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Introduction. Recently, using Galois covering of the projective line P, Belyi [1]
realized certain type of Chevalley groups as the Galois extensions of the maximal abelian
extension Qah of the rational number field Q.

The purpose of this note is to construct Galois extensions of Qah having GL(m, Z/pnZ)
and SL(m, Z/pnZ) as their Galois groups. This note is a supplement to Belyi's paper [1].

In the preparatory Section 1, we shall discuss the class number of systems of
generators of a finite group.

In Section 2, using a modification of Belyi's method in [1], we calculate the class
number of a system of 3-generators of GL(m, Z/pnZ). Furthermore, applying these
results, we derive the existence of Galois extensions L and L of Qah such that

Gal(L/βab) * GL(m, Z/pnZ) and Gal(Z//&t») = SL(m, Z/pnZ).

Belyi's proof is essentially based on arguments on representations of groups and linear
algebra over fields. But, in our case, we need to consider representations of groups and
linear algebra over the ring Z/pnZ with zero divisors. In contrast to a matrix over a
field, it is difficult to discuss the resolution of eigenspaces and the standard form of a
matrix over a non-integral ring. So we use a method slightly different from his to derive
our results.

We mention that our results in the case where m = 2 are contained in the theory
of elliptic modular functions. Several natural questions remain open to explore whether
there exist Galois extensions of Qab with GL(m, Zp) and SL(m, Zp) as Galois groups,
where Zp means the ring of /?-adic integers, which is a motivation for our study. The
author hopes to treat this question on some occasion.

Finally, the author is indebted to the referee suggesting some revisions of this paper.

NOTATION. We denote by Q and Z the rational number field and the ring of
rational integers, respectively. Gal(L/K) means the Galois group of a Galois extension
L of a field K.

1. The class number of a system of generators of a group. Let G be a finite group.
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For a g e G, we denote by [#] the conjugacy class containing g. For each ordered set

(c l 5 , cs) of conjugacy classes of G, we put

C=C(cu - ,cs) = {σ = (σl9 - ,σs)\σieci(i=\, , s)}

and call it a class structure of G. Define

2 ' ( C ) = { σ = ( σ 1 , σ 2 , • , σ s ) e C | < σ 1 ? σ 2 , •• , σ s > = G a n d σ ^ ••• σ s = l } .

and call it a system of ^-generators of G with respect to C. The group G acts on Σ(C)

by conjugation

for all τ e G and for all σ = (σu , σ s )eΓ(C). We say that σ' and σ of Σ(C) are

equivalent to each other if there exists a τ of G satisfying σ' = {σ)τ. We denote by

Z(C)/Inn(G) the set of all equivalence classes of Σ(C). The cardinality of Σ(C)/Inn(G)

is called the class number of ^-generators of G with respect to C modulo the inner

automorphisms and is denoted by IQ{C).

2. Calculation of the class number of GL(m, Z/pnZ). We fix an odd prime number

p and denote by Z/pnZ the ring of integers modulo pn. Let GL(m, Z/pnZ) (resp.

SL(m, Z/pnZ)) denote the general linear group (special linear group) of degree m over

Z/pnZ. Let w be a generator of the multiplicative group (Z/pnZ)x of integers modulo

pn prime to pn. We consider two special elements σx and σ2 of GL(m, Z/pnZ) defined by

if m = 2,

σ , = 0 1 , σ , = : ^ " - i if m>

where ε = ( - l) m 1 and Et means the unity of GL(ί, Z\pnZ). We can prove the following

lemma using the method of Matzat [3, pp. 109-110]:

LEMMA 1. In the notation as above, suppose that p is an odd prime number. Then

GL(m, Z/pnZ) is generated by σx and σ2.

Put M=ZlpnZ and Km = {ί(α1, , αm) | αt eZ//?ΠZ (1 ̂ zg/w)}. Then Vm is a free

module over M of rank m. Fixing a basis of F m , we may identify AutM(Km) with

GL(m, ZlpnZ). We put G0 = GL(m, Z/pnZ). The following lemma is a key to our study.

LEMMA 2. Let p be an odd prime number. Suppose that an M-submodule W of Vm

satisfies W^ {px \ Vxe Vm) and g- Wa W for every geG0. Then W coincides with Vm.

Proof. By assumption, there is an element x o =
 ί(x1, , xio, , xm) of W such
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that p)(xio. For every ( l ^ e M 1 " " 1 and an integer />0, we determine matrices

g(λί9λ29 •• ,/lm_1)x = ί (x 1 ,^ 1 x 1

and

for every x = \xu x2, , xm)e F m . Define a matrix # by

for λ l 5 , λm_ί of M and an integer />0. Then, for every positive integer /, if we

choose suitable elements λl9 , λm.ι of M, then gx0 has the form '(0, , 0, xio, 0,

• , 0). This completes our proof.

By some modification of methods of Belyi [1, Theorem 2], we can verify the

following theorem. Belyi used essentially arguments on linear algebra over a field, but

we use careful analysis on linear algebra over a ring with zero divisors.

THEOREM 1. If'p is an odd prime number, then

PROOF. For simplicity, we assume that m^3. Suppose that G!

0 = <σ'1, σ'2>,

l>i] = [σΊ]> [°i\ = {.σΊ\ a n d [σχσ2] = [_σ\σ'2~\. Without loss of generality, we may assume

that σ2 = σ2. We put

c = σ1-Em and c' = σ'1-Em,

where Em is the unit element of GL(m, Z/pnZ). To verify our assertion, it is enough to

show that

σ'ι=d~1σ1d for some deCGo(σ2),

where CGo(σ2) = {g e Go | σ2g = gσ2} .

Now we have

det(tEm + σ2 + cσ2) = άel{tEm + σ2 + crσ2)

with a variable Λ The matrix tEm + σ2 is an invertible element of E n d M ( F m ®

Moreover, we have

where M[[ ί ] ] is the ring of formal power series in / over M. Hence we see that

det(£m + cσ2(tEm + σ 2 ) " x ) = det(^m + c'σ2(tEm + σ 2 ) " ' ) .

A computation yields
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det(£m + cA) = 1 + tτ(cA) for every A e EndM( Vm ® M M[[ ί ] ] ) .

Consequently, we have

(2.1) tr(cσ2) = tr(c'σ2) for every negative integer i.

Since the order of σ2 is finite, the above equality holds for every integer /. Putting

^ = ' ( 1 , 0 , - ,0) and c2 = (0,1,0, •••,0),

we obtain c = c 1c 2 .

Now we shall show that W— M\a1~\cι is a non-zero invariant space under Go. Put

oc = c2σ
ι

2c1. Since α is a scalar matrix, we have cσι

2c1=oίc1, which implies

cM[σ2]cι c M [ σ 2 ] c 1 . From this, we have cγ Wa W. So, by Lemma 1, PFis invariant

under Go. Hence, by Lemma 2,

(2.2) Kw

Since c and d are conjugate to each other, there is a g e Go satisfying

Define matrices c\ and c2 by

c\=g~ιc1 and c2 = c2gf.

Then c' = c/

1c2. Since af = d2σ
ι

2d1 is a scalar matrix, we have c'σi

2c\=a'c'ι. This leads to

c'M\σ2~\c\^M\σ2~\c\. Consequently, M\σ2~\c\ is invariant under σ\. Since a\ and σ2

generate Go, M[σ 2 ]ci is invariant under Go. By definition, we can easily check

0, - ,0) (mod/7).

Therefore, by Lemma 2, we have

(2.3)

The two equalities (2.2) and (2.3) show that/(σ 2 )c 1 =dί and g{σ2)c\ =cί for some/(x),

g{x)eM[x]. Hence we have ^(σ 2)/(σ 2)c 1 = c1. We may put g((τ2)f(σ2) = h(σ2) for

some h(x) = Σ™~Q (XiX1 eM[x~]. It is easy to see that h(σ2)cί=
t(oc0, αm_1εw, αm_2εw, ,

oc2εw, α1εw) = c 1

 = ί ( l , 0, , 0), which implies h(σ2) = Em. Put d=g(σ2). Then we have

(2.4) dd1=cι and deCGo(σ2).

By (2.1) and (2.4), we have

(2.5) tr(σ 2c 1(c 2 — d2d~x)) = 0 for every integer /.

This and (2.2) yield

(2.6) d2 = c2d.
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Consequently, by (2.4) and (2.6), we have c' = d~1cd. Thus we have Theorem 1 when

m ^ 3 . In the remaining case m = 2, we can also proceed similarly.

By the same method as that of Matzat [3, Bemerkung 2 (p. I l l ) ] , we can easily

check that

(2.7) Z(G0) has a complement in ^VGo(^σi))>

where A^GoC^i)) *S t n e normalizer of {σ^ in Go.

Here we quote Theorem 1 in Belyi [1] (cf. [2, Theorem 2]).

THEOREM A. Let G be a finite group generated by σl9 σ2 and σ3 (σ 1 σ 2 σ 3 = 1). Let

ci be the conjugacy class containing σ{ ( l ^ / ^ 3 ) . Suppose that li

G(C(cl9c2,c3))=l and

Z(G) has a complement in ^VG«σi)) Then, there exists a regular Galois extension L of

the rational function field βa b(ί) over Qah satisfying

Gal(L/&b(r)) = G,

where Qah means the maximal abelίan extension of Q and, if Qab is algebraically closed

in L, Galois extension L/Qah(t) is called regular.

Using Theorem 1, (2.7), Theorem A and the same method as in Matzat [3, Folgerung

2 (p. 112)], we have the following (see Matzat [3, p. I l l ] ) :

THEOREM 2. In the notation as above, suppose that p is an odd prime number. Then

there exist regular Galois extensions L and L of Qah(t) such that

Gal(L/βab(ί)) * GL(m, Z/pnZ) and Gal(L7&b(i)) * SL(m, Z/pnZ).

By virtue of the Hubert irreducibility theorem and Theorem 2, we have the follow-

ing (cf. [3, p. 218] and [4, p. 362]):

COROLLARY. Suppose that p is an odd prime number. Then there exist Galois

extensions L and L satisfying

Gal(L/βa b) ^ GL(m, Z/pnZ) and Gal(L'/βa b) ̂  SL(m, Z/pnZ).
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