PIECEWISE LINEAR HOMEOMORPHISMS OF A CIRCLE AND FOLIATIONS

HIROYUKI MINAKAWA

(Received December 18, 1989)

0. Introduction. Homeo₊(S^1) denotes the group of all orientation preserving homeomorphisms of the circle S^1 . Its universal covering group Homeo₊(S^1) is identified with the group of all orientation preserving homeomorphisms of R which commute with the translation by 1. Let $\widetilde{PL}_+(S^1)$ be the subgroup of Homeo₊(S^1) each element of which satisfies the following:

(1) \tilde{f} is a piecewise linear homeomorphism of **R**.

(2) The set of all non-differentiable points of \tilde{f} has no accumulation point in R. We put $PL_+(S^1) = p(\widetilde{PL}_+(S^1))$, where the map $p: \operatorname{Homeo}_+(S^1) \to \operatorname{Homeo}_+(S^1)$ is the universal covering projection. For any $a \in R$, the translation $T_a: R \to R$ by a belongs to $PL_+(S^1)$. Hence the rotation $R_a = p(T_a)$ of $S^1(a \in R)$ belongs to $PL_+(S^1)$. Namely $SO(2) \subset PL_+(S^1)$.

For any element $\tilde{f} \in Homeo_+(S^1)$, the following invariants were introduced in [E-H-N].

$$\overline{m}(\tilde{f}) = \max_{\substack{x \in \mathbb{R} \\ m(\tilde{f}) = \min_{x \in \mathbb{R}} (\tilde{f}(x) - x) },$$

We note that $\overline{m}(T_a) = \underline{m}(T_a) = a$ for any $a \in \mathbf{R}$. In [E-H-N], the following theorem was proved:

THEOREM (Eisenbud-Hirsch-Neumann). Let \tilde{f} be an element of $Homeo_+(S^1)$. \tilde{f} can be written as a product of $k (\geq 1)$ commutators of elements of $Homeo_+(S^1)$ if and only if $\underline{m}(\tilde{f}) < 2k - 1$ and $\overline{m}(\tilde{f}) > 1 - 2k$.

In this paper, we consider the PL-version of this theorem. First we show that the theorem with $Homeo_+(S^1)$ simply replaced by $\widetilde{PL}_+(S^1)$ does not hold. Indeed, we have the following theorem by using a property of the leaf holonomy of a transversely PL-foliation (see §1).

THEOREM 1. There exists an element $\tilde{f} \in \widetilde{PL}_+(S^1)$ such that

(1) $\underline{m}(\tilde{f}) < 1$ and $\overline{m}(\tilde{f}) > -1$,

(2) \tilde{f} is not a commutator in $\widetilde{PL}_+(S^1)$.

On the other hand, we can prove the following theorem by using the method in [Min].

THEOREM 2. Let T_a be a translation of **R**. T_a can be written as a product of $k \ge 1$ commutators of elements of $\widetilde{PL}_+(S^1)$ if and only if |a| < 2k-1.

We note that the condition |a| < 2k-1 is equivalent to the condition " $\underline{m}(T_a) < 2k-1$ and $\overline{m}(T_a) > 1-2k$ ". Therefore Theorem 2 says that for every translation T_a $(a \in R)$, a theorem of Eisenbud-Hirsch-Neumann type holds in $\widetilde{PL}_+(S^1)$. Applying Theorem 2 to translations by integers, we get the following PL-version of a theorem due to Milnor [Mil] and Wood [Wo]:

THEOREM 3. Let Σ be an oriented closed surface of genus ≥ 1 and E a circle bundle over Σ with the structural group Homeo₊(S¹). Then the following two conditions are equivalent:

- (1) $|eu(E)| \le |\chi(\Sigma)|$, where $\chi(\Sigma)$ is the Euler characteristic of Σ ,
- (2) *E* is induced by a representation $\phi : \pi_1(\Sigma) \rightarrow PL_+(S^1)$.

1. Leaf holonomy of codimension-one transversely PL-foliation. Let \mathscr{F} be a codimension-one, transversely PL-foliation on an *m*-dimensional closed manifold *M*. That is, there exists a finite family $\{(U_i, \varphi_i)\}_{i=1,\dots,n}$ which satisfies the following four conditions:

- (1) $\bigcup_{i=1}^{n} U_i = M.$
- (2) $\varphi_i: (U_i, \mathscr{F} \mid U_i) \to (D^{m-1} \times (a_i, b_i), \{D^{m-1} \times \{y\}\}_{y \in (a_i, b_i)})$ for every $1 \le i \le n$, is a foliation-preserving homeomorphism. Here D^{m-1} denotes the compact unit disk of \mathbb{R}^{m-1} .
- (3) If $U_i \cap U_j \neq \emptyset$ $(1 \le i \le j \le n)$, then there exists a simple foliation chart (U, φ) such that $U \supset U_i \cup U_j$. Here a foliation chart (U, φ) is simple if it satisfies the condition (2).
- (4) For every coordinate transformation φ_i ∘ φ_j⁻¹ = (f_{ij}, γ_{ij}), there exists an element g ∈ PL(**R**) such that γ_{ij} = g on the domain of γ_{ij}. Here PL(**R**) denotes the group of piecewise linear homeomorphism of **R**.

EXAMPLE. Let N be a topological manifold and $\phi: \pi_1(N) \rightarrow PL(S^1)$ a homomorphism. $\pi_1(N)$ acts on the universal covering space \tilde{N} and on S^1 through ϕ then on $\tilde{N} \times S^1$. This last action preserves the foliation $\mathscr{F} = \{\tilde{N} \times t\}_{t \in S^1}$ of $\tilde{N} \times S^1$. Then the quotient manifold $N \times_{\phi} S^1 = \pi_1(N) \setminus (\tilde{N} \times S^1)$ has the foliation \mathscr{F}_{ϕ} induced by \mathscr{F} , which is a codimension-one, transversely PL-foliation. $(N \times_{\phi} S^1, \mathscr{F}_{\phi})$ is called a suspension foliation of ϕ .

Let M, \mathscr{F}, L and $\{(U_i, \varphi_i)\}_{i=1,\dots,n}$ be as above and $L \in \mathscr{F}$ a leaf. For every loop in L, the associated holonomy can be written as a composite of γ_{ij} 's. The following proposition plays an important role in the proof of Theorem 1.

PROPOSITION 1.1. Let M, \mathcal{F}, L and $\{(U_i, \varphi_i)\}_{i=1,\dots,n}$ be as above. Then there exists a compact set K in L which satisfies the following condition: For every loop $\sigma : [0, 1] \rightarrow L - K$ and every representation $\gamma_{\sigma} = \gamma_{i_0i_1} \circ \gamma_{i_1i_2} \circ \cdots \circ \gamma_{i_ki_0}$ of the holonomy associated to the loop σ ,

 $\varphi_{i_0}^{tr}(\sigma(0))$ is a differentiable point of γ_{σ} . Here $\varphi_i^{tr} = \pi_i \circ \varphi_i$ and $\pi_i : D^{m-1} \times (a_i, b_i) \rightarrow (a_i, b_i)$ is the natural projection.

PROOF. For every γ_{ij} , its graph has at most finitely many non-differentiable points, which we denote by

$$(x_1^{ij}, y_1^{ij}), \cdots, (x_{l_{ij}}^{ij}, y_{l_{ij}}^{ij})$$
.

We define a compact set K by

$$K = \left(\bigcup_{\substack{1 \le i, j \le n \\ 1 \le l \le l_{ij}}} \varphi_i^{-1}(D^{m-1} \times \{y_l^{ij}\})\right) \cup \left(\bigcup_{\substack{1 \le i, j \le n \\ 1 \le l \le l_{ij}}} \varphi_j^{-1}(D^{m-1} \times \{x_l^{ij}\})\right).$$

Then $K \cap L$ is the required compact set.

A leaf of a codimension-one foliation is said to be *without one-sided holonomy* if for every loop in the leaf, the associated holonomy germ is either trival or nontrivial on both sides.

PROPOSITION 1.2. Let M, \mathscr{F} , L and $\{(U_i, \varphi_i)\}_{i=1,\dots,n}$ be as above. Suppose that L is homeomorphic to $N \times \mathbb{R}$ for some topological manifold N. For every loop $\sigma : [0, 1] \to L$ and every representation $\gamma_{\sigma} = \gamma_{i_0i_1} \circ \gamma_{i_1i_2} \circ \cdots \circ \gamma_{i_ki_0}$ of the holonomy associated to the loop σ , $\varphi(\sigma(0))$ is a differentiable point of γ_{σ} . Especially the leaf L is without one-sided holonomy.

PROOF. Let K be as in Proposition 1.1. Since $L \cong N \times R$, every loop in L is free homotopic to a loop in L-K. For any two free homotopic loops in L, the associated holonomies are germinally PL-conjugate to each other. Moreover a differentiability of a PL-map of R at the fixed points is invariant under PL-conjugations. Then Proposition 1.1 completes the proof.

PROOF OF THEOREM 1. Define $\tilde{f}_1, \tilde{g}_1 \in \widetilde{PL}_+(S^1)$ as in Figure 1. Here -3/8 < b < -1/4, c=9/16, the left derivative of \tilde{f}_1 at c is not equal to 1 and the right derivative of \tilde{f}_1 at c is equal to 1.

By construction, $[\tilde{f}_1, \tilde{g}_1](3/4) = b$. Then we have $T_2 \circ [\tilde{f}_1, \tilde{g}_1](3/4) = 2 + b$. Since $0 < T_2 \circ [\tilde{f}_1, \tilde{g}_1](3/4) - 3/4 < 1$, we have

$$\underline{m}(T_2 \circ [\tilde{f}_1, \tilde{g}_1]) < 1$$
 and $\overline{m}(T_2 \circ [\tilde{f}_1, \tilde{g}_1]) > -1$.

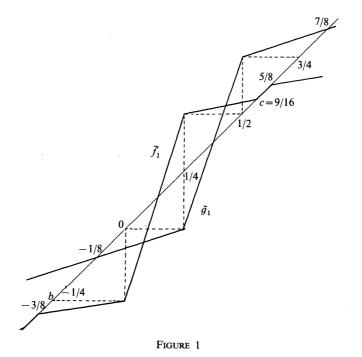
To prove the theorem, it is enough to show that $T_2 \circ [\tilde{f}_1, \tilde{g}_1]$ is not a commutator of $\hat{P}L_+(S^1)$.

Suppose it is a commutator. Then there exist $\tilde{f}_2, \tilde{g}_2 \in \widetilde{PL}_+(S^1)$ such that

$$T_2 \circ [\tilde{f}_1, \tilde{g}_1] = [\tilde{g}_2, \tilde{f}_2].$$

Let Σ be a closed surface of genus 2. The fundamental group $\pi_1(\Sigma)$ is presented as

$$\pi_1(\Sigma) = \langle \alpha_1, \beta_1, \alpha_2, \beta_2 | [\alpha_1, \beta_1] \# [\alpha_2, \beta_2] = 1 \rangle.$$



Then we can define a homomorphism $\phi: \pi_1(\Sigma) \to PL(S^1)$ by relations $\phi(\alpha_i) = p(\tilde{f}_i)$, $\phi(\beta_i) = p(\tilde{g}_i)$ (i=1, 2). Indeed, the fact $[\tilde{f}_1, \tilde{g}_1][\tilde{f}_2, \tilde{g}_2] = T_{-2}$ guarantees that the map ϕ is a well-defined homomorphism. For the suspension foliation $(E_{\phi}, \mathscr{F}_{\phi})$ of ϕ , E_{ϕ} is a foliated circle bundle over Σ . The Euler number $eu(E_{\phi})$ of E_{ϕ} is equal to 2 by the algorithm of Milnor ([Mil, Lemma 2], [Wo, Lemma 2.1]), that is, $eu(E_{\phi}) = \chi(\Sigma)$. Since $eu(E_{\phi}) = 2 \neq 0$, \mathscr{F}_{ϕ} has no compact leaf. Then every leaf of \mathscr{F}_{ϕ} is homeomorphic to \mathbb{R}^2 or $S^1 \times \mathbb{R}$. ([Gh, Thm. 3]). We identify a typical fiber of E_{ϕ} with S^1 . By the construction of ϕ , the leaf $L_{p(c)}$ through p(c) is with one-sided holonomy. On the other hand, the leaf $L_{p(c)}$ is without one-sided holonomy by Proposition 1.2, a contradiction. This completes the proof of Theorem 1.

2. Proof of Theorem 2.

PROPOSITION 2.1 ([Min]). Let Γ be a group and f, g elements of Γ . For every integer $k \ge 1$, $[f, g]^{2k-1}$ can be written as a product of k commutators of Γ .

PROOF OF THEOREM 2. The "if" part was proved in [E-H-N]. We here prove the "only if" part.

For any real number $x \ge 1$, we define F_x , $G_x : [0, (x+1)^2] \rightarrow [0, (x+1)^2]$ by

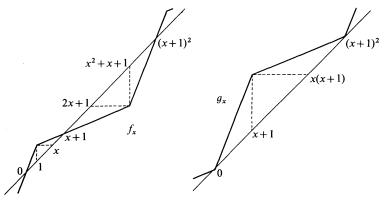


FIGURE 2

 $F_{x}(y) = \begin{cases} xy & \text{if } y \in [0, 1], \\ (y+x^{2}-1)/x & \text{if } y \in [1, (x+1)^{2}-1], \\ xy-(x-1)(x+1)^{2} & \text{if } y \in [(x+1)^{2}-1, (x+1)^{2}]. \end{cases}$ $G_{x}(y) = \begin{cases} xy & \text{if } y \in [0, x+1], \\ ((y-(x+1)^{2})/x)+(x+1)^{2} & \text{if } y \in [x+1, (x+1)^{2}]. \end{cases}$

Using F_x , G_x , we have homeomorphisms f_x , g_x : $\mathbf{R} \to \mathbf{R}$ which satisfy the following two conditions (see Figure 2):

- (1) $f_x|_{[0,(x+1)^2]} = F_x, g_x|_{[0,(x+1)^2]} = G_x,$
- (2) f_x, g_x commute with $T_{(x+1)^2}$.

By construction, f_x and g_x satisfy the following relation:

$$T_{1-x} \circ g_x \circ f_x \circ g_x^{-1} \circ T_{1-x}^{-1} = T_{(1-x)^2} \circ f_x$$
.

By a straightforward calculation, we have

$$[T_{1-x} \circ g_x, f_x] = T_{(1-x)^2}.$$

Taking a conjugation of f_x, g_x, T_{1-x} by the multiplication map $M_{1/(x+1)^2}: \mathbb{R} \to \mathbb{R}$, $M_{1/(x+1)^2}(y) = y/(x+1)^2$, we have that $T_{\{(1-x)/(1+x)\}^2}(x \ge 1)$ is a commutator of $\widetilde{PL}_+(S^1)$. This implies that for every real number $b \in \mathbb{R}$ (|b| < 1), the translation T_b is a commutator of $\widetilde{PL}_+(S^1)$. If a real number *a* satisfies |a| < 2k-1 for some integer $k \ge 1$, then |a/(2k-1)| < 1. Therefore, the translation $T_a = (T_{a/(2k-1)})^{2k-1}$ can be written as a product of *k* commutators of $\widetilde{PL}_+(S^1)$ by Proposition 2.1. This completes the proof of Theorem 2.

References

[E-H-N] D. EISENBUD, U. HIRSCH AND W. NEUMANN, Transverse foliations of Seifert bundles and self

74	H. MINAKAWA
	homeomorphisms of the circle, Comment. Math. Helv. 56 (1981), 638-660.
[Gh]	E. GHYS, Classe d'Euler et minimal exceptionnel, Topology 26 (1987), 93-105.
[Mil]	J. MILNOR, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215–223.
[Min]	H. MINAKAWA, Examples of exceptional homomorphisms which have non trivial Euler number, preprint.
[Wo]	J. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257-273.
DEPARTM	ment of Mathematics
FACULTY	(OF SCIENCE
Ноккан	DO UNIVERSITY
Sapporo 060	
Iapan	

Japan