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1. Introduction and main results. By a meromorphic function we shall always
mean a meromorphic function in the complex plane. We use the usual notation of the
Nevanlinna theory of meromorphic functions as explained in [1]. We use E to denote
any set of positive real numbers of finite linear measure, not necessarily the same at
each occurrence.

For any set S and any meromorphic function # let

E(8)= U {z| he)—a=0}

where each zero of h—a with multiplicity m is repeated m times in E,(S) (cf. [2]).
Gross and Yang [3] obtained the following results:

THEOREM A. Let S;={ay,a,} and S,=1{by, b,} be two pairs of distinct elements
with a;+a,=b,+b, but a,a,#b.b,. Suppose that there are two nonconstant entire
Junctions f and g of finite order such that E{S;)=E/(S)) for j=1, 2. Then either f=g,
f+g=a,+a, or

c alaz—blbz _ 1/2
=4 —= p
/@ 2_[ 5 ¢ ]
and
C alaz—blbz 1/2
=4 —= <P
9(2) 2_[ 5 e] ,

where c=a, +a, and p(z) is a polynomial.

THEOREM B. LetS;={a,, a,} and S,=1{b,, b,} be any two disjoint pairs of complex
numbers with a,a, #b,b,. Suppose that there are two nonconstant entire functions f and
g of finite order such that E(S;)= E,(S;) for j=1, 2. Then either f(z)= Ag(z) + B for some
constants A, B, or

f(@)=c;+c,e"? and g(z)=c,+c,e”??
for some polynomial p(z) and constants c, and c,.

The above results of Gross and Yang, however, are not true for
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f@)=1—4e*, gz)=1—e%, S;={—1,1} and S,={—/3 i/ 3i}.
In this note, we prove the following theorem which is a correction of Theorem A.

THEOREM 1. Assume that the conditions of Theorem A are satisfied. Then [ and g
must satisfy exactly one of the following relations:
@ f=g,
(i) f+g=a,+a,,
(i) (f—c/2)'(g—c/2)= +((a; —a,)/2)*, where c=a,+a,. This occurs only for
(a,—a,)* + (b —b,)*=0.
iv) (f—a)-(@—a)=(—1)Y* a,—ay)* for j,k=1,2. This occurs only for
3(a, —ay)*+ (b, —b,)*=0.
W) (f=b) (g—b)=(—1)* b, —by)* for j,k=1,2. This occurs only for
(a;—ay)*+3(b, —b,)*=0.

From Theorem 1 we immediately obtain the following:
COROLLARY. [If, in addition to the assumptions of Theorem 1,
((a;—ay)[(by—b)))*# —1, =3, —1/3,
then either f=g or f+g=a,+a,.

Now it is natural to ask what can be said if f and g are two meromorphic functions
of arbitrary growth in Theorem 1. In this direction, we have the following results.

THEOREM 2. Let S;={a,, a,} and S,={b,, b,} be two pairs of distinct elements
with a, +a,=b,+b, but a;a,#b.b,, and let Sy={o0}. Suppose that f and g are two
nonconstant meromorphic functions satisfying E(S;)=E,S;) for j=1,2, 3. Then

Tr.)=(1+0(1)T(r,g)  for r§E.

THEOREM 3. If, in addition to the assumptions of Theorem 2, 6(c/2, f)>1/5, where
c=a, +a,, then f and g must satisfy exactly one of the following relations:
@ f=g
(i) f+g=a,+a,,
(i) (f—c/2)-(g—c/2)=+((a;—a,)/2)®. This occurs only for (a,—a,)*+
(by—by)*=0.

THEOREM 4. If, in addition to the assumptions of Theorem 2,

N(r, 7l1b-1)+N<r’ f%bz>=(2+o(l))T(r, 1d) for r§E

and 6(c/2, f)>0, where c=a, + a,, then the conclusions of Theorem 3 hold.
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2. Somelemmas. Inorderto prove our theorems, we need the following lemmas.
LemMa 1. Let h(z) be a nonconstant entire function. Then
T(r,h)=0o(T(r,e")  for r§E.
ProOF. We have
T(r,h)<(1+0(1)T(r, h) for rgE.

On other hand, by Clunie’s result (cf. [1, p. 54]), we have T(r, h)=o(T(r, €*)). Thus
T(r, h")=0o(T(r, ") for r& E, which proves Lemma 1.

Lemma 2 (cf. [4, Lemma 3]). Let f,, f, and f; be meromorphic functions with
[fa#constnat. Suppose that Z;=1 fi=1 and that

3
_;1 N(r, f)=o(T(r))  for rgE

and

53_: N(r, fi)<(l+o(l))T(r) for r&E,
j=1 j

J
where T(r) denotes the maximum of T(r, f;) for j=1, 2, 3 and A is a positive constant<1.
Then either fi=1 or f,=1.
LEMMA 3 (cf. [5, Theorem 2]). Let p(z) and q(z) be nonconstnat polynomials of the
same degree. If (eP®—1)/(e"®—1) is entire, then p(z)=mq(z)+ 2nni, where m,n are
integers. '

3. Proof of Theorem 2. By the assumption of Theorem 2, we have two entire
functions p and ¢ such that

(g—ay)-(g—a)=e(f—ay) (f—ay),

M

(g—b1)(g—b)=e(f—by) (f—b)).
Let
) G(2)=2)—c/2*, F@=((2)—c/2)?,

where c=a, +a,=b, +b,. Again let a=((a, —a,)/2)?, b=((b, — b,)/2)*. By the assump-
tion of Theorem 2, we have a#0, b+#0 and a#b. From (1) we obtain

3) G—a=e?(F—a), G—b=eYF-D).

It is easy to see from the second main theorem and our assumption that
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T(r, G)=0(T(r, F)) for rgE,
T(r,e?)+ T(r,e)=0(T(r, F)) for rgE.
Suppose that F#G. Then e?#e®. Thus from (3) we obtain

@

be?!—ae+a—b be "—ae P+a—b
® F= el—eP ’ G= e 9—e P

Let {z,} be the set of poles of F. Then from (2) and (5), {z,} are the roots of
(e P—1)Y=(q'—p"e? ?=0. Thus

N(r, F)<2N<r, ><2T(r, q)+2T(r, p)+0(1).

! n!

By Lemma 1 and (4), we obtain

(6) N(r, F)=0o(T(r, F)) for r&E,
that is,
@) N(r, f)=0o(T(r, f)) for rgE.

Let {z,} be the set of roots of F=0. Then from (2) and (5), {z,} are the roots of
(be?—ae?+a—b) =eP(bq'e?"?P—ap’)=0. Thus

1 1
N(", ——><2N<r, ,—><2T(r, e ")+ o(T(r, F)) for r§FE,
F bq'e?”P—ap’
that is,
®) N(r ! ><N<r . )+0(T(r f) for r§E
f—c/2) et P—1 ’ ‘
By the second fundamental theorem, we have
1 1 1 1 1
4T(r, f)<Ni{r, +N[(r,—— )4+ N{r,—— |+ N[r, +N
f—a, f—a, f—by f=b, f—c/2

+N(r, )+o(T(r.f) for rgxE.
Hence by (7) and (8), we obtain

9 27, F)<N(r, ﬁ>+N<r, ﬁ>+N(r’ ﬁ)+o(T(r, F)) for rgE.

From (3) we have



ON A RESULT OF GROSS AND YANG 423

G—F=(F—a)-(e?—1)=(F—b)-(e?— 1)=£(F—a)-(F—b)-(e""’—- 1.

Then
(10) N(r ! )-—N( ! >+N< ! )+0(T( F))
"6-F) "\"F_a b "

<r, F_i_b)uv(r, ;;1_—1>+0(T(r, F))

1 1 1
=N<r,F >+N(r,m)+N(r,eq_p_1>+o(T(r,F)) for rxE.

—a

I
2

By (9) and (10) we easily obtain

2T(r, F)<N<r, c ! F>+0(T(r, F)<(1+o()T(r, F)+T(r, G) for r&xE,

that is,

(1—o()T(r, F)<T(r, G) for rgE.
In the same way, we have

(1—o()T(r,G)<T(r, F) for rgE.
Hence

T(r, Fy=14+0(1))T(r, G) for rgE,
which implies

T, H=A+o0()T(r, g) for rgE.
This completes the proof of Theorem 2.

REMARK. From the proof of Theorem 2, it is easy to see that if F#G, then the
following conclusions hold:

(11 N(r,G_F)=(2+o(1))T(r,F) for r&E,

1 qa-p
(12) N<r,f—_—cﬁ>=T(r,e Y+ o(T(r, f)) for r&E,
(13) (I +o()T(r, F)<T(r,e")<(3/2+0o(1)T(r, F)  for r&E,

(14) (A +o(1)T(r, F)< T(r, e)<(3/2+0(1)T(r, F)  for r¥E.
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4. Proof of Theorem 3. In the following, we shall use the notation of the above

section.
If F=G, then either f=g or f+g=a, +a,. Next, assume that F#G. Let

b

1
f1=ﬁ'(eq—ep)'F, fo=— b e, fi3=

a— b
and denote by T(r) the maximum of T(r, f;) for j=1, 2, ,3. From (5) we have
3
(15) Y fi=1.
j=1
By (6) and (13) we obtain
3
(16) Y, N, f)=o(T(r)) for rgE.
j=1

Again by (2) and (12), we get v

3 1
17 Y N(r,

j=1

f,) 3N< e 1/2>+0(T(r)) for r&E.
It is clear that

(18) N<r, ! 2><(1 —8(c/2, N+o()T(r, f)
=%(l —d(c/2, )+ o()T(r, F) for r&E.

From (10) we obtain

1 1 1 1
N(r, e—a)+N<r, e—q_—1>=N(r, ﬁ>+N(r, m)+o(T(r, F))  for r§E.

This implies that

(19) T(r,e?)+ T(r,e)=Q2+o(1)T(r, F)+N<r, ! > for rgE,
f—c/2

by (11) and (12). Combining (18) and (19), we have

(20) T(r, e?)+ T(r, e“)g%(S —0(c/2, )+ o()T(r, F) for rgE.

It follows from (17), (19) and (20) that

3
1) =Z ( f) 3(T(r, e?) + T(r, e))) — 6 T(r, F)+o(T(r))
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N

12 ,
(3 _m)(ﬂr, e?)+ T(r, e?)+o(T(r)

{6(1 —d(c/2, 1))
5—4(c/2, f)

VAN

+o(1)} T(r) for r5E.

Since d(c/2, f)>1/5,

6(1—8(c/2, /) _, 582 N-1_,
5—0(c/2, f) 5-3(c/2, f)

By (13), (14) and Lemma 2, we obtain

1
——(e"—ef) F=1
pral )

and
_ﬁ.e”—a—b ef=0
Thus
a
22) el= b e?
and
(23) F=be™".
Again by (5) and (22),
249 G=(a+b)—ae”.
From (2) we know that G has no simple zeros. Thus by (24) we have
a+b=0
and
(25) G=be*.

By (23) and (25), we get F-G=a?, which implies that
(f—¢/2):(g—c/2)= £ ((a;—ay)/2)* .

This completes the proof of Theorem 3.

5. Proof of Theorem 4. Suppose that F#G. Proceeding as in the proof of
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Theorem 3, we also obtain (15), (16), (17), (18), (19) and (20). By the assumption of
Theorem 4, we have

N(r,Fib>=(1+o(1))T(r, F) for r&E.

Again from (10) we obtain
T(r,eD)=(1+0(1)T(r, F) for r&E.

From this and (19), we get

(26) T(r, e?)=(1+0(1))T1r, F)+N<r, é) for rgE.
f—c/2

Again by (18),

27N T(r, e")<%(3-—5(c/2, N+o)T(r, F) for rgE.

It follows from (17), (26) and (27) that

i N<r, }1_>= 3T(r, e?)—3T(r, F)+ o(T(r)
j=1

i

6
< (3 ~W> T(r, e?)+ o(T(r))

< {3(1 —0(c/2, 1)

382, ) +0(1)}T(r) for r&E.

Since d(c/2, £)>0,

31-0e/2, ) _,_ 202 _,
3_6(‘:/29.,) 3—6(C/2, f)
Proceeding as in the proof of Theorem 3, by Lemma 2, we also have
(f—c/2)-(g—c/2)= £(a,—a)/2)*,

which occurs only for (a; —a,)*+ (b, —b,)*=0.
This completes the proof of Theorem 4.

6. Proof of Theorem 1. Suppose that F#G. Since f and g are nonconstant
entire functions of finite order, p and ¢ are polynomials. From (13) and (14) we
obtain deg p=deggq. If deg(g—p) <degp, then from (12),
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1
N (r, m) =o(T(r, )

and hence d(c/2, f)=1. By Theorem 3, we obtain
(f—¢/2)(g—c/2)= £((a;—a))/2)?,
which occurs only for (a; —a,)*+(b; —b,)?=0.
Next, assume that deg(q— p)=degp. From (5) we have
(F—.b)e"’= eP—1

28
28) b—a el P—1

and hence by Lemma 3,
p=m(q—p)+2nni and q=(m+1) q—p)+2nni,

where m, n are integers.
If m is positive, from (12), (19) and (28) we obtain

29) T(r,e?)=mT(r,e? ?)=(1+0(1)T(r, F),

1
T(r,e)=(m+1)T(r, e"“’)=(1 +—+o(1))T(r, F).
m
Again by (14), we get m>2. If m>3, from (12) and (29), we obtain

8(c/2, f)=1—2/m>1/5. By Theorem 3, N(r, (f —c/2)"')=0, which is a contradiction.
Thus m=2. From (28) we obtain

2
e T O

From (2) we know that all the zeros of F must be multiple. Thus by (30) we have
b/(b—a)=1/4 and F =b(2e? 1+ 1)?. Hence

f=by+(b,—bjy)eP ™1 or f=b,+(b,—by)eP 1.
In the same way, we obtain
g=b,+(b;—by)e?? or g=b,+(b,;—by)e?"?.
Hence, f and g must satisfy exactly one of the following relations:
(f=b)-(g—b)=(—1)" b, —b,)* for j,k=1,2.

This occurs only for (a; —a,)*+3(b, —b,)*=0.
If m is negative, in the same manner as above, we have m= —3, 3a+b=0,

(f_aj)'(g_ak)E(_1)j+k(a1—az)2 for j,k=1,2.
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This occurs only for 3(a; —a,)*+ (b, —b,)?=0.
This completes the proof of Theorem 1.

ACKNOWLEDGEMENT. I am grateful to the referee for valuable comments.

REFERENCES

[1] W. K. HaYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[2] F.Gross, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc. 131 (1968),

199-214.
[3]1 F. Gross aNDp C. C. YANG, Meromorphic functions covering certain finite sets at the same points,

Illinois J. Math. 26 (1982), 432-441.
[4] HoNG-XUN Y1, Meromorphic functions with two deficient values, Acta Math. Sinica 30 (1987), 588-597.
[5] C.F. OsGoop aAND C. C. YANG, On the quotient of two integral functions, J. Math. Anal. Appl. 54

(1976), 408-418.

DEPARTMENT OF MATHEMATICS
SHANDONG UNIVERSITY

JINAN, SHANDONG, 250100
PeoPLE’S REPUBLIC OF CHINA





