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1. Introduction and main results. By a meromorphic function we shall always
mean a meromorphic function in the complex plane. We use the usual notation of the
Nevanlinna theory of meromorphic functions as explained in [1]. We use E to denote
any set of positive real numbers of finite linear measure, not necessarily the same at
each occurrence.

For any set S and any meromorphic function h let

Eh(S)=\J{z\h(z)-a =
SaeS

where each zero of h — a with multiplicity m is repeated m times in Eh(S) (cf. [2]).
Gross and Yang [3] obtained the following results:

THEOREM A. Let Sx = {al9 a2} and S2 = {bu b2} be two pairs of distinct elements
with a1+a2 = b1+b2 but a1a2¥

:b1b2. Suppose that there are two nonconstant entire
functions f and g of finite order such that Ef{SJ) = Eg(SJ) for j= 1, 2. Then either f=g9

or

1/2

and

where c = a1+a2 and p(z) is a polynomial.

THEOREM B. Let Sx = {al9 a2) andS2 = {bl9 b2} be any two disjoint pairs of complex
numbers with axa2 ^b^b2. Suppose that there are two nonconstant entire functions f and
g of finite order such that Ef(Sj) = Eg(Sj)forj= 1, 2. Then either f(z) = Ag(z) + B for some
constants A, B, or

f(z) = c1+ c2e
piz) and g(z) = cx + c2e~p(z)

for some polynomial p(z) and constants c1 and c2.

The above results of Gross and Yang, however, are not true for
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/(z)=l-4ez, g(z)=l-e-z, ^ = {-1,1} and S2 = {-y/Ji,y/Ti} .

In this note, we prove the following theorem which is a correction of Theorem A.

THEOREM 1. Assume that the conditions of Theorem A are satisfied. Then f and g
must satisfy exactly one of the following relations:

(i) f=9,
(ii) / + g = at+a2,
(iii) (f-c/2)-(g-c/2)= ±((a1-a2)/2)2, where c=al+a2. This occurs only for

(iv) (f-aj)(g-ak) = (-l)J+k(a1-a2)
2 for j,k=\,2. This occurs only for

1 - a 2 ) 2 + (Z>1-Z>2)
2=0.

(v) (f-bJ)(g-bk) = (-iy+\bl-b2)
2 for j,k=l,2. This occurs only for

From Theorem 1 we immediately obtain the following:

COROLLARY. If, in addition to the assumptions of Theorem 1,

then either f=g or

Now it is natural to ask what can be said if/ and g are two meromorphic functions
of arbitrary growth in Theorem 1. In this direction, we have the following results.

THEOREM 2. Let St = {au a2} and S2 = {bu b2} be two pairs of distinct elements
with a1+a2 = b1+b2 but a1a2^b1b29 and let *Sr

3 = {oo}. Suppose that f and g are two
nonconstant meromorphic functions satisfying Ef(Sj) — Eg(Sj) for j= 1, 2, 3. Then

r ( r j ) = ( l + o ( l ) ) r ( r , r t for r$E.'

THEOREM 3. If, in addition to the assumptions of Theorem 2, <5(c/2,/)> 1/5, where
c — ai+a29 then f and g must satisfy exactly one of the following relations:

(i) f=g,
(ii) f+gmai + a2,

(iii) (f-c/2)-(g-c/2)=±((a1-a2)/2)2. This occurs only for (a1-a2)
2 +

(^-62)
2=0.

THEOREM 4. If, in addition to the assumptions of Theorem 2,

/ ) for r*E

and S(c/2, / ) > 0 , where c = ax + a2, then the conclusions of Theorem 3 hold.
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2. Some lemmas. In order to prove our theorems, we need the following lemmas.

LEMMA 1. Let h(z) be a nonconstant entire function. Then

T(r,h') = o(T(r,eh)) for r$E.

PROOF. We have

T(r,h')^(l+o(\))T(r,h) for r$E.

On other hand, by Clunie's result (cf. [1, p. 54]), we have T(r,h) = o(T(r,eh)). Thus
T(r, h') = o(T(r, eh)) for r$E, which proves Lemma 1.

LEMMA 2 (cf. [4, Lemma 3]). Let fl9 f2 and f3 be meromorphic functions with
f^constnat. Suppose that £ ? = 1 fj= 1 and that

for

and

t Mr l W + <Kl))!T(r) for
./=i V fjj

where T(r) denotes the maximum of T(r, fj)forj= 1, 2, 3 and X is a positive constant < 1.
Then either fx = 1 or f2 = 1.

LEMMA 3 (cf. [5, Theorem 2]). Let p(z) and q(z) be nonconstnat polynomials of the
same degree. If (epiz)— \)/(eq{z)— 1) is entire, then p(z) = mq(z) + 2nnU where m,n are
integers.

3. Proof of Theorem 2. By the assumption of Theorem 2, we have two entire
functions p and q such that

(g-aiy(g-a2) = e^(f-aly(f-a2),

to-6i)-(flf-62)

Let

(2) G(z) = (g(z)-c/2)2 , F(z) = (f(z)-c/2)2 ,

where c = a± + a2 = bx + b2. Again let # = {{ax — a2)/2)2, b = ((b1— b2)/2)2. By the assump-
tion of Theorem 2, we have a^O, b^O and a^b. From (1) we obtain

(3) G-a = ep(F-a), G-b = eq(F-b).

It is easy to see from the second main theorem and our assumption that
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F)) for( , )
(4)

{* (* ({F)) for

Suppose that F^G. Then eq^ep. Thus from (3) we obtain

„ beq-aep + a-b be~q-ae
(5) F= , G =

eqep

, G
eq-ep e~q-e~p

Let {zn} be the set of poles of F. Then from (2) and (5), {zn} are the roots of
p-\y = (q'-p')eq-p = 0. Thus

N(r, F)<2JV( r, - -)<2T(r, q') + 2T(r, f

By Lemma 1 and (4), we obtain

(6) N(r,F) = o(T(r,F)) for r$E9

that is,

(7) N(r,f) = o(T(r,f)) for r$E.

Let {z'n} be the set of roots of F=0 . Then from (2) and (5), {z'n} are the roots of
(beq-aep + a-b)' = ep(bq'eq~p-ap') = O. Thus

T(r,F)) for rkE,
FJ*" \ 'bq'eq-p-ap'

that is,

Nlr,-^— )^N[r, ) + o(T(r,f)) for(8)

By the second fundamental theorem, we have

+ N(r,f) + o(T(r,f)) for

Hence by (7) and (8), we obtain

(9) 2T{r,F)<N r, ) + N r, ) + N r, +o(r(r,F)) for
\F-aJ \F-bJ \eq-p-ll

From (3) we have
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(F-a)(F-b)(eq-p-l).G F ( F a ) ( e l ) ( F b ) ( e l )
b — a

Then

f o r

By (9) and (10) we easily obtain

2T(r,F)<N(r,-^) + o(T(r,F))<(l+o(\))T(r,F) + T(r,G) for

that is,

(r,G) for r\E.

In the same way, we have

(l-o(l))T(r,G)<T(r,F) for

Hence

r(r,F) = (l+0(l))r(r,G) for

which implies

T(r,f)=(l+o(l))T(r,g) for

This completes the proof of Theorem 2.

REMARK. From the proof of Theorem 2, it is easy to see that if F^G, then the
following conclusions hold:

(11) N(r,-J--)=(2 + o(l))T(r,F) for

(12) N [r,—- =r(r,e*-')+o(7Xr,/)) for

(13) (l+o(l))r(r,F)<r(r,c')<(3/2 + o(l))r(r,F) for

(14) (l+o(l))T(r,F)<r(r,c«)<(3/2+o(l))r(r,F) for
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4. Proof of Theorem 3. In the following, we shall use the notation of the above
section.

If F=G, then either f = g or f + g = ai+a2. Next, assume that F^G. Let

a — b a — b a—b

and denote by T(r) the maximum of T(r, fj) for j— 1, 2, ,3. From (5) we have

05) £/}=!.

By (6) and (13) we obtain

(16) t*T(r9fj) = o(T(r)) for r$E.

Again by (2) and (12), we get

(17) t ^( r , - i ) = 3 ^ f r , - i - ) + o(r(r)) for

It is clear that

(18) NL --*--)^(l-d(c/2,f) + o(l))T(r9 f)

( ( / , f ) ( ) ) ( 9 ) f o r r $ E .

From (10) we obtain

^ ) K ^ ) K b ) r ) ) for

This implies that

(19) T(r,en + T(r,e«) = (2 + o(l))T(r9F) + N(r,y±-) for
V f-c/2/

by (11) and (12). Combining (18) and (19), we have

(20) T(r,ep)+T(r,e«)^(5-5(c/2,f) + o(l))T(r,F) for

It follows from (17), (19) and (20) that

(21) t Mr, ^ ) = 3(r(r, ̂ ) + T(r9 e«))-6T(r9 F) + o(T(r))
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3 - - — J ^ — r W , O + r(r, *«)) + <>(T(r))
5-d(c/2,/)/

Since <5(c/2,/)> 1/5,

1

5-Sic/2, f) 5-8(6/2, f)
By (13), (14) and Lemma 2, we obtain

1

a-b

and

(eq-ep)F=l

a—b a—b

Thus

(22) e«=|e>

and

(23) F=be~p.

Again by (5) and (22),

(24) G = (a + b)-aep.

From (2) we know that G has no simple zeros. Thus by (24) we have

and

(25) G = bep.

By (23) and (25), we get FG = a2, which implies that

(f-c/2)'(g-c/2)=±((a1-a2)/2)2 .

This completes the proof of Theorem 3.

5. Proof of Theorem 4. Suppose that F=£G. Proceeding as in the proof of
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Theorem 3, we also obtain (15), (16), (17), (18), (19) and (20). By the assumption of
Theorem 4, we have

= (l+o(l))r(r,F) for

Again from (10) we obtain

r(r,e«)=(l+0(l))7Xr,F) for r$E.

From this and (19), we get

(26) T(r>e") = (l+o{lW(r,F) + N(r,-rL_) for

Again by (18),

(27) T(r,e")^j(3-d(c/2,f)+o(l))T(r,F) for

It follows from (17), (26) and (27) that

t Jr, -1) = 3 7\r, e") - 3 7T(r, F) + o(7(r))

Since <5(c/2,/)>0,

3(l-i

3-S(c/29f) 3-<5(c/2,/)

Proceeding as in the proof of Theorem 3, by Lemma 2, we also have

which occurs only for (a1—a2)
2 + (b1—b2)

2 = 0.
This completes the proof of Theorem 4.

6. Proof of Theorem 1. Suppose that F^G. Since / and # are nonconstant
entire functions of finite order, p and # are polynomials. From (13) and (14) we
obtain deg/? = deg#. If deg(#— p)<degp9 then from (12),
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and hence <5(c/2, / ) = 1. By Theorem 3, we obtain

which occurs only for (ax — a2)
2 + (#i — b2)

2 = 0.
Next, assume that deg(g—p) = deg/?. From (5) we have

(28) (F-b)e>_ e>-l

b-a eq~p-\

and hence by Lemma 3,

p = m(q—p) + 2n7cf and q = (m + 1X<?—p) + 2n7ri,
where w, /z are integers.

If m is positive, from (12), (19) and (28) we obtain

T(r9 e*) = mT(r, e*-*) = (l+o(l))T(r9 F),

Again by (14), we get m^2. If w ^ 3 , from (12) and (29), we obtain
8(c/2,f)=\-2/m>\/5. By Theorem 3, N(r,{f-c/2)~1) = 0, which is a contradiction.
Thus m = 2. From (28) we obtain

(30) F=(b-a)-

From (2) we know that all the zeros of F must be multiple. Thus by (30) we have
b/(b-a)=l/4 and F = fc(2c"-« + l)2. Hence

/=&!+(*>!-W or f=b2+(b2-l>i)ep-q-

In the same way, we obtain

0 = *>i+(*>i-W or g = b2+(b2-bl)e
q-p.

Hence, / and g must satisfy exactly one of the following relations:

(/•_& /).(0-& lk) s(_iy+*(61-62)2 for j,k = h2.

This occurs only for (at —a2)
2 + 3(bl—b2)

2=0.
If m is negative, in the same manner as above, we have m= — 3, 3a+ 6=0,

( / -a;) (0-a J k ) = ( - i y + * ( a 1 - a 2 ) 2 for j,k=l,2.
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This occurs only for 3(ax — a2)
2 + (b1 — b2)

2 = 0.
This completes the proof of Theorem 1.
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