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0. Introduction. It is an interesting problem to investigate compactiίications of
complete noncompact Riemannian manifolds. The ideal boundary of an Hadamard
manifold Zis defined to be the set of equivalence classes of rays in X. Here the equivalence
relation between two rays in X is obtained by an asymptotic relation between them.
Busemann first defined (see [Bu, Chap. 3, §22]) an asymptotic relation between two
rays (which he called co-ray relation and used to define parallelism on a straight G-space).
This asymptotic relation is not symmetric in general and hence the equivalence classes of
rays are not defined by it. If X is an Hadamard manifold, then this asymptotic relation
becomes symmetric, and makes it possible to define the ideal boundary X(co) of X (see
[EO] and [BGS]). Gromov defined in [BGS] the Tits metric on X{ao). Recently, Kause
constructed an ideal boundary of an asymptotically nonnegatively curved manifold.

The purpose of the present paper is, first of all, to define the ideal boundary M(oo)
with the metric d^ as the set of natural equivalence classes of rays in a finitely connected,
oriented, complete and noncompact surface M admitting total curvature. Then we
investigate the geometry on the ideal boundary in terms of the total curvature. Here
the total curvature c(M) of such a surface M is defined by an improper integral over
M of the Gaussian curvature G:

c(M): = GdM,

where dM is the area element of M. Cohn-Vossen [Col] proved that c(M)<2πχ(M)
if c(M) exists, where χ(M) is the Euler characteristic of M. The existence of the total
curvature is essential to defining our equivalence relation between rays in M. We
denote the equivalence class of a ray γ by y(oo). Using the total curvature, we will de-
fine the metric d^ of M(oo), which corresponds to the Tits metric for an Hadamard
manifold.

Our main results are stated as follows.

THEOREM 2.1. Assume that M with one end admits the total curvature. If a ray σ
in M is asymptotic to a ray γ, then σ and γ are equivalent.

THEOREM 2.4. Assume that M with one end admits the total curvature c(M) > — oo.
(1) 2πχ(M) — c(M) = 0 if and only if M(co) consists of a single point.
(2) 2πχ(M) — c(M) > 0 if and only if M(oo) is isometric to a nontrivial circle with
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the total length 2πχ{M)-c(M).

For a fixed simple closed smooth curve c and for a positive number /, we set

S(t): = {peM;d(p,c) = ή

and denote by dt the inner distance of S(ή. Note that there is a closed and measurable

subset E of [0, +00) such that S(t) for each t e [0, + 00) — E is a finite union of simple

closed piecewise smooth curves (see [Ha] and [ST]). Throughout this paper, all geodesies

are assumed to be normal unless otherwise stated. A minimizing segment σ: [0, /]->M

is called a minimizing segment from c if d(σ{t), c) = t holds for all /e[0, /]. A ray y is

called a ray from c if d(γ(t\ c) = t holds for all />0. Then we have:

THEOREM 3.3. Assume that M with one end admits the total curvature. Let c be an

arbitrarily fixed simple closed smooth curve. Then for any rays σ and y from c,

t-+ao t

where t is assumed to be a number in [0, + 00) —is.

THEOREM 3.5. Assume that M with one end admits the total curvature c(M) > — 00.

Let c be an arbitrarily fixed simple closed smooth curve. Then for any rays σ and y,

hm = da0(σ{co), y(oo)),
t~KX> t

where t is assumed to be a number in [0, + 00) — E.

Note that Kasue [Ks] defined the metric of an ideal boundary by the formula in

Theorem 3.5 when M is an asymptotically nonnegatively curved manifold, which always

admits the total curvature provided M is two dimensional.

For a ray y in M, we define the Busemann function Fγ: M-*R (see [Bu, Chap. 3,

§22]) by

In Section 4 we investigate relations between the asymptotic behavior of Busemann

functions and the metric d^ and prove the following:

THEOREM 4.4. Assume that M with one end admits the total curvature. For any rays

σ and y,

F °σ(t)
lim —?—— = cos minld^σίoo), y(oo)), π} .
ί->oo t

If Mis an Hadamard manifold, then Theorem 4.4 is easily proved by the L'Hospital
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theorem, because each Busemann function is of class C2. However, in our case, a

Busemann function is not necessarily diίferentiable. Therefore, we need delicate

arguments as developed in Section 4. We have Corollary 4.7, which was proved earlier

by Shiohama [Sh2], as a consequence of Theorem 4.4.

COROLLARY 4.7 ([Sh2]). Assume that M with one end admits the total curvature.

(1) If 2πχ(M) — c(M) < π, then all Busemann functions are exhaustive.

(2) If 2πχ(M) — c{M) > π, then all Busemann functions are nonexhaustive.

Here a function/: M—•/? is said to be exhaustive iff~1((—co9 aj) is compact for all

aef(M).

Note that there is a manifold M with 2πχ(M) — c(M) = π such that some Busemann

function of M is exhaustive and another is nonexhaustive (see [Sh2]). However, when

the Gaussian curvature of M is nonnegative outside some compact subset of M, we see

the behavior of the values of a Busemann function along a ray as follows:

THEOREM 4.9. Assume that 2πχ(M) — c(M) = π and that there exists a compact

subset K of M such that the Gaussian curvature G of M is nonnegative outside K. If

^oo(σ(°°)> y(oo)) = π/2 holds for rays σ and γ in M, then there exists a positive number t0

such that Fγ ° σ is monotone nonincreasing on [/0, + oo).

Theorems 4.7 and 4.9 imply Corollary 4.10. Shiohama [Shi] proved this when

the Gaussian curvature of M is nonnegative everywhere.

COROLLARY 4.10. Assume that M with one end admits the total curvature. If the

Gaussian curvature G is nonnegative outside some compact subset of M, then we have:

(1) 2πχ(M) — c(M) <π if and only if all Busemann functions are exhaustive.

(2) 2πχ(M) — c(M) >π if and only if all Busemann functions are nonexhaustive.

In Section 5, we discuss the case where M has more than one end. We will define

the ideal boundary M(oo) for such a manifold M and extend results in Sections 1,

2, 3 and 4 to this case.
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K. Shiohama for his assistance during the preparation of this paper. He also thanks

M. Tanaka for useful discussions and encouragement.

1. Equivalence classes of rays. For a moment we assume that M is finitely

connected with one end and admits the total curvature.

For any domain D of M bounded by piecewise smooth curves cl9 * , cn each of

which is parametrized positively by the arc length relative to /), we denote by κ(D) the

sum of the curvature integrals of cί9 9cn and of the outer angles at the vertices of

D. Then the following (1.1), (1.2), (1.3) and (1.4) are known to hold:

(1.1) κ(D)=-κ(M-D).
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(1.2) If D is bounded, then c(D) = 2πχ(D) - κ(D).
(1.3) Assume that the boundary 3D of D consists of a curve c homeomorphic

to a line such that c|(— oo, a] and c\[b, + oo) are geodesies for some a, beR. Then

c(D)<2πχ(D)-π-κ(D).

(1.4) If dD(c(t\ c(-t))>2t — r holds for all t>0 and for some constant r>0 in
(1.3), then

c(D)<2πχ(D)-2π-κ(D),

where dD is the inner distance on the closure cl(D) of D induced from the Riemannian
metric of M.

(1.1) is obvious. (1.2) follows from the Gauss-Bonnet theorem, while (1.3) and (1.4)
follow from Cohn-Vossen [Co2].

For any rays σ and y, let α: [0, /]->M be a piecewise smooth curve from σ(a) to
y(b) such that σ([α, +oo))uα([0, /])uy([b, +oo)) bounds two unbounded domains D
and M—D of M, where α is assumed to be parametrized positively relative to D. We set

L(σ, y): = 2πχ(D)-π-κ(D)-c(D).

In the special case where there exists a t0 e R such that σ(t0 + t) = y{ή for all / > 1101, we
cannot get such a curve α. In this case we set L(σ, y): = 0 and L(y, σ): = 0. Then the
L(σ, γ) has the following properties:

(1.5) L(σ, y) does not depend on the choice of the curve α.
(1.6) L(σ,y)>0.
(1.7) L(σ, y) + L(y, σ) = 2πχ(M)-c(M). Otherwise there exists & toeR such that

σ(ίo + 0 = 7(0 for a l l ί > | ί o | .
(1.5) follows from the Gauss-Bonnet theorem. (1.6) is an immediate consequence

of (1.3). (1.7) is obvious.
Since M has only one end, there is a compact domain K of M such that cl(M— K)

is a closed half cylinder bounded by a simple closed smooth curve. Following Busemann
(see [Bu, Chap. 5, §43]) we call this closed half cylinder a (closed) tube of M.

For any rays σ and γ we choose a simple closed smooth curve c bounding a closed
tube U of M in such a way that

(a) c intersects σ (resp., y) at a unique point σ(/σ) (resp., y(tγ)),

(b) ^(σ(α^)=^(y(α^)=π/ 2 '
(c) σ([^, + oo)) does not intersect y([ίy, + oo)).

Note that σ and y are not necessarily rays from c. Let /(σ, y) be a closed subarc of c
from σ(ίσ) to y(ίy) with respect to the positive parameter of c relative to U, and let
D(σ, y) c= U be a domain homeomorphic to a closed half plane bounded by
ffflJσj +αo))u/(σ, y)uy([/y, + oo)). /(σ, y) is often identified with the closed interval

, y)). Then by the definition of L(σ, y),
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(1.8) L(σ, 7) = - c(D(σ, 7)) - κds .

where K denotes the geodesic curvature of c.
Rays σ and 7 are said to be equivalent and denoted by σ~y if L(σ, y) = 0 or

L(7, σ) = 0. We will show that the relation ~ is an equivalence relation on the set of
all rays in M. It follows that this relation is reflexive and symmetric. For any rays σ,
τ and 7 let c be a simple closed smooth curve bounding a tube of M and having the
properties (a), (b) and (c) for rays σ, τ and 7. If σ(tσ), τ(tτ) and y(ty) lie on c in this
order, then (1.8) implies

Here L(σ, τ), L(τ, 7) and L(σ, 7) are nonnegative by (1.6). Thus we observe that the
relation ~ is transitive.

We denote the equivalence class of a ray 7 by 7(00) and the set of all equivalence
classes by M(oo). We assign to rays σ and 7 a number d^{σ{co), 7(00)) in R u { + 00} by

<4Moo), 7(00)): =min{L(σ, 7), L(y, &)} .

(1.9) shows that d^ico), 7(00)) does not depend on the choice of rays σ, 7 in the
equivalence classes σ(oo), 7(00), which determines the function d^\ M(oo) xM(oo)->
/?u{ + oo}. This function becomes a distance function on M(oo). We will show only
the triangle inequality

(*) rfαoWoo), rtoo^rfjσίoo), τίooW + ^Wcx)), 7(00)) .

For any rays σ, τ and 7, let c be a simple closed smooth curve bounding a tube of M
and having the properties (a), (b) and (c) for three rays σ, τ and 7. Consider the case
where σ(tσ), τ(tτ) and y(ty) lie on c in this order. If L(τ, σ) < L(σ, τ), then

rfαXoo), y(oo)) = L(7, σ) < L(τ, σ) = ̂ (σ(cx)), τ(oo)).

IfL(7,τ)<L(τ,7), then

doo(σ(co), 7(00)) = L(7, σ)<L(7, τ) = έ/αo(τ(oo), 7(00)) .

If L(σ, τ)<L(τ, σ) and L(τ, 7)<^(7? τ), then

) = L(σ, τ) + L(τ, y) = rfQO(σ(oo), τίoo^ + ̂ Woo), 7(00)).

Therefore we have (*). In the other cases, we can show (*) in the same way. Thus
M(oo) with d^ becomes a metric space.

We have the following:
(1.10) For any rays σ and 7 in M we get a simple closed smooth curve c bounding

a tube of M with the properties (a), (b) and (c). If d(σ(ή,y(t))>2t — r holds for all
t>max{tσ, ty) and for some constant r>0, where ^denotes the inner distance of Z)(σ, 7),
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then

L(σ, y)>π.

(1.11) For any straight line y in M, we have

where y( — oo) is the class of a ray th^y(-t). In particular, if M contains a straight line,
then 2πχ(M)-c(M)>2π.

(1.12) Let c be a simple closed smooth curve bounding a tube of M, and let σ
and 7 be rays from c. If there exist no rays from c in the interior int(D(σ, y)) of D(σ, y),
then

L(σ,y)=o.

(1.10) is an immediate consequence of (1.4). (1.10) shows (1.11). (1.12) follows
from Theorem A in [Sh3].

2. Total curvature and ideal boundary. We use the following fact (cf. [Co2]) in
the proof of Theorem 2.1.

FACT (2.a). Let y be a ray in M and {σ7-: [0, /y]->M} be a sequence of minimizing
segments such that {σ/0)} converges and σβ^ = y(tj) for some monotone and divergent
sequence {tj}. Then the angle between two vectors γ(tj) and σ(lj) tends to zero asy->oo.

A ray σ is said to be asymptotic to a ray y if there exist a monotone and divergent
sequence {tj} of positive numbers and a sequence {σj\ [0, lj]^M} of minimizing
segments such that 0"//,) = y(ί, ) holds for each j and σ5 tends to σ as y-»oo.

THEOREM 2.1. If a ray σ in M is asymptotic to a ray γ, then σ and y are equivalent.

PROOF. Let c be a simple closed smooth curve bounding a tube U of M and
having the properties (a), (b) and (c) in Section 1 for rays σ and y. For an s0 > tσ and
for a monotone and divergent sequence {tj} of positive numbers, if σ7- is a minimizing
segment from σ(s0) to y(ί7), then

(2.1.1) limσ,. = σ|[>0, oo),

because σ is asymptotic to y and σ(s0) is an interior point of σ. Thus for all sufficiently
large j , σ, does not intersect c and then it is contained in one of the two domains
D(σ, y) and D(y, σ). Without loss of generality we may assume that there exists a
subsequence {σk} of {σ7} such that σk<^D(σ, y) for all k. Let Dk be a disk domain
bounded by σk, σ(\_tσ, s0]), I(σ, y) and y([/r tkj). Then {Dj is a monotone increasing
sequence of domains with (J Dk = D(σ, y). If θk and φk denote the inner angles of Dk at
σ(s0) and y(ίfc), respectively, then the Gauss-Bonnet theorem implies that
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J/(σ,y.

for all k. It follows from (2.1.1) and Fact (2.a) that θk tends to π, and φk to zero as

k^κχ). Hence

c(D(σ,y))=\ϊmc(Dk)=-

Therefore we have L(σ, y) = 0. This completes the proof.

LEMMA 2.2. Let c be an arbitrarily fixed simple closed smooth curve. For any

xeM(co) there exists a ray y from c such that x = y(oo).

PROOF. For any xeM(co) there exists a ray σ such that ;c = σ(oo). Let {tj} be a

monotone and divergent sequence of positive numbers and yj a minimizing segment from

c to σ(tj). We choose a subsequence {yk} of {yj converging to some ray γ from c. Since

y is asymptotic to σ, Theorem 2.1 implies y(oo) = x. This completes the proof.

LEMMA 2.3. Assume that c(M)> —GO. If a sequence {σ,} of rays tends to a ray

σ, then σ/oo) tends to σ(oo).

PROOF. First consider the case where there exists a subsequence {σk} of {σ}) such

that each σk intersects σ at a point σk(sk) = σ(tk)=pk and any subsequence of {pk}

diverges. For any compact subset K of M, the minimizing property of rays implies that
σk(ίsk> +°o)) does not intersect K for all sufficiently large k. Hence σk([sk, +oo))u
σ(lΛ> + °o)) bounds two domains of M for all sufficiently large k. Let Dk be one of

these two domains such that Dk does not contain σ(0). Then for any compact set K,

the domain Dk does not intersect K and is homeomorphic to a half plane if k is

sufficiently large.

Note that since M admits the total curvature, Cohn-Vossen's theorem implies

that jMG+dM< +oo. Moreover since c(M)> -GO, we have §M\G\dM< +oo. Hence

for any positive ε there exists a compact set K such that

I
Then the inequality

c(Dk)>-\ \G\dM>-ε

holds for all sufficiently large k. If θk denotes the inner angle of Dk at pk, then θk tends

to zero by Fact (2.a). Therefore

9 σ(co))<θk-c(Dk)<2ε
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for all sufficiently large K and hence σk(oo) tends to σ(oo).

Next consider the case where there exists a subsequence {σk} of {σj} such that

either (Jk(σ([0, oo))nσk([0, oo))) is bounded or is empty. Then there exists a simple

closed smooth curve c bounding a tube U of M such that

(2.3.1) σ (resp., σk) intersects c at a unique point σ(tσ) (resp., σj(tσt))9

(2.3.2) σ([7σ, + oo)) does not intersect σ/[ίσk, + oo)),

(2.3.3) *(σ{tσ),c) = πβ holds.

Note that άk(tσi) is not necessarily perpendicular to c. Now σ([ίσ, + oo))u

σ/[ίσk, + oo))uc bounds two half planes Dk and U—Dk in £/, where {Z)k} is taken to

be monotone decreasing in U (by choosing a subsequence if necessary). If Θk denotes

the inner angle of Dk at σk(tσk), then

(2.3.4) doa{σk(co),σ(π))<θk-^-c{Dk)-\ Kds-L:
by the definition of the distance d^. Moreover since σk tends to σ,

π f
(2.3.5) \\mθk = — and lim κds = 0.

k~* oo 2 fc~* oo J

For any positive ε there exists a compact set K such that

| G | d M < ε .

Then I c(Dk) — c(Dk n K) \ < ε and | c(Dk n ΛΓ) | < ε for all sufficiently large k, since the area

of Dkr\K tends to zero. Hence

(2.3.6) \c(Dk)\<2ε

for all sufficiently large k. By (2.3.4), (2.3.5) and (2.3.6), this completes the proof of

Lemma 2.3.

THEOREM 2.4. Assume that c(M) > — oo.

(1) 2πχ(M) — c(M) = 0 if and only if M(oo) consists of a single point.

(2) 2πχ(M) — c(M) > 0 if and only if M(co) is isometric to a nontrivial circle with

the total length 2πχ(M)-c(M).

PROOF. (1) Let c be a fixed simple closed smooth curve bounding a tube of M.

For a ray y from c we consider the following subarc of c:

Iy = (J {/(α, β); α and /? are rays from c such that

y(O)e/(α, β) and L(α, y) = L(y, JS) = O} .

Lemma 2.3 implies that Iy is a closed subarc of c. Note that for each ray σ from c, we

have σ(oo) = y(oo) if and only if σ(0)e/ r If either Iγ = c holds or y is the only ray from
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c, then (1.7) and (1.12) show 2πχ(M) - c(M) = 0, and by Lemma 2.2, M(oo) consists

of a single point. Otherwise, there exist two rays y~ and y + from c such that

Iy = I(y~, γ+). In this case we have L(y + , y~)>0 and hence 2πχ(M) — c(M)>0. Moreover

by (1.12), there is a ray σ from c in int(/)(y + , y~)), which satisfies L(y + , σ), L(σ, γ~)>0.

Hence we have σ(oo)/y(oo). Thus, in particular we conclude (1).

(2) Assume that 0 < 2πχ(M) — c(M) < +oo. We will prove that M(oo) is isometric

to a circle with the total length 2πχ(M) — c(M). Then the converse is clear. We use the

same notation as in the proof of (1). Now, for each ray γ from c, we see that y~ and

y+ are defined and satisfy (y~)~ =y~ and (y + ) + =y+ because Iy = Iy- =/ y +. For a fixed

ray σ from c with σ~ = σ we define the function/,: M(oo)->[0, 2πχ(M) — c(M)) by

for each ray y from c. The definition of M(oo) and the formula (1.9) imply that the

function fσ is well-defined and is an injection. We will show that/ σ becomes a bijection.

Assume that the simple closed smooth curve c: [0, /]->M is a unit-speed curve with

length / and is parametrized positively relative to the tube. Then the restriction

c: [0, /)-»c([0, /)) is a bijection. Note that for any rays τ and y from c, we have

Λ(τ(oo)) </σ(y(α))) if c-ι o τ(0) < c " ' ° y(0).

First we will prove that supfσ = 2πχ(M) — c(M). It suffices to show that

sup/ σ >2πχ(M) —c(M). Suppose that sup/ σ <2πχ(M) — c{M). We get a sequence {y})

of rays from c such that/^y/oo)) tends to sup/ σ as7'->oo and {c"1 °y/0)} is monotone

increasing. Since the limit of a sequence of rays from c is a ray from c, ŷ  tends to

some ray y from c. Now, if L ^ , σ) tends to zero as j-+co, then /σ(y/oo)) tends to

2πχ(M) — c(M), which contradicts the assumption. Therefore we have L(y + ,σ) =

L(y, σ)>0 and/σ(y(oo)) = sup/σ. Here int(Z)(y + , σ)) does not contain any ray from c.

Indeed, if there is a ray τ from c in int(Z>(y + , σ)), then L(y + , τ ) > 0 and hence

/σ(τ(oo))>/σ(y(oo)), which is a contradiction. Therefore by (1.12) we conclude that

L(y + , σ) = 0. This is a contradiction and thus we have supfσ = 2πχ(M) — c(M).

We will prove that/ σ is surjective. By Lemma 2.3 and by supfσ = 2πχ(M) — c(M),

for any number # e[0, 2πχ(M) — c(M)) there are two rays yx and y2 from c such that

c " 1 oy1(0) = sup{c~1 °α(0); α is a ray from c and/σ(α(oo))<α} ,

c " 1 oy2(0) = inf{c~1 °α(0); α is a ray from c and/σ(α(oo))>α} .

If c~x o y 1 ( 0 ) > c " 1 oy2(0), then/σ(y1(oo))=/<r(y2(oo)) = β by the definitions of yx and

y2. If c~λ o y 1 (0)<6 > " 1 oy2(0), then there are no rays from c in int(Z>(yl5 y2)) and hence

L(7u 72) = 0 by (1.12). Thus/σ( y i(oo))=/ f f(y2(oo)) = £i.

We set S: = R/(2πχ(λf)-c(M))Z and define a mapping h: [0, 2πχ(M)-c(M))-+S
by

Ha) : = a + (2πχ(M) - c(M))Z.



46 T. SHIOYA

If ds denotes the inner distance of S, then we have

rfcoWoo), y(oo)) = min{L(τ, y), L(y, τ)} = </.(* % « « > ) ) , A°/σ(y(αo)))

for any rays σ and 7 from c. Therefore M(oo) is isometric to S, which completes the

proof.

3. Geodesic circles and the distance d^ Let c be a fixed simple closed smooth

curve and set the geodesic circle S(t): = {psM; d(p, c) = t) for t>0. A number />0 is

said to be exceptional if there exists a cut point p e S(t) from c having one of the three

properties: (1) p is a first focal point along some minimizing segment from c; (2) there

exist more than two minimizing segments from c to p\ (3) there exist exactly two

minimizing segments from c to p such that the angle between the two vectors at p

tangent to these minimizing segments is equal to π. Then we have the following:

(3.a) The set of all exceptional /-values is closed and of Lebesgue measure zero.

(3.b) For any non-exceptional />0, S(t) consists of simple closed curves of class

C00 except the finitely many cut points from c.

(3.c) There exists an R > 0 such that S(t) is homeomorphic to a circle for all t > R.

(3.a) and (3.b) are due to Hartman (see Lemma 5.2 and Proposition 6.1 in [Ha]

and also [ST]). (3.c) is due to Shiohama (Theorem B (2) in [Sh3]). In this section, we

investigate the relation between the geodesic circle S(t) and the distance d^.

LEMMA 3.1. Let c be an arbitrarily fixed simple closed smooth curve bounding a

tube of M. For any rays σ and y from c,

D(σγ))
= L(σ, γ),

f-00 t

where we assume that t is always non-exceptional.

PROOF. Let z(t, s) be the geodesic parallel coordinates along c (see [Fi], [Ha]),

where s is the arclength parameter of c and t is the distance from c. The Riemannian

metric is expressed as

and the geodesic curvature κt(s) of S(t) relative to B(t) : = {peM; d(p, c) < t] is written as

f(t,s) ds

except at all cut points from c. For every non-exceptional / > 0, let qk(t) for k = 1, , m(t)

be the cut points from c on the arc S(t) n L(σ, γ) and θk(t) be the inner angle at qk(t) of

B{t). If we set
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m(ί)

βk(t): = θk(t) - π and ω(t): = - £

then it follows in the same way as in [Fi, p. 326] that

d C m ( ί ) Γ /? (t) Ί
(3.1.1) — L(S(ί)nZ)(σ,y)) = iφjώ + ω(ί)- £ htan^J-j^t)

rfί Js(ί)nD(σ,y) fc=1L 2 J

for all non-exceptional />0. The Gauss-Bonnet theorem implies

(3.1.2) c(B(ήnD(σ, y))=-\ κdS- \ κt(s)ds-ω(t).
J/(σ,y) Js(f)nD(<r,y)

Moreover by Theorem B in [Sh3], Y^{=ιβk(i) tends to zero as t->co and hence

(3.1.3) lim

From (3.1.1), (3.1.2), (3.1.3), (1.8) and the L'Hospital theorem, we have

lim ^(^Z)(σ, )>)) = l i m ± m t ) n D { σ t y ) ) = L ( σ ; y) _

This completes the proof.

Note that this proof is essentially contained in Shiohama's paper [Sh3]. He proved

in [Sh3] and [Sh4] the formula

lim ^ * = 2πχ(M) - c(M).
ί->oo t

To prove Theorem 3.3 we need the following lemma, which was stated in the proof

of Theorem A in [Sh4].

LEMMA 3.2 ([Sh4]). For any simple closed smooth curve c and for any sufficiently

large R>0, there exists a simple closed smooth curve c1 bounding a tube of M such that

S(t + R) = S1(t)for all sufficiently large t>0, where S1(t): = {peM; d(p9c1) = ή.

Denote the inner distance of S(t) by dt. Then we have the following:

THEOREM 3.3. Let c be an arbitrarily fixed simple closed smooth curve. Then for

any rays σ and γ from c,

^ ^ = ^ ( 0 0 ) ,
f->00 t

where t is assumed to be non-exceptional.

PROOF. If c bounds a tube of M, then Theorem 3.3 is an immediate consequence
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of Lemma 3.1. Otherwise, we get a simple closed smooth curve cx as in Lemma 3.2. Let

σ1,yί be rays such that σ1(t): = σ(t-hR), yι(t): = y(t-\-R). Then the triangle inequality

implies that σ1 and yx are rays from cx. If d} denotes the inner distance of Sγ(t\ then

U m dt(σ(t\7(t))_ l i

ί^OO t + R

= έ/00(σ1(oo), 7i(oo)) = ί/oo(σ(oo), y(oo)).

This completes the proof.

LEMMA 3.4. Assume that c(M)> — oo. Let c be an arbitrarily fixed simple closed

smooth curve bounding a tube of M. Then for any ray y there exists a ray σ from c

asymptotic to y such that

where t is assumed to be non-exceptional.

PROOF. We set

T: = {t>0; there exists a ray from c passing through γ(t)} .

First consider the case where T is unbounded. Let {*,-} be a monotone and divergent

sequence of numbers in T and let σi be a ray from c passing through y(tj) such that σ7

tends to some ray σ from c. By Lemma 2.3, σ/oo) tends to σ(oo). The minimizing

property of rays implies that the sequence σ^O), σ2(0), σ 3 (0),.. . lies on c in this order

with respect to some orientation of c. Without loss of generality, we may assume that

{D(σ, σ7)} is monotone decreasing and satisfy f]D(σ, σ7 ) = σ([0, +oo)). Then L(σ, σ7)

tends to zero as j-+oo. Since y([_tp + oo))c:Z>(σ, σ,-), there exists a large number Rj such

that for all non-exceptional t > Rp y n S(t) is contained in D(σ, σ, ) and hence

dt{σ{t\ y n S(t)) < L(S(t) n D(σ, σj)) .

Moreover by Lemma 3.1,

L(S(t)nD(σ,σj))
lim J— = L(σ, GJ)
t-+oo t

for ally. Since L(σ, σ7) tends to zero as/->oo, the proof is completed in this case.

Next consider the case where T is bounded. Since the limit of a sequence of rays

from c is a ray from c, T is a compact subset of /?. Let t0 be the maximum value in T.

We get a ray τ from c passing through the point y(ί0). Choose a ray σ from c asymptotic

to y such that there are no rays from c between σ and τ. (1.12) implies that dO0(σ(cc),

τ(oo)) = 0 and therefore without loss of generality, we may assume that L(σ, τ) = 0 and

y([t0, + oo))c=Z)(σ, τ). Since y intersects S(t)nD(σ, τ) for all large t, we have
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dt(σ(t\ynS(t))<L(S(t)nD(σ,τ))

for all sufficiently large non-exceptional t. Since L(σ, τ) = 0, Lemma 3.1 implies

The proof is completed in this case.

Finally, if T is empty, then since the limit of a sequence of rays from c is a ray

from c, there obviously exist two rays σ and τ from c such that D(σ, τ) contains y and

there are no rays from c in int(Z>(σ, τ)), and hence L(σ, τ) = 0. Here one of the two rays

σ and τ from c is asymptotic to y. As in the above case we can prove the formula of

Lemma 3.4.

Thus this completes the proof of Lemma 3.4.

THEOREM 3.5. Assume that c(M)> — oo. Let c be an arbitrarily fixed simple closed

smooth curve. Then for any rays σ and y,

lim = αoo(σ(oo), y(oo)),
ί->αo /

where t is assumed to be non-exceptional.

PROOF. If c bounds a tube of M, then Theorem 3.5 is an immediate consequence

of Theorem 3.3 and Lemma 3.4. Otherwise, using Lemma 3.2 we have Theorem 3.5 in

the same way as in the proof of Theorem 3.3. This completes the proof.

4. Busemann functions and the distance d^. For arbitrary rays σ and y, let c be

a simple closed smooth curve bounding a tube of M and having the properties (a), (b)

and (c) in Section 1. We denote the inner distance function of Z>(σ, y) by d. A curve

α: [0,/]->Z>(σ, y) is called a d-segment if L(α) = d(α(0), α(/)) holds. A curve

μ: [0, + oo)->Z>(σ, y) (resp., μ: (-oo, + oo)->Z>(σ, y)) is called a d-ray (resp., d-line) if

any subarc of μ is a ^-segment. Clearly σ and y are ί?-rays. A d-ray μ is said to be

asymptotic to a ί/-ray v if there exist a monotone and divergent sequence {/,-} of positive

numbers and a sequence {μ, : [0, lj\-*D(σ9 y)} of J-segments such that μ//,) = v(^ ) holds

for each j and μ} tends to μ as y->oo. Let F v : Z>(σ, y)->/? be the function defined by

Fγ(x): = lim It - d(x, y(ί))] for x E Z)(σ, y).

ί-* 00

Then this is a Lipschitz function with Lipschitz constant 1, i.e.,

\Fγ(x)-Fγ(y)\<d(x,y) for all x9yeD(σ,y)9

and hence this is differentiable almost everywhere.

Let yr for / > tσ be a ί?-ray in Z>(σ, y) emanating from σ(ί) which is asymptotic to
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y. Then {ytj} converges to a <?-line for some monotone and divergent sequence {(,} if and

only if {γtj} converges to a J-line for every monotone and divergent sequence {tj}. Thus

either {yj converges, or else yt does not intersect a fixed compact subset K of D(σ, y)

for all sufficiently large t > tσ.

We have the following lemmas and theorems under these notation and definitions.

LEMMA 4.1. We have lim,_ ^ «£ (σ(ί), y,(0)) = min{L(σ, y), π}.

PROOF. Consider the case where yt tends to some rf-line y „ as t-+ oo. The minimizing

property of y^ shows that Z>(<τ, y) satisfies the assumption of (1.10). Hence we have

L(σ, y)>π. On the other hand by Fact (2.a), ^c(σ(ί), y,(0)) tends to π as ί->oo.

Next consider the case where {yj diverges. Let yhs for t>tσ, s>ty be a <?-segment

from σ(ί) to y(s), and Z>ίs be a domain bounded by /(σ, y)uσ([/ σ ,/])uy t s uy([ί r .?]).

Note that y ί s can tend to yt as s->oo. The Gauss-Bonnet theorem implies that

(4.1.1) c(DtJ = θus - * (σ(ί), yt>s(0)) - ί Kds
/(<τ,y)

for all sufficiently large t>tσ, s>tv where θhs denotes the angle of Dts at y(s). On the

other hand, for any ε > 0 there are large numbers t0 > tσ, s0 > ty such that

\c(DUs)-c(D(σ,y))\<s

for all t>t0, s>s0. In particular

(4.1.2) lim lim c(DUs) = c(D(σ, y)).
t~> CO S~> OO

Moreover by Fact (2.a), θts tends to zero as s-> oo. Thus by (4.1.1), (4.1.2) and (1.8)

lim * (σ(t), γt(0)) = lim lim * (σ(ί), yM(0)) = L(σ, y).
ί - * o o ί - * o o s —• CXD

This completes the proof.

LEMMA 4.2. Assume that {yt} diverges. For arbitrarily given positive numbers to<t1

we have

cos max *(<τ(ί), yt(0)) < Fy σ { h ) Fy ff(to) <cos min
ίe[ίo,ίi] ^l~^0 fe[ίo,ίi]

PROOF. We will show the inequality on the right hand side. Let {ε,} be a sequence

of positive numbers converging to zero. Since Fγ is differentiable almost everywhere,

Fubini's theorem shows that there is a sequence {σ,-: [ί 0, ί j - ^ σ , y)} of smooth curves

such that

(4.2.1) Fy is differentiable at almost all points in σ/|7 0, ί j ) for each 7,

(4.2.2) ί(σ(ί), σ/0) < ̂  for all t e [ί0, ί 1] and for all 7,
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(4.2.3) \imj^O0σj = σ\ |>0, ί j in the sense of C°° topology,

(4.2.4) any d-ray emanating from a point in σ([/0, / J ) which is asymptotic to y

intersects every σ,-.

We denote by Γj (resp., Γ) the set of all d-rays emanating from all points on σ}

(resp., σ([/0, t{])) which are asymptotic to y and set

); μeΓp ί e [ / 0 , t{] and

θ: = min{ * (σ(ί), /i(0)); μ e Γ, ί G [ί0, ί J and σ(t) = μ(0)} .

We will show that θj tends to θ. Indeed, we get μeΓ such that θ= ^(σ(ί), /i(0)). If we

set 0}: = ^(άj{tj), μ(Sj)), where /je[ί0, ί j and Sj>0 are numbers satisfying σj{t'J) = μ(sJ),

then this tends to θ. Moreover, 0, <0} for ally. Thus θj tends to 0. We have

Γti

Fy o σ(ί0 < F y o σ / ί x ) + J(σ(ίJ, σ/ί j) < <VFy(σ/ί)), *j(ί)>Λ + ̂ y ° σ/ί0) + εy

Jίo

< (ί! - ί0) cos θj + F y o <77{ί0) + £j.

for ally, where < , > is the Riemannian metric of M and V/is the gradient of a function

/. Hence

Fy o o f o ) ^ * ! - /0) cos Θ + Fy o σ(ί0) .

The same argument yields the other inequality. This completes the proof.

LEMMA 4.3. /br arbitrary rays σ and 7, /e/ c be a fixed simple closed smooth curve

bounding a tube of M and having the properties (a), (b) and(c) in Section 1. Then we have

F ° σ(t)
lim -J.—— = cos min{L(σ, γ), π} .
ί-+oo t

PROOF. First we consider the case where {γt} converges. Let γttS be a ^-segment

from σ(ί) to γ(s). Since {γt} converges, there exists a number r > 0 such that d(γt, c)<r

for all t>tσ. Hence for any t>tσ there exists a number st such that d(yUs, c)<r for all

s>sv If qts is a point on y ί s such that d(qts, c) = d(γts, c), then for all t>tσ and for all

s>st9

d(σ(t), y(s)) = J(σ(ί), ftfS) + ̂ y(s), ft,J > [^(σ(ί), ft.J + 4[ftf„ c)] + [ φ ( s ) , ftfJ + d{qUs, c)] - 2r

> ^(σ(ί), c) + φ ( s ) , c) - 2r > t + s - L(c) - 2r .

Hence

Fy o σ(t) = lim [s - d{σ{t\ y{s))~] < -1 + L(c) + 2r .

Moreover, /^ satisfies

Fy o σ(t) > Fy o (τ(0) - J(σ(0), σ(ί)) = - / + F. ° σ(0).
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Therefore

f->oo t

On the other hand, we have L(σ, y)>π as in the proof of Lemma 4.1. The proof is

completed in this case.

Next consider the case where {yt} diverges. For an arbitrarily given positive ε there

exists a positive t0 such that

I cos * (<τ(ί), 7,(0)) - cos L(σ, γ) | < ε

for all t > t0 by the proof of Lemma 4.1. Hence by Lemma 4.2,

(t - ί0)(cos L(σ, γ)-ε)<Fγo σ(t) - Fy ° σ(ί0) < (ί - ί0)(cos L(σ, y) + ε).

for all t>t0. Therefore

F ° σ(t) F ° σ(t)
cos L(σ, y) — ε< lim inf -^ < lim sup —̂  < cos L(σ, γ) + ε .

ί->oo ί ί-*oo t

By the arbitrariness of ε this completes the proof.

THEOREM 4.4. For any rays σ and γ,

F ° σ(t)
lim -^ = cos minld^σίoo), y(oo)), π} .
ί^OO t

PROOF. Let c be a fixed simple closed smooth curve as in Lemma 4.3. Let {/J be

an arbitrary monotone and divergent sequence of positive numbers and let γt be a ray

emanating from σ(ίf) which is asymptotic to γ. If there exists a converging subsequence

{yj} of {/yj, then by a discussion similar to that in the proof of Lemma 4.3, we have

F °σ(t)
(4.4.1) l i m - ? — ^ = - 1 and rfoo(σ(oo),y(cx)))>π.

j->co tj

Next consider the case where there exists a subsequence {y,} of {yt} such that for

any compact set K, yj does not intersect K for all sufficiently large j . Then for all

sufficiently large j , yj does not intersect c and hence it is contained in one of the two

domains D(σ, y) and D(y, σ). Without loss of generality, we may assume that there

exists a subsequence {yk} of {yj} such that yk c D(σ, y) for all k. Each yk is a <?-ray

asymptotic to y and some minimizing segment from σ(tk) to y(s) is contained in Z)(σ, y)

for all sufficiently large s>ίy. Thus the equality

holds for all k. Hence by Lemma 4.3,
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(4.4.2) lim Fy°σ(tk) = lim f ' ° f f ( i > ) = c o smin{L(σ, γ), π} .
k->co tk k-+oo tk

Let d' be the inner distance of D(y, σ) and set

Ff

y(χ): = lim [t - <?'(x, y(t))~\ for x e D(y, σ).
ί-*oo

Under our assumption ykaD(σ,y), we observe that d'(σ(tk), γ(sj)>d(σ(tk), γ(s)) =

d(σ(tk), γ(s)) for all k and for all sufficiently large s>ty. This implies that

Fy o σ(ίk) < Fy o σ(tk) for all k. Hence

(4.4.3) lim F y σ f a ) > lim ^ σ f a )

 = Cos min{L(7, σ), π} .
fc-+oo tk k-*oo tk

By (4.4.2) and (4.4.3), we have L(σ, y) <L(γ, σ) and hence dao(σ(oo)9γ(Gθ)) =

Therefore

(4.4.4) lim F y σ f a )

 = Cos mmid^σiao), y(oo)), π} .
k^cc tk

By (4.4.1), (4.4.4) and the arbitrariness of {/J, this completes the proof of Theorem 4.4.

THEOREM 4.5. Assume that c(M)> — oo. Let c be a fixed simple closed smooth

curve and y a ray from c. For any divergent sequence {/?,•}, let σ,- be a minimizing segment

from c to Pj. If σj tends to some ray σ from c, then

lim pPj = cos minfέ/Jσίoo), 7(00)), π} .
i-00 d(pj9c)

PROOF. First consider the case where 2πχ(M) — c(M) > 0. Now, we will prove that

for an arbitrarily given εe [0, (2πχ(M) — c(M))/2), there exist rays τί and τ 2 from c such

that

(4.5.1) α c D ( T l , τ 2 ) ,

(4.5.2) ^ ( ^ ( 0 0 ) , τ2(oo)) = L(τ1, τ2)<ε,

(4.5.3) τγφσ9τ2φσ.

Let μ be a ray from c such that ^(#(00), μ(oo)) = (2πχ(M) — c(M))/2 and μ~ =μ, where

μ~ is as in the proof of Theorem 2.4, (1). Denote by/μ : M(oo)->[0, 2πχ(M) — c(M))

the bijection as in the proof of Theorem 2.4, (2). Since the restriction fμ: M(oo) —

{μ(00)}-•((), 2πχ(M) — c(M)) is a local isometry, there exist rays τγ and τ2 from c

such that 0</μ(σ(oo))-/μ(τ1(oo))<ε/2 and 0</μ(τ2(oo))-/Ai(σ(oo))<ε/2. The rays τx

and τ 2 satisfy (4.5.1), (4.5.2) and (4.5.3).

By (4.5.1) and (4.5.3), σjczD(τ1, τ2) for all sufficiently large j. If {t3) is a sequence

of non-exceptional /-values satisfying | tj — d(pp c) |<ε, then since d(pj,S(tj)n

D(τU τ 2)) < £ 5 W e n a v e
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\Fy(pj)-Fyoσ(tj)\<d(pj, σ(tj))<L(S(tj)(\D(τl9 τ2)) + *

and hence

Fy o σ(tj) L(S(tj) nD(τuτ2)) + ι

for all sufficiently large/ Moreover, by Theorem 4.4 and Lemma 3.1,

F ° σ(t •)
lim —? -̂ = cos jxά^d^σioo), 7(00)), π}
j ttj

and

j-αo tj

Therefore the proof in this case is completed.

Next consider the case where 2πχ(M) — c(M) = 0. Similarly, for any ε > 0 if {tj} is

as above, then

I Fγ(Pj) - Fy o σ(tj) I < d(Pj, σ(tj)) < L(S(tj)) + ε .

In this case we have

Therefore this completes the proof of Theorem 4.5.

THEOREM 4.6. Assume that c(M)> —00. Let c be a fixed simple closed smooth

curve bounding a tube of M and let σ l 5 σ2, y be rays from c such that γczD(σί, σ2). Then

the following (1) and (2) hold:

(1) IfL(σl9 γ), L(y, σ 2)<π/2 andif{pj}czD(σu σ2) is a sequence such that {d(pj, c)}7

/s # monotone and divergent sequence, then

lim FyO;) = + 00 .

(2) T/' Lίσ^y), L(y,σ2)>π/2 and if {Pj}^D(σ2,σί) is a sequence such that

{d(pj, c)}j is a monotone and divergent sequence, then

lim Fy(j>j)= - 0 0 .
j->oo

PROOF. We will show (1). Suppose that there exists a sequence {p3) satisfying

the assumption in (1) as well as l i rn^^ Fy(pj)< + 00. Let Oj be a minimizing segment

from c to Pj. There exists a subsequence {σk} of {σ̂  } which tends to some ray σ from
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c. Then σ is contained in D(σu σ2) and ̂ (σίoo), 7(00)) <π/2. Thus by Theorem 4.5,

l im^^ Fγ(pk)= + 00. This is a contradiction. (2) is derived from Theorem 4.5 in the

same manner.

COROLLARY 4.7 ([Sh2]).

(1) If2πχ(M) — c(M)<π, then all Busemann functions are exhaustive.

(2) If 2πχ(M) — c(M) > π, then all Busemann functions are non-exhaustive.

PROOF. When 2πχ(M) — c(M)< + oo, Corollary 4.7 is an immediate consequence

of Theorem 4.6. We claim that if 2πχ(M) — c{M) > 2π, then for any ray y there exists

a straight line σ such that t\-*σ{ — t) is asymptotic to y. If this is the case, then for any

ray y, such a straight line σ satisfies ί/oo(σ(oo), y(oo))>π, and hence by Theorem 4.4

Fγ°σ(t) tends to — oo as /->oo, which means that Fγ is non-exhaustive.

We will show this claim. Suppose that 2πχ(M) — c(M) > 2π and that for a ray y, M

does not contain any straight line σ such that t\-^σ{ — t) is asymptotic to y. Take

ε G [0, 2πχ(M) — c(M) — 2π). There exists a compact domain K such that M—K is a tube

and

(4.7.1) G+dM<ε and c(K)<2π(χ(M)- l ) - ε ,
J M -

because c(M) < 2π(χ(M) — 1) — ε. By the non-existence of straight lines as above, for all

sufficiently large t>0 there are no rays emanating from y(t) which intersect K. We

get an unbounded open domain D bounded by two rays α and β emanating from y(t)

such that D contains K and contains no rays emanating from y(t). Note that dD =

α([0, + oo)) = /?([0, + oo)) may happen. If θ denotes the inner angle of D at γ(ί), then

c(D) = 2π(χ(M)-\) + θ,

which is due to [Sg] (see also [Sh5] and [Syl]). On the other hand, (4.7.1) implies

c(D) = c(K) + c(D -K)< 2π(χ(M) - 1) ,

which contradicts θ>0. This completes the proof.

LEMMA 4.8. Assume that there exists a compact subset K of M such that the

Gaussian curvature G of M is nonnegative outside K. If L(σ, y) = π/2 holds for rays σ and

y, then there exists a positive number t0 such that Fy°σ is monotone nonincreasing on

PROOF. We use the same notation as in the proof of Lemma 4.1. Since L(σ, y) =

π/2, {yt} diverges. {c(Dt)}t>to *s a monotone nondecreasing sequence if D(σ,y) — Dto

does not intersect K for some number t0. Indeed, such a number t0 exists. Since

c(Dt)=-*(σ(t),yt(0))-[ Kds,
J/(<x
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the sequence {<(σ(ή,yt(0))}t>to is monotone nonincreasing. Hence if t>t1>t0, then

Fγ o σ(t) - Fγ o σ(t,) < (t -1x) cos * (σ(ί), Λ(

by Lemma 4.2. Moreover since Lemma 4.1 implies that <(σ(t),yt(0)) tends to π/2 as

/-^ oo, we have

* (σ(r), 7,(0)) > — and hence F y o σ(t) < Fy o σ(ί x ).

This completes the proof.

THEOREM 4.9. Assume that 2πχ{M) — c{M) — π and that there exists a compact

subset K of M such that the Gaussian curvature G of M is nonnegative outside K. If

^oo(σ(°°)> 7(00)) = π/2 holds for rays σ and γ of M, then there exists a positive number

t0 such that Fγ°σ is monotone nonincreasing on[t0, 4- 00).

PROOF. By assumption, we have L(σ, y) = L(γ, σ) = π/2. Let c be a simple closed

smooth curve bounding a tube U of M such that KczM—U and c has the properties

(a), (b) and (c). For large t>0 let τ be a ray emanating from σ(t) which is asymptotic

to γ. Now, since (1.11) implies that M contains no straight lines, τ is contained in U if

/ is sufficiently large. Then τ is a J-ray asymptotic to γ, or is a rf'-ray asymptotic to y,

where d, d' are the inner distances of D(σ, y), D(y, σ), respectively. Hence by the definition

of Busemann functions,

Fγ o σ(t) = min{Fγ ° σ(t), F'y ° σ(t)}

for all sufficiently large t. Therefore by Lemma 4.8, this completes the proof.

Corollary 4.7 and Theorem 4.9 imply:

COROLLARY 4.10. If the Gaussian curvature G is nonnegative outside some compact

subset of M, then the following hold:

(1) 2πχ(M) — c(M)<π if and only if all Busemann functions are exhaustive.

(2) 2πχ(M) — c(M)>π if and only if all Busemann functions are non-exhaustive.

5. M having more than one end. In this section we assume that M is finitely

connected with k ends and admits the total curvature. Let K be a compact domain in

M such that M—int(K) is a union of disjoint closed tubes C/l5 , Uk and ^ c o n s i s t s

of k simple closed smooth curves. If we set

si(M):=-c(Ui)-κ(Ui) for ί = l , ••-,*,

then

Σ si(M) = 2πχ(M)-c(M).
ί<i<k
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The value s\{M) does not depend on the choice of Όt by the Gauss-Bonnet theorem.

For each / = 1, , k, let Mf be a complete open Riemannian 2-manifold with one end

such that there exists an isometric embedding ιt: C/£ u K^>Mt and M{ — ιi(JJi u K) consists

of k — 1 open disk domains. Then the Gauss-Bonnet theorem implies

si(M) = 2πχ(Mi)-c(Mi).

For any ray y let n(y)=l, , k be such that some subray of y is contained in a

tube Un(y). Rays σ and y are said to be equivalent and denoted by σ~y if n(σ) = n(y) =: /

and if the two rays ij°<7i and i^yx are equivalent in the sense of Section 1, where σ l 9

y1 are subrays of σ, y, respectively. Here we remark that there exist subrays σί9 yx of σ,

y such that ιi°σ1 and ii°yι are rays in Mt. We denote the equivalence class of a ray y

by y(oo) and the set of all equivalence classes by M(oo). We define the distance function

d^\ M(oo)xM(oo)->/?u{ + oo} by

C if

where σ1 ? γί are subrays of the rays σ, 7 and rf^ is the distance of Mf(oo).

In this notation we extend results in Sections 1, 2, 3 and 4 as follows:

THEOREM 5.1. Assume that M with k ends admits the total curvature. If a ray σ of

M is asymptotic to a ray γ, then σ and y are equivalent.

PROOF. If a ray σ is asymptotic to a ray γ, then σ, y have subrays σ l 5 γx in a

common tube C/f and ιi°σι is asymptotic to ιi°y1. Thus this completes the proof by

Theorem 2.1.

Theorem 5.2 is an immediate consequence of the definition of M(oo).

THEOREM 5.2. Assume that M with k ends admits the total curvature. Let Mtfor

i= 1, -,k be as above. Then

M(oo) = M1(oo)u ••• uMfc(oo) (disjoint union).

Let c be a simple closed smooth curve in M and set S(ή : = {peM; d(p,c) = t}. Then

there exists a number R>0 such that for any non-exceptional t>R, S(t) consists of

disjoint k simple closed piecewise smooth curves (cf. [Sh4]).

THEOREM 5.3. Assume that M with k ends admits the total curvature. Let c be an

arbitrarily fixed simple closed smooth curve. For any rays σ and y from c,

ί->oo t

where dt is the inner distance of S{t).

PROOF. If n(σ)Φn(y), then dt(σ(t),y(t)) = + oo for all sufficiently large t>0 and
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) , 7(00))= + 00. If /: = n(σ) = n(y), then in the same way as in the proof of Lemma

3.2, there exist a number R>0 and a simple closed smooth curve cx^M{ such that

ii(S{t+R)n Ui) = 5Ί(ί): = {jceMi; d(x, c t) = ή for all sufficiently large />0 and thus this

completes the proof by Theorem 3.3.

THEOREM 5.4. Assume that M with k ends admits the total curvature c(M)> — 00.

Let c be an arbitrarily fixed simple closed smooth curve. Then for any rays σ and γ,

hm = dao(σ(€θ)9 7(00)) .
ί->00 t

The proof of Theorem 5.4 is similar to that of Theorem 5.3.

THEOREM 5.5. Assume that M with k ends admits the total curvature. Then for any

rays σ and γ,

F °σ(t)
lim -2—— = cos m i n ^ ^ o o ) , 7(00)), π} .
t-*oo t

PROOF. First consider the case where n{σ)Φn(y). Then dao{σ{00), 7(00))= +00.

Moreover, for each sufficiently large number />0 and for each ray τ emanating from

σ(ί), if τ is asymptotic to 7, then it intersects K, where K is as above, and hence

as in the proof of Lemma 4.3.

If i: = n(σ) = n(γ), then there exist subrays σ l 9 yx of σ, 7 such that ιi°σί, ιi°y1 are

rays of Mh which satisfy the equality of Theorem 4.4. Thus this completes the proof.
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