | l - P l | | β 1 | . B y ( 5 . 1 7 ) , l i m i ^ + α 0 1 1 - P , | = O.

Hence, for a given ε > 0 , there is an integer n>0 such that 2| 1 — Pt \\Qχ\<ε for all i^/i.

Therefore, if i^n, we have | Qi+11^(1/2)| β f | + ε . Hence, for i^/ι, fc^O, the in-

equality

I β,+fc I ^ (1/2)*| a I + e£f "o (1/2)' ̂  (1/2)*| β f | + 2ε

holds. Thus we have limfc_> + 00 | β k | = 0. Therefore

as k-> + op .

Since Γ1 is a discrete subgroup in G, this implies that 0 k = id for a sufficiently large k.

Then, by (5.16), we have l= j p J k = P k _ 1 = = p3 = [pl9 p 2 ] . Since P x and .P2 were

arbitrary in KnW, we see that Kn W is abelian, and hence so is [Â n WV. Therefore

the identity component Ko of K\ = [K\SU{2) is abelian. Thus (5.19) is proved.

Since K is compact, we see that the index [K:K0] is finite. This implies the sub-

lemma. •

By this sublemma, taking a suitable conjugate of Ko in SU(2), we may assume that

Ko consists of diagonal matrices. This contradicts the assumption (5.7). Thus we conclude

that Ψι(Γi) = ψ2(Γi) cannot be contained in SU(2).

Step 6. In the final step, we consider the case where K=^/1(Γ1) — \l/2(Γi) is
a subgroup of SU(\, 1).

SUBLEMMA 5.20. IfKaSU(\, 1), then taking a suitable conjugate ofK in SU(\, 1),

we may assume that K consists of diagonal matrices.

PROOF. By (5.10) and a theorem of Burnside, K contains an element of infinite

order. By (5.8), g may be assumed to be of the form

where α is not a root of unity. Let h e K be any element. Put

h
\? P/

By (5.8), we have | Re <xnp \ ^ 1 for any neZ. Since α is not a root of unity, this implies

that \p|^1. Since 1 =detΛ = |/?| 2 — \q\2, we obtain q = 0. Thus h is a diagonal matrix.

This proves Sublemma 5.20. •

By Sublemma 5.20 and the assumption (5.7), we conclude that ψ1(Γi) = ψ2(Γ1)

cannot be contained in 5(7(1, 1).

Thus the assumption (5.7) leads to contradictions in all cases. Hence Lemma 5.6
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is proved. •

We quote here results on compact complex surfaces. The following theorem is a

part of [Ko 1, Theorem 19].

THEOREM 5.21 (Kodaira). Let S=G\C2 be a compact complex surface, where G

is a properly discontinuous group of holomorphic automorphisms without fixed points of

C2. If the canonical bundle of S is trivial, and if the fundamental group of S does not

contain any abelian subgroup of finite index, then G is a nilpotent group generated by

four elements gl9 g2, g3 and g4 with relations gλgμ = gμgλ for (λ,μ)φ(3.4) and

0304 = 0204035 where m is a fixed non-zero integer. Moreover, with respect to a suitable

system of coordinates on C2, the four generators are represented by affine transformations

of the following form:

. = o

where the αv and βv are complex numbers such that
(i) α i = α 2 = 0,

(ii) α3, α 4 are linearly independent over R,

(iii) βί9 β2 are linearly independent over R, and

(iv) ά3α4 — α4α3 = mβ2 Φ 0 .

The following result is due to Suwa.

THEOREM 5.22 [Su, p. 245, Corollary]. Let S=G\C2 be a compact complex

surface, where G is a properly discontinuous group of affine transformations without fixed

points of C2. Then G contains a nilpotent subgroup Gx of finite index such that, by a

suitable linear change of coordinates on C2, the linear part ofGx consists of upper triangular

matrices.

Now we shall prove:

LEMMA 5.23. There is a nilpotent subgroup Γx of Γ such that [f'.Γ^ is finite.

Moreover, by a suitable choice of homogeneous coordinates on P3, all elements of fx

can be expressed as upper triangular unipotent matrices.

PROOF. By Lemma 5.6, we can choose a system of homogeneous coordinates on

P3 such that φ2iΓi) consists of upper triangular matrices. Then the plane H3 is

-/(ΓJ-invariant. The quotient (H3 — l23)/y(Γ1) is a compact non-singular surface. Since

//3 —/23 = C2, it follows from Theorem 5.22 that, by a suitable linear change of

coordinates on H3 — l23, the linear part of all elements of γ(Γ1)\H3 is represented by

upper triangular matrices, and that y(Γi) contains a nilpotent subgroup of finite index.
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By Proposition 5.4, we see that y~1(y(Γ1)) contains a desired subgroup. •

LEMMA 5.24. The group Γx of Lemma 5.23 contains an abelian subgroup of finite

index.

PROOF. Since any member of Γγ can be represented by an upper triangular

unipotent matrix, the canonical mapping y\Γ1: fί^Γ1 is an isomorphism. Suppose

that Γ1^Γ1 does not contain any abelian subgroup of finite index. Let ΓH denote the

group whose elements are the restrictions to H3 of elements of Γ x . In view of Theorem

5.21, there is a biholomorphic mapping Φ = (φ, φ): C2^H3 — l23 such that

(5.25) Φ(0v(w l5 w2)) = Λv(Φ(wl9 w2))

for v= 1, 2, 3, 4, where the Av are the generators of ΓH corresponding to gv. By Lemma

5.23, we can express hv in the form

where uί=z0/z2 and u2 = zί/z2. The equality (5.25) is then written as

(5.26) φ(w1+dvw2Λ-β

(5.27) Ψ(wi+ΰvw2 + β

From (5.27), we have

and

(5.28)

(5.29)

for all v. Then equality px =p2 = 0 follows from the condition (iv) and (5.28). Hence we

have

(5.30)

where,

(5.31)

It follows from (5.26) that

with the relations
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(5.32) p3av = q1av + 2q2ocv,

Since Φ is biholomorphic, qχφθ holds. If αv = 0, then av = cv = 0 follows from (5.31),

(5.32) andp 3 φ0. Thus by the condition (i) we have

(5.33) a1 = c1=a2 = c2 = 0.

Since the mapping /\->TH is bijective, there is a unique hveΓ1 corresponding to hy for

each v. Note that the hv satisfy the relations hλhμ = hμhλ for (λ, μ)^(3,4) and

h3h4 = h2hjι3. Suppose that hv is represented by

(\

0

0

vo

av

1

0

0

cλ

1

0 1/

By Proposition 5.4 and (5.33), we infer that Ht and H2 are of Type II. Hence

(5.34) tt = t2 = O,

and

(5.35) bφiS^iφO.

By the relations hjιμ=hμhλ for (A, μ) φ (3, 4) and hji^=h™hji3, and by (5.33) and (5.34),
we obtain the following equations:

(5.36) β3ίi=/3*i β4*i = Ά

(5.37) a3s2 = tφ2

(5.38) α 3 c 4 = a4c3 + mb2

(5.39) c3u = c4

If a3φ0, then / 3 ^ 0 and b1/s1=b2/s2 = a3/t3 follows from (5.35), (5.36) and (5.37).

Hence cA.t3 = c3tAr + ms2 follows from (5.36) and (5.38). Therefore we have s2 = 0 by

(5.39). This contradicts (5.35). Thus a3 = 0 and hence /3 = 0. Similarly, 0 4 = /4 = O holds.

Combining these with (5.33) and (5.34), we see that ΓH is abelian. This contradicts the

assumption. •

The proof of Proposition 5.5 is now clear by Lemma 5.24.

PROPOSITION 5.40. Suppose that Γ is abelian. Then, with respect to a certain system

of homogeneous coordinates [zo:zr:z2:z3] on P3 satisfying /={z 2 = z 3 = 0}, Γ is

represented by a subgroup Γ of either
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b

a

1

0

a

c

1

0
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b

a
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d

0
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(A)

or

(B)

7/T w in (B), ίλe« α/iy element geΓ except the identity satisfies rank(/— g) = 2. In any

case, the rank of Γ is 4.

PROOF. By Proposition 5.4, every element of Γ — {id} is either of Type II or Type
III. Since Γ is abelian, and since Γ leaves the line / invariant, there is a system of
homogeneous coordinates [z0:zi:z2:z3] on P 3 such that

(5.41) /={z 2 = z3 = 0 } .

Put §= {z3 = 0} -/, which is biholomorphic to C2. Note that the restriction Γ-+Γ \ S is
bijective and that (Γ | S)\S is a complex torus of dimension 2, where Γ \ S = {g \ S: g 6 Γ}.
Hence we see that rank Γ = 4 and that

(5.42) every element of Γ is represented by an upper triangular unipotent 4 x 4
matrix.

First suppose that Γ contains no elements of Type III. Let g be any element of Γ — {id}

and let

(5.43)

/I

0

0

\0

1 a2

0 1

0 0 1 /

be a representative of g. Since (/— G)2 = 0, we have

(5.44) aγa2 = β2α3 = α ^ + ̂ Z?! = 0 .

Suppose that a3 φθ. Then a2 = 0 follows from (5.44). Moreover, [αx: b2 : α3 :0] is a fixed
point of G outside /. This is absurd. Hence we obtain a3 = 0. By rank(7—G) = 2, ax = 0
follows from (5.44). Thus we are in the case (B). Next suppose that Γ contains an
element g of Type III. Let G be a representative of geΓ-{id} of the form (5.43). Then
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we have aίa2a3φ0. Replace Γ with τ 1Γτ, where τ is represented by

Then τ xgτ is represented by

Let

faιa2a3

0

0

^ 0

ted by

a

/I

0

0

VO

(\

0

0

vo

ίb2 + a2

a2a3

0

0

1

1

0

0

P

1

0

0

0

1

1

0

q

s

1

0

c

b2

"3

0

0\

0

1

1/

r \

t

u

1/

u\
0

0

1/

*

be a representative of an arbitrary element heΓ—{id}. Since Γ is abelian, we have
easily HJ—JH. From this equation it follows that p = s = u and q — t. Thus we are in
the case (A). •

Combining Lemma 5.3, Propositions 5.5 and 5.40, we have the following theorem,
which gives a (rough) classification of Blanchard manifolds up to finite unramified
coverings.

THEOREM C. Let Γ\Ω be any Blanchard manifold. Then Γ is torsion free and
contains an abelian subgroup Γ1 of rank 4 with [Γ: Γ J < + oo. Moreover we can choose
J\ so that it is conjugate in PGL(4, C) to a subgroup of either (A) or (B) in Proposition
5.40.

In the following, a Blanchard manifolds is said to be of type A (resp. type B) if
its fundamental group contains an abelian subgroup of finite index which is conjugate
to a subgroup of (A) but not (B) (resp. a subgroup of (B)).

EXAMPLE 1. First we shall give an example of Blanchard manifolds of type A.

Let Γ be a subgroup of S£(4, C) generated by G1=I+N, G2 = I+iN, G3 = I+N2 and

G4r = I+iN2, where i=y/—l, and
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N=

/0 1 0 0\

0 0 1 0

0 0 0 1

V o o o o
Put Γ = y(f\ /={z2 = z3 = 0} and Ω = P3-l. Then Γ\Ω is a (P)-manifold of Schottky
type. A proof of this fact will be given in Appendix.

EXAMPLE 2. Next example is a Blanchard manifold of type B, which is classical.
We define a group of automorphisms of P3 —123 as follows. Let Aj,j= 1, 2, 3, 4, be the
elements of GL(2, C) satisfying det(£*stlrJAj)^0 for all ( r^€ ί 4 -{(0, 0, 0, 0)}. It is
not difficult to find such matrices. Define GJeGL(4, C) by the 4 x 4 matrix

/ A

where / is the 2x2 identify matrix. Let Γ be the abelian subgroup generated by the
four elements Gpj= 1, 2, 3, 4. Put Γ = y(Γ) and Ω = P3 -123. Then Γ\Ω is a (P)-manifold
of Schottky type, which is a classical Blanchard manifold defined in [B].

REMARK. Blanchard manifolds of type (A) and type (B) are not biholomorphic
to each other. Indeed, if they were biholomorphic, the representation of their
fundamental groups in PGL(4, C) defined by their flat projective structures must be
conjugate to each other in PGL(4, C), since a manifold of Class L admits only a unique
flat projective structure [Ka3].

6. Proof of Theorem A. Our proof goes along almost the same line as Kulkarni's
[Ku, p. 266]. Let X=Γ\Ω be a compact manifold of Schottky type. Assume that Ω is
simply connected and Γ is torsion free. By a theorem of Hopf[Ho, Satz I], the cardinality
of the ends of Ω is one, two or that of a continuum. Suppose that Ω has an uncountable
number of ends. Since [Ω] = P3 and since Γ is finitely generated, we can apply a theorem
of Kulkarni [Ku, Theorem 5.1], and see that Γ has an uncountable number of ends as
an abstract group. Hence by a theorem of Stallings [St], Γ can be written as a free
product of two proper subgroups, Γ = Γ1*Γ2. By Proposition 2.1, I is a Klein
combination of two manifolds, XV = ΓV\ΩV9 v= 1, 2, of Schottky type. Since [Ωy] = P3

and since the Γv are torsion free and finitely generated, /^(resp. Γ2) can be written
again as a free product of proper subgroups Γ1 = Γ3*Γ4. (resp. Γ2 = Γ3*Γ^), when
Ω^resp. Ω2) has an uncountable number of ends. Grushko's theorem says that, if a
group G is a free product of groups Gx and G2, then the minimal number of the
generators for G is the sum of the corresponding numbers for Gι and G2. Hence the
above process of factoring Γ terminates in a finite number of steps. Thus Γ is written as



COMPACT COMPLEX 3-FOLDS 389

Γ = Γ1*Γ2*-*Γτ*Γr+ί*-*Γs,

where r, O ^ r g s , is an integer such that

(i) each Γi9 1 g i ^ r , has two ends,

(ii) each Γ p r<i^s, has one end,

(iii) X is a Klein combination of ΓV\ΩV, v= 1, , s.

In case (i), ΓV\ΩV is a primary L-Hopf manifold by Proposition 4.6. In case (ii),

ΓV\ΩV is a Blanchard manifold. Hence the theorem follows from Theorems B and C.

7. Proof of Theorem D. To prove Theorem D, first we prepare elementary

topological facts. Let Ω be a domain in P 3 and put A = P3 — Ω. Let α be any connected

component of A.

LEMMA 7.1. P 3 —α is open and connected.

PROOF. Since A is closed in P 3 , so is any connected component of A. Hence P 3 — α

is open. Since P 3 — α is locally connected, any connected component of P 3 —α is open

in P 3 —α and hence in P 3 . Let V be any connected component of P 3 —α which does

not intersect Ω. The boundary d Vis contained in α. Therefore α u V= α u [V] is connected.

Then, since αu VczA and since α is a connected component of Λ, V is contained in α.

This is absurd. Hence every connected component of P 3 —α meets Ω. Thus P 3 — α is

connected, since Ω is connected. •

LEMMA 7.2. Suppose further that Ω contains a line lv Then there is a system of

open neighborhoods {An}neN of a in P3which has the following properties;

(0) P 3 — An contains lγ for all n,

(1) An is connected for all n,

(2) P3 — An is connected for all n,

(3) An=>An+ί for all n, and

(4) ΓLΛ = *.

PROOF. It is easy to construct a system of open neighborhoods {A'n} which satisfies

(0), (1), (3) and (4). Denote by Ac

n the unique (closed) connected component of P3 — A'n
which contains lί. Put An = P3 — Ac

n. Obviously {An} satisfies (0), (1) and (3). Now we

shall show that {An} is the desired system. First we shall prove (2). Put

P3 — A'n = Ac

nu U λ L n λ , where the Lnλ are non-empty (closed) connected components of

P 3 — A'n other than Ac

n. Then we have

An = A'nϋ\jLnλ.
λ

It suffices to show that dA'n n L n λ Φ 0 holds for any λ. Suppose that dA'n n Lnλo = 0 holds

for some λ = λ0. Then by A'„ n Lnλo = 0 , we have [AJJ n Lnλo — 0 . Let L be the connected
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component of P3 — [A'n] such that LnλoaL. From the relation Lπ λ oczLczP3 — A'n, we

infer that Lnλo = L. Since Lnλo is closed in P 3 , so is L. On the other hand, since P 3 — [A'n]

is locally connected, L is open in P3 — [A'n] and hence in P 3 . Therefore we conclude

that L is empty by LφP3. This is a contradiction. Thus (2) is verified. Next we shall

prove (4). Put A = ζ\nAn. It suffices to show that Aczoc. Suppose that there is a point

xeA — α. By Lemma 7.1, P3 — α is pathwise connected, because so is a connected open

set of a manifold. Let C be a path in P 3 — α joining x with a point 7 e /x. By Q n A 'n = α,

it follows that there is an integer n0 such that xeAn — A'n for all n^n0. Note that

CnA'n = 0 for «^« 0 holds, since otherwise C would be contained in Ac

n9 and

consequently xeAc

n. This is absurd. Let zneCnA'n. Choosing a suitable subsequence,

we may assume that limπ_00zn = zeC exists. Since zneA'n and p|π^4^ = α, this implies

that zeα. Hence zeCnαc=(P 3 — α)nα = 0 , a contradiction. This proves (4). Thus the

lemma is proved. •

For a subset W of P 3 , we denote by ίF the subset in the Grassmann manifold

GT: = Gr(4, 2) which parametrizes lines in W. Similarly, we denote by /the point in Gr

which corresponds to a line / in P3. The next lemma is a key to the proof of Theorem

7.6, from which Theorem D follows immediately.

LEMMA 7.3. Let X=Γ\Ω be a (P)-manifold and α a connected component of the

limit set A. Then α is a line if the following conditions (i) and (ii) are satisfied.

(i) There is a compact subset K in Ω which has the following properties.

(i-a) Through any point in K, there passes a line contained in K.

(i-b) For any point vsdoί and for any neighborhood V of v on P3, there

is an element geΓ such that Vr\g(K)Φ0.

(ii) There are subdomains Wu Wίε, W1 € Wu in P 3 , and a sequence {gj} of distinct
elements of Γ which have the following properties;

(ii-a) Wγ and Wu are biholomorphic to U,

(ii-b) some neighborhood of[Wu— W^ is contained in Ω,

(ii-c) α c ^ / ^ c g / ^ J c ^ and gj+^WJczgj^iW^^gjiWJczgjiW^

for all j.

PROOF. Let v be any point on δα and {F,} j°=1 be a system of open neighborhood

oft; in P 3 such that Vj^Vj+ί and {\jVj={v}. By (i-b), for any j , there is an hjβΓ

such that Vj n hj(K) Φ 0. Therefore by (i-a) there is a line lj in K such that Vs n /*}(/}) φ 0.

Since the action of Γ on Ω is properly discontinuous, we can choose a subsequence of

{/}} such that {lj}, lj = h'j(Γj), converges to a line /^ in A. Obviously, we have

ue/^ndαci/^nα. Hence / ^ ^ α . This implies that, for any point of da, there is a line

passing through the point. Therefore to prove the lemma it suffices to show that ά is a

single point. From the argument above it follows in particular that ά is not empty. In

Sublemma 7.5 below, we shall show that ά is indeed a single point.

Each gj induces an injective holomorphic mapping g}\ WlE^W1. Since W1 is
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biholomorphic to a bounded domain, [g3] forms a normal family. Taking a convergent
subsequence, we assume that {#,•} itself converges to a holomorphic mapping
$00: Wu-+Wx uniformly on any compact subset of Wu.

SUBLEMMA 7.4. ά = $oo(^iε).

PROOF. First we shall show όί(^goo(Wlε). Let lea be any point. Since lag^W^,
for any j , there is a line /,<= ̂  such that l=gJ{lJ). We can choose a subsequence {#}}
of {#,-} such that the corresponding subsequence {/}} of {/)•} converges to a point in
[ ^ J G Γ P u t ί) = lΐmi^/ Then, since the convergence g^g^ is uniform on [^i]GΓ5

 w e

have Γ=limj^χ/>

j) = lim Jίχ4) = ίoo(ί)) H e n c e /e0oott#r

1]Gr)<=0βo(#r

l l t). τ h u s w« ob-
tain ά c z ^ j f ^ J . Conversely, we shall show a^g^W^. Put T= WU — [WX]9 which is
a subdomain in Ω by (ii-b). Take any line / in T. Since the action of Γ on Ω is properly
discontinuous, we see that the limit line /<*,, ΐ^ : = gao(ί) = limjgj(ΐ), does not intersect Ω,
i.e., /αoC=Λ. Let /' be another line in T. There is a path C in t which joins /and /'.
Since the action of Γ on Ω is properly discontinuous, ^00(C)c:yί holds. Since C is
connected, there is a connected component β of Λ such that both ^ ί / ) and ί?^/') are
on the same β. Therefore we have

Now we claim gJ(Wx^<^β. By Lemma 7.2, there is a system of neighborhoods {Bn}neN

of β in P3 which has the following properties;
(1) Bn is connected for all «,
(2) P3 — Bn is connected for all «,
(3) Bn^Bn + ί for all «, and
(4) [)Bn = β.

Put T' = [Wίδ— Wlδ>], where 1 <<5'<(5<ε. Since g^g^ is uniformly convergent on 7",
we see by the above argument that, for any n > 0, there is an integer j n such that
gj(T')czBn for all7>7π. Then ^(PΓ1)czJβπ follows for j>jn9 since #/Wi)c: WΊ and since
P3-Bn is connected. This implies that f|^0 gf/^J c j8. Thus we have g^iW^^β. This
together with g^t)^^ verifies the claim. Since oί^goo(Wίε) as shown above and since
ά is not empty, there is a line in α which is parametrized by a point of goo(lVu). Hence

, i.e., α = j8. This implies ^ooί^iJ^ά. Thus the sublemma is proved. •

SUBLEMMA 7.5. ά is a point.

PROOF. Since α is compact, the corresponding set ά is compact. Therefore, by
Sublemma 7.4, the holomorphic mapping g^ has a compact image in Wx. Since Wx is
biholomorphic to a bounded domain, g^ is a constant mapping. Consequently, ά is a
single point. •

Clearly Lemma 7.3 follows from Sublemma 7.5.

PROPOSITION 7.6. A Klein combination of {P)-manifolds is a (P)-manifold.
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PROOF. Let X1 = Γ1\Ωι and X2 = Γ2\Ω2 be (P)-manifolds and Ar=Kl(Ar

1, X2,

j\,j29 Σ) the Klein combination of them. By the definition of the Klein combination,

there is a tubular neighborhood W of Σ such that the mappings jv are holomorphic

open embeddings of Wy=WuWy into Xy, where the W'y are the connected components

of P 3 - Σ. The manifold JΠs the union X\ u X\9 X*y = Xv -jy( Wy - W\ where; t(x) ej\(W),

xe W, is identified withy2(x)ey2(JΓ) Let/V: Wv->ί2vc:P3 be a lift of/v. Note that^ ex-

tends to an element of PGL(4, Q [Ka3, Lemma 3.2]. Put Wy=jy(Wv) and Σy=jv(Σ).

Let Fv be a fundamental region for Γv in Ωv which contains Wy. By/" 1 , we regard

Fv as a subset in P 3 which contains Wv and Σv as Σ. Put F=(Fί- W\)\J{F2- W'2)

and ^ = U & e r ^ ( ^ ) ' where Γ is a subgroup of PGL(4, C) generated b y / ' ^ X v= 1, 2.

Then it is easy to see that Ω is the universal convering of X, F is a fundamental region

for Γ and that Γ is isomorphic to the free product of Γx and Γ 2 (cf. [Ma, p. 302]). Thus

X is a (P)-manifold. •

THEOREM 7.7. Suppose that X1=Γι\Ω1 and X2 = Γ2\Ω2 are {P)-manίfolds. Then

Ar=Sum(ΛΓ

1, X2,j\,j2) is a (P)-manifold of Schottky type if and only if both Xx and X2

are of Schottky type.

PROOF. The "only if" part follows from the fact that every connected component

of Λv is a connected component of A. The rest of this section is devoted to the proof

of the "if" part. Suppose that Xt and X2 are (P)-manifolds of Schottky type and X is

represented by X=Γ\Ω. In view of Proposition 7.6, it is enough to show that any

connected component α of Λ — P3 — Ω is a line. Put Σ = dU. Then Nε= Uε — [Uί/ε] is a

tubular neighborhood of Σ in P 3 . Let Wγ and W2 be the connected component of

P 3 —Σ. Put Wvε= Wv\jNε. By choosing a suitable ε > l , we can form the manifold X

as the union X\εuX\ε, where Xlε = Xv—jv(Wvε — Nε), and, for xeNε, jί(x)ej1(Nε) is

identified withj2(x) ej2(Nε). Let/?: Ω-+Xbe the covering projection. By our construction

of X, Ω contains the hyper surf ace Σ.

For K=Σ, the condition (i-a) of Lemma 7.3 is satisfied.

Now we shall construct a sequence of distinct elements of Γ satisfying the condition

(ii-c). Coose a fundamental region Ffor Γ in Ω so that Fcontains Nε. The set Fv = FΌ WV

is a fundamental region in Ωv for Γv. Let Ω*v be the connected component of p~1(Xl)

such that dΩ*v contains K as a connected component, where Xl = Xv—jy([Wv]). Note

that Ω\a W2 and Ω\a Wx. We have

(7.8) P3-Ωl = Λvu\J g([Wy]) v = l , 2 ,
geΓv

where the right-hand side is a disjoint union. Let α be a connected component of A. If

α is contained in g{A{) or g(A2) for some geΓ, then α is a line, since both Xγ and X2

are of Schottky type. Thus we assume that α is contained in neither g{Ax) nor g(A2)for

any geΓ. Since α n [Nε] = 0 , we may assume (χc^Wί — [Nε] without loss of generality.

By (7.8) togehter with α n Ω\ = 0 and α n Λ2 = 0 , there is an element g\ e Γ2 such that
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K =

FIGURE 3.

). By (7.8) together with θL(\g\(Ω\) = 0 and <xcιgf

1(Λ1) = 0, there is an
element g\eΓx such that aLag\g'[([W$. Put g^ =g\gr[. Obviously g^W^a WX. By
(7.8) together with <xngι(Ω*2) = 0 and ocng1(Λ2) = 0, there is an element g'2eΓ2 such
that oίc:g1g

f

2([lV2]). By (7.8) together with ocng1g'2(Ω\) = 0 and (xf\g1g
f

2(Λ1) = 0,
there is an element g2eΓί such that oLcg^gldW^). Put g2 = Qi0292- Obviously
g2([WlE])czg1(Wί)czgί([Wίε])cz Wί. Continuing this process, we obtain a sequence
{g3)f=ι of distinct elements of Γ which satisfies the condition (ii-c).

To apply Lemma 7.3, it remains to check the condition (i-b). Take a point v on
doc and its spherical open neighborhood 5 in P 3 with the center v. We claim that
B n ((J eΓ g(K)) Φ0.ΊO verify this, assuming the equality B n ((J geΓ g(K)) = 0 , we derive
a contradiction. Let V be a connected component of i? n β. Then V is open. Since the
image set p(F) in X is connected and does not intersect Σ—p(K\ p(V) is contained
either in X\ or X\. We may assume /?(F)c:Ai[ without loss of generality. Then there
is an element geΓ such that V<^g(Ω\). Replacing Ω\ with another suitable connected
component of p~ι(X\) if necessary, we may assume that 0 = 1 , i.e.,

(7.9)

If d VB a Ω, then ue5ci2,a contradiction. Hence d VB φ Ω. Take any point xsdVB —
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Suppose that xeΩ\. Since Ω\ is an open set, there is a connected neighborhood V of

x such that V<^Br\Ω\<^BnΩ. Since xeV'—V and since VnV'φ0, this contradicts

the fact that V is a connected component of 2?nΩ. Hence x is woί contained in Ω\.

Since VαΩ\, we have *edKc=[Ωί]. Note that dΛί=Λί holds by the assumption that

Xγ is of Schottky type. Hence it follows from (7.9) that

(7.10) xedΩ^dίλ.u U gdWjλcΛ^dί (J
/ V

Suppose that ^eδ((J^ e Γ i gdWJ)). lΐ xeΩu then we can choose a system of relatively

compact neighborhoods {Vk}, k = 1,2, ••, of x in Ω1 such that Vk^>Vk+1 and

p | f c F k = {x}. For any A:, there is gkeΓx such that Vk(\gk([W1])Φ0. Since [JΓJ is a

compact subset contained in Ωl9 and since the action of Γx on Ωx is properly

discontinuous, the set {gk:k= 1, 2, •} is a finite set. Hence we have xe^ffFKJ) for

some A:'. Since xφΩ\, this implies jte</fc'(K), a contradiction. Hence we have xφΩx,

i.e., j c e ^ . Thus from (7.10), xeΛί follows in any case. Since x is an arbitrary point

in dVB — Ω9 we have dVB — Ωc:Λ1. Since [Ω1] = P3 because of the assumption that Xx

is of Schottky type, this inclusion implies that the connected component V is dense in

BnΩ. Hence BnΩ is connected. Now replace V with BnΩ and repeat the above

argument. Then we obtain the inclusion relation d(BnΩ)B — Ω<^Λi. Hence we have

ved(xnBcz(dΩ)r\B-Ωczd(BnΩ)B-Ω^Λ1 .

Since v is an arbitrary point on doc, we see that dαciA^ Then OLC:Λ1 follows easily.

Since we have assumed that α is contained in neither g{A^) nor #042) for any geΓ, this

is a contradiction. Hence the condition (i-b) is verified.

Thus the "if" part of the proposition follows from Lemma 7.3. •

As a corollary we have:

THEOREM D. Suppose that X is a complex analytic connected sum of several copies

of L-Hopf manifolds and Blanchard manifolds. Then X is a (P)-manifold of Schottky

type.

Appendix. We shall prove that the pair (Ω, Γ) in Example 1, §5, defines a

(P)-manifold. It suffices to show that the action of Γ on Ω is free and properly

discontinuous and that the quotient space is compact.

Any element GeΓ is given by G = G™Gn

2GlG% with m,n,p,qeZ. For

a = (a0, au a2, a3)eC*, put Ga = (a'o, a\, a'2, a'3). Then we have

(A. 1) a'o = ao + (m + in)a1 + (mint —1)/2 — n(n —1)/2 — imn +p + iq)a2

4- (m(m - l)(m - 2)/6 - mn(n -1 )/2 + i(m(m - l)n/2 - n(n -l)(n- 2)/6)

+ mp — nq + i(mq + np))a3 ,

(A.2) a\ = at + (m + iή)a2 + (m(m -1)/2 - n(n -1)/2 - imn
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(A.3) α'2

(A.4) a'3 = a3.

It is easy to show the following:

LEMMA A.5. The action of Γ on Ω is free.

LEMMA A.6. The action of Γ on Ω is properly discontinuous.

PROOF. It is easy to see that for any compact subset K in Ω, there is a positive

number M such that K is contained in the set

\zo\ + \z1\^

Put A = {geΓ\g(K')r\KrΦ0}. It suffices to show that A is a finite set. Suppose that

{0v}? v = 1, 2, 3, , is a sequence of elements of A. Let {av} c K be a sequence of points

such that gv(av) e K'. Choosing a subsequence of {gv}, we may assume that {ay} converges

to a point a = [α 0 : α x : α 2 : α3] in K'. Note that (α2, α3) ̂ (0 , 0). If α 3 ^ 0 , then we may

assume α 3 = 1. Then there is an integer v0 such that αv = [α (

o

v ):α (

1

v ):α (

2

v ): 1] holds for all

v^v 0 and that l im v ^ o o α] = α j, j=0, 1,2. Then it follows easily from the relations

(A.I), , (A.4) that gv = gv+ι= * * * hold for all v^v 0 . The argument is the same for

the case α 3 = 0 and α2 φ 0. •

LEMMA A.7. The quotient space Γ\Ω is compact.

PROOF. It is enough to show that, for any point α = [α 0 : ocx: α 2 : α3] in Ω, the orbit

ΓOL intersects the compact set

(A.8) ^ = { [ Z O : Z 1 : Z 2 : Z 3 ] G / > 3 : | Z O | + | Z 1 | ^ 4 1 0 ( | Z 2 | + | Z 3 | ) } .

First we consider the case α3 = 1. By (A.2) and (A.3), we may assume that | αx | ̂  1/v 2

and | α 2 | ^ l / V T . We put

P(m, n, α l 9 α2) = (m + iri)0L1 + (m(m —1)/2 — n(n —1)/2 — imή)θL2

+ m(m - l)(m - 2)/6 - mn(n -1)/2 + ί(m(m - l)n/2 - n(n - l)(n - 2)/6),

β(m, n, α2) = (m + m)α2 + m(m —1)/2 — n(n —1)/2 — imn ,

and

R(my n, α l 5 α2) = P(m, n, α l 9 α j - ί m + m + α ^ α i + Q(m, n, α 2 ) ) .

Regarding m and « as real variables, we can show the inequalities

dR
(m,n, α l 5 α 2 )

cm
^ ( | m | + | « |

and
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δR<
- — (m,rc,α1? α2)
dn

Here we have used | αx | g 1/V 2 and | α2 | ̂  1/V 2 . It is easy to check that the mapping

defined by z = x + iy\—>R(x, y, α l 5 α2) is a surjection of C to itself. Hence we can find

(m0, n0) € Z2 such that

(A.9)

Suppose that (mθ9 no)φ(0, 0). Using | α21 ̂  1/V 2 , we have the inequality

(A.10) | m o | + |A2o| + l g

Combining (A.9) and (A. 10), we obtain

(A.ll) \(oc0^R(m0,n0,(xuot2))/(θί2

Put A(p,q) = oc1 + Q(m0,n0,oL2)+p + iq. Then by (A.ll) we can choose (po,qo)eZ2 so

that both inequalities

I A(p0,

and

|(αo + Λ(mo, «0, α l 9 α2))/(α2 + mo + mo) + ̂ (Po5 ^o)I^V 2

hold. Put αr = [αΌ : αΊ : α 2 : l] = 7(G70G50Gξ°GJ0)α. Then we have

= I α0 + iί(m0, «0, α l 9 α2) + (α2 + w 0 + ino)A(po, q0) \ ^ V 2 (| m01 +1 n0 \ +1)

| α /

1 | = | α 1 + ρ(m 0 ,« 0 ,α 2 ) + (^0 + ̂ 0 ) | = | > l ( p 0 , ^ 0 ) | ^ 4 θ V T ( | m 0 | + | « 0 | + l ) .

Hence, using (A. 10), we obtain

|α'ol + | α /

1 | ^ ( 4 1 λ / T ) ( | m 0 | + | « 0 | + 1 ) ^ 4 1 0 ( | α 2 | + 1).

Thus (A.8) is satisfied. If (m0, no) = (0, 0), then by (A.9) we have

We can choose (po,qo)eZ2 so that \oί1+po-\-iqo\^2. Put α' = [αΌ:αΊ : α 2 : α y

^°)α. Then we have

|α'o I = Iα0 + α2(/?0 + iq0)I = I α 0 ~ α i α 2 1 +1α 2 11αx +/?0 + /̂ o 1^10,

|α'il = |α

Hence we obtain
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Thus (A.8) is satisfied. Next consider the case α3 = 0. In this case we may assume that
α2 = 1. Then we can find m0, n0,p0, qoeZeasily such that |α'o | ^ 2 and | <x\ | ^ 2 . Hence
(A.8) is satisfied. •

By the above three lemmas, we see that the manifold Γ\Ω is a (P)-manifold of
Schottky type.
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