THE EXPONENT OF CONVERGENCE OF POINCARÉ SERIES OF COMBINATION GROUPS

Dedicated to the memory of the late Professor Tōhru Akaza

Harushi Furusawa

(Received February 22, 1989, revised July 11, 1990)

1. Introduction. Let G be a discrete subgroup of the automorphism group $G M\left(B^{n+1}\right)$ of $(n+1)$-dimensional hyperbolic space B^{n+1}. We shall present in $\S 3$ a certain number $\delta(G)$ which is called the exponent of convergence of Poincaré series associated to G. Let $L(G)$ be the limit set of G and $d(L(G))$ its Hausdorff dimension. It is already known [2], [7] that $\delta(G)=d(L(G))$ for geometrically finite discrete groups. Our motivation is based on the following results. The authors in [3] showed the inequality $d\left(L\left(G_{1} * G_{2}\right)\right)>\operatorname{Max}\left(d\left(L\left(G_{1}\right)\right), d\left(L\left(G_{2}\right)\right)\right)$ for Shottky groups G_{1} and G_{2} where $G_{1} * G_{2}$ is the free product of G_{1} and G_{2}. And also Patterson in [6] proved inequality $\delta\left(G_{1} * G_{2}\right)>\operatorname{Max}\left(\delta\left(G_{1}\right), \delta\left(G_{2}\right)\right)$ for Fuchsian groups G_{1} and G_{2} where $G_{1} * G_{2}$ is the free product of G_{1} and G_{2}. In this paper, we extend the above statement generally, that is, the exponent of convergence of Poincare series of a discrete group G is smaller than that of the discrete group which is obtained by applying the combination theorem with an amalgamated subgroup to G. This is discussed in $\S \S 4$ and 5 .
2. Preliminaries. Let $\overline{R^{n+1}}$ be the one point compactification of R^{n+1}. Mobius transformation g in \bar{R}^{n+1} is defined as compositions of even number of reflections in $n-$ spheres or n-planes in $\overline{R^{n+1}}$. Let $G M(n+1)$ be the group of all Mobius transformations in $\overline{R^{n+1}}$. A subgroup of $G M(n+1)$ is called a Mobius group. The identity in $G M(n+1)$ is denoted by I. For a set $E \subset \overline{R^{n+1}}$, we denote by $G M(E)$ the subgroup of $G M(n+1)$ which fixes E, and by $\left.G M\right|_{\partial E}$ the group $\left\{\left.f\right|_{\partial E} \mid f \in G M(E)\right\}$ where $\left.f\right|_{\partial E}$ is the restriction of f to ∂E. The two models for E we consider are $H^{n+1}=\left\{x=\left(x_{1}, x_{2}, \cdots, x_{n+1}\right) \in\right.$ $\left.R^{n+1} \mid x_{n+1}>0\right\}$, and $B^{n+1}=\left\{x \in R^{n+1}| | x \mid<1\right\}$ with respective boundaries $\overline{R^{n}}=$ ∂H^{n+1} and $S^{n}=\partial B^{n+1}$. For each $f \in G M(n)$, there exists a unique $\hat{f} \in G M\left(H^{n+1}\right)$ such that $\left.\hat{f}\right|_{\partial H^{n+1}}=f$ with the identification $\overline{R^{n}}=\partial H^{n+1}$. In this way, we have an isomorphism $\left.G M\right|_{\partial H^{n+1}} \cong G M(n) \cong G M\left(H^{n+1}\right)$. Hence we identify the elements in $G M(n)$ with the elements in $G M\left(H^{n+1}\right)$ and use the same letters. Let s be the usual stereographic projection of S^{n} onto $\overline{R^{n}}$, then s can be extended to an element of $G M(n+1)$ so that $s\left(B^{n+1}\right)=H^{n+1}([4])$. The conjugation $f \rightarrow s f s^{-1}$ is an isomorphism $G M\left(H^{n+1}\right)$ onto $G M\left(B^{n+1}\right)$. By this isomorphism, we have isomorphisms $G M\left(B^{n+1}\right) \cong G M(n) \cong$ $\left.G M\right|_{\partial B^{n+1}}$.

The elements of $G M\left(H^{n+1}\right)-\{I\}$ are classified as following three types:
(i) T is elliptic if it has a fixed point in H^{n+1}.
(ii) T is parabolic if it has exactly one fixed point in $\overline{R^{n}}$.
(iii) T is loxodromic if it has exactly two fixed points, both in $\overline{R^{n}}$.

For a Mobius transformation $A \in G M(n+1)$, we write $A^{\prime}(x)$ the Jacobian matrix at $x \in \overline{R^{n+1}}$. Then $A^{\prime}(x)=k B$ for some $k>0$ and $B \in O(n+1)$. We put $k=\left|A^{\prime}(x)\right|$.

Lemma 1 ([1, p. 19]). Let g be a Mobius transformation. Then we have

$$
\begin{equation*}
|g(x)-g(y)|^{2}=\left|g^{\prime}(x)\right|\left|g^{\prime}(y)\right||x-y|^{2} . \tag{1}
\end{equation*}
$$

Let $x^{*}=x \cdot|x|^{-2}, x \in R^{n+1}(x \neq 0)$. If $g(\infty) \neq \infty$, then $g(x)=r^{2} A(x-a)^{*}+b$ where $a=g^{-1}(\infty), b=g(\infty), r>0$ and A is an orthogonal matrix ([1, p. 21]). The set $I(g)=$ $\left\{x \in R^{n+1}| | g^{\prime}(x) \mid=1\right\}$ is an n-sphere centered at $g^{-1}(\infty)$ with radius r. This sphere is called the isometric sphere of g. The chain rule applied to $g^{-1}(g(x))=g\left(g^{-1}(x)\right)=x$ yields $\left|\left(g^{-1}\right)^{\prime}(g(x))\right|\left|g^{\prime}(x)\right|=\left|g^{\prime}\left(g^{-1}(x)\right)\right|\left|\left(g^{-1}\right)^{\prime}(x)\right|=1$. From these equalities we have the following facts: $g($ ext $I(g))=\operatorname{int} I\left(g^{-1}\right)$ and $g^{-1}\left(\right.$ ext $\left.\dot{I}\left(g^{-1}\right)\right)=$ int $I(g)$, where ext and int denote the exterior and interior, respectively.
3. Discrete groups. Let G be a discrete subgroup of $G M\left(B^{n+1}\right)$. The points $g(0)$, $g \in G$, are isolated and more generally, if $K \subset B^{n+1}$ is compact there are only finitely many $g \in G$ such that $g(K) \cap K \neq \varnothing$. A point $\zeta \in \overline{B^{n+1}}$ is called a limit point of G if there exists an infinite distinct sequences $g_{n} \in G$ and a point $a \in B^{n+1}$ such that $g_{n}(a) \rightarrow \zeta$. The set of all limit points of G is the limit set $L=L(G)$. The set of accumulation points of $G(a)=\{g(a) \mid g \in G\}$ is denoted by $L(a)$. Clearly, $L=\bigcup L(a)$. Then we have the following fact (see [1]) that $L=L(a)$ for all $a \in B^{n+1}$. The limit set L has the following properties: (i) L is a closed set contained in ∂B^{n+1}. (ii) L is invariant under G and is a perfect set if L contains more than two elements.

An open set F of B^{n+1} is called a fundamental region for a discrete group G acting on B^{n+1} if F satisfies the following conditions:
(i) $F \cap g(F)=\varnothing$ for all $g \in G-\{I\}$,
(ii) $\bigcup_{g \in G} g(\bar{F}) \supset B^{n+1}$ where \bar{F} is relative closure of F in B^{n+1}.

The existence of a fundamental region for discrete group acting on B^{n+1} is well known. For instance, the Dirichlet polyhedron is a fundamental region (cf. [5, p. 71]).

Now the exponent of convergence of a discrete group $G \subset G M\left(B^{n+1}\right)$ is defined as

$$
\delta(G)=\inf \left\{s>\left.0\left|\sum_{g \in G}\right| g^{\prime}(x)\right|^{s}<+\infty\right\} .
$$

This does not depend on the choise of $x \in B^{n+1}$ and it satisfies $\delta(G) \leqq n$ (see, for instance, [1]).
4. Free product with amalgamated subgroup. Following the statement in [5, Chap. VII] we give some definitions. Let G_{1} and G_{2} be subgroups of $G M\left(B^{n+1}\right)$ with a common subgroup H. We also assume throughout $\S 4$ that $G_{m}-H \neq \varnothing(m=$ 1,2). A normal form is a word of the form $g_{1} g_{2} \cdots g_{i} g_{i+1} \cdots g_{n}$ where $g_{i} \in G_{1}-H$ for even i and $g_{j} \in G_{2}-H$ for odd j, or vice versa, that is, the element of $G_{1}-H$ or that of $G_{2}-H$ appear in a normal form alternatively. A normal form $g_{1} g_{2} \cdots g_{n}$ is said to be in a (p, q) form if $g_{1} \in G_{p}-H$ and $g_{n} \in G_{q}-H$ for $p, q=1,2$. There is a natural identification of normal forms as follows. If $h \in H$, then we regard the forms $g_{1} g_{2} \cdots g_{n}$ and $g_{1} g_{2} \cdots\left(g_{k} h\right)\left(h^{-1} g_{k+1}\right) \cdots g_{n}$ as being equivalent. Using the above equivalence, the product of two normal forms is equivalent to either a normal form, or an element of H. The set of equivalence classes of normal forms together with the elements of H, is called the free product of G_{1} and G_{2}, with amalgamated subgroup H, and written as $G_{1} *_{H} G_{2}$. Let $\left\langle G_{1}, G_{2}\right\rangle$ be the group generated by G_{1} and G_{2}. Then there exists a natural homomorphism $\Phi: G_{1} *_{H} G_{2} \rightarrow\left\langle G_{1}, G_{2}\right\rangle$ given by regarding juxtaposition of words as composition of mapping, that is, $\Phi\left(g_{1} g_{2} \cdots g_{n}\right)=$ $g_{1} \circ g_{2} \circ \cdots \circ g_{n}$. It is clear that equivalent normal forms are mapped onto the same transformation. If Φ is an isomorphism, then we say that $\left\langle G_{1}, G_{2}\right\rangle=G_{1} *_{H} G_{2}$, and we do not distinguish between $\left\langle G_{1}, G_{2}\right\rangle$ and $G_{1} *_{H} G_{2}$. If $\left\langle G_{1}, G_{2}\right\rangle=G_{1} *_{H} G_{2}$, and H is trivial, then every non-trivial element of $\left\langle G_{1}, G_{2}\right\rangle$ has a unique normal form, while if H is non-trivial, the normal form of an element of $\left\langle G_{1}, G_{2}\right\rangle$ is clearly not unique.

Proposition. Let $G_{i}(i=1,2)$ be a discrete subgroup of $G M\left(B^{n+1}\right)$ acting on B^{n+1} with a fundamental region F_{i} satisfying the geometric condition

$$
\begin{equation*}
F_{1}^{c} \cap F_{2}^{c}=\varnothing, \tag{*}
\end{equation*}
$$

where F_{i}^{c} is the complement of the set of F_{i} with respect to B^{n+1}. Then the group $G=\left\langle G_{1}, G_{2}\right\rangle$ is the free product $G_{1} * G_{2}$ with the amalgamated subgroup $\{I\}$ and $F_{1} \cap F_{2}$ is precisely invariant under the identity in G.

Proof. The geometric conditions (*) implies $F_{1} \cup F_{2}=B^{n+1}$. Furthermore, we see that $F_{1} \cap F_{2} \neq \varnothing$. Hence we are done by Theorem A. 13 in [5, p. 139].
5. The case H trivial. Let G_{1} and G_{2} be discrete subgroups of $G M\left(B^{n+1}\right)$ with fundamental regions F_{1} and F_{2}, respectively, satisfying the geometric conditions (*) and let $G=\left\langle G_{1}, G_{2}\right\rangle$. Then by Proposition, $G=G_{1} * G_{2}$ and $F_{1} \cap F_{2}(\neq \varnothing)$ is precisely invariant under $\{I\}$ in G.

Now under the conditions stated above, we have the following lemma.
Lemma 2. For $g \in G_{k}(k=1,2)$, we define the number $\beta_{k, 3-k}(g)$ by

$$
\begin{equation*}
\beta_{k, 3-k}(g)=\operatorname{Sup}_{x \in F_{1} \cap F_{2}}\left\{\operatorname{Inf}_{w \in F_{k}^{c}}|x-w|^{2} j\left(g^{-1}, x\right)\right\}\left\{\operatorname{Sup}_{w \in F_{3-k}^{c}}\left|g^{-1}(x)-w\right|\right\}^{-2} \tag{2}
\end{equation*}
$$

where $j(g, x)=\left|g^{\prime}(x)\right|$. Assume that

$$
\sum_{g_{1} \in G_{1}-\{I\}} \beta_{12}\left(g_{1}\right)^{s} \sum_{g_{2} \in G_{2}-\{I\}} \beta_{21}\left(g_{2}\right)^{s}>1, \quad \text { then } \delta\left(G_{1} * G_{2}\right) \geqq s .
$$

Proof. The chain rule applied to $g \circ h(x)=g(h(x))$ and $g^{-1}(g \circ h(x))=h(x)$ yield $j(g h, x)=j(g, h(x)) j\left(g^{-1}, g h(x)\right)^{-1} j(h, x)$. Using the equality (1) stated in $\S 2$, we have $\left|g^{-1}\left(x^{\prime}\right)-h(x)\right|^{2}=\left|g^{-1}\left(x^{\prime}\right)-g^{-1}(g h(x))\right|^{2}=j\left(g^{-1}, x^{\prime}\right) j\left(g^{-1}, g h(x)\right)\left|x^{\prime}-g h(x)\right|^{2}$. Thus we have

$$
\begin{equation*}
j(g h, x)=j\left(g^{-1}, x^{\prime}\right) j(h, x)\left|x^{\prime}-g h(x)\right|^{2}\left|g^{-1}\left(x^{\prime}\right)-h(x)\right|^{-2} \tag{3}
\end{equation*}
$$

Suppose $g \in G_{1}-\{I\}, x, x^{\prime} \in F_{1} \cap F_{2}$ and $h(x) \in F_{2}^{c}$, then $h(x) \in F_{1}$ and $g h(x) \in F_{1}^{c}$. Therefore we have

$$
\begin{equation*}
j(g h, x) \geqq j(h, x) \beta_{12}(g) \tag{4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
j(g h, x) \geqq j(h, x) \beta_{21}(g), \tag{5}
\end{equation*}
$$

for $g \in G_{2}-\{I\}, x \in F_{1} \cap F_{2}, h \in G$ such that $h(x) \in F_{1}^{c}$. If $g=g_{1}^{(1)} g_{1}^{(2)} \cdots g_{k}^{(1)} g_{k}^{(2)}$ is (1,2) form stated in $\S 4$ and if $x \in F_{1} \cap F_{2}$ then $g_{1}^{(2)} \cdots g_{k}^{(1)} g_{k}^{(2)}(x) \in F_{2}^{\mathrm{c}}$. Hence $j(g, x) \geqq$ $j\left(g_{1}^{(2)} \cdots g_{k}^{(1)} g_{k}^{(2)}, x\right) \beta_{12}\left(g_{1}^{(1)}\right)$ by (4). Furthermore, since $g_{2}^{(1)} g_{2}^{(2)} \cdots g_{k}^{(1)} g_{k}^{(2)}(x) \in F_{1}^{c}$ for $x \in F_{1} \cap F_{2}$, we see that

$$
j\left(g_{1}^{(2)} \cdots g_{k}^{(1)} g_{k}^{(2)}, x\right) \geqq j\left(g_{2}^{(1)} g_{2}^{(2)} \cdots g_{k}^{(1)} g_{k}^{(2)}, x\right) \beta_{21}\left(g_{1}^{(2)}\right)
$$

by (5). Continuing this argument, we have $j(g, x) \geqq \beta_{12}\left(g_{1}^{(1)}\right) \beta_{21}\left(g_{1}^{(2)}\right) \cdots \beta_{12}\left(g_{k}^{(1)}\right) j\left(g_{k}^{(2)}, x\right)$ for $x \in F_{1} \cap F_{2}$. Hence the sum of s-th power of $j(g, x)$ for the elements g of $(1,2)$ form in $G_{1} * G_{2}$ is not smaller than

$$
\sum_{k \geqq 0}\left\{\sum_{g_{1} \in G_{1}-\{I\}} \beta_{12}\left(g_{1}\right)^{s}\right\}^{k+1}\left\{\sum_{g_{2} \in G_{2}-\{I\}} \beta_{21}\left(g_{2}\right)^{s}\right\}_{g \in G_{2}-\{I\}}^{k} j^{s}(g, x) .
$$

Therefore we have the following inequality considering all (p, q) forms,

$$
\begin{aligned}
\sum_{f \in G_{1} * G_{2}} j^{s}(f, x) \geqq & 1+\left[\sum_{k \geqq 0}\left\{\left(\sum_{g_{1} \in G_{1}-\{I\}} \beta_{12}\left(g_{1}\right)^{s}\right)^{k}\left(\sum_{g_{2} \in G_{2}-\{I\}} \beta_{21}\left(g_{2}\right)^{s}\right)^{k}\right\}\right] \\
& \times\left\{\left(\sum_{g_{2} \in G_{2}-\{I\}} j^{s}\left(g_{2}, x\right)\right)\left(1+\sum_{g_{1} \in G_{1}-\{I\}} \beta_{12}\left(g_{1}\right)^{s}\right)\right. \\
& \left.+\left(\sum_{g_{1} \in G_{1}-\{I\}} j^{s}\left(g_{1}, x\right)\right)\left(1+\sum_{\left.g_{2} \in G_{2}-\{ \}\right\}} \beta_{21}\left(g_{2}\right)^{s}\right)\right\} .
\end{aligned}
$$

Thus we have our assertion by this inequality.
Now we have the following theorem from Lemma 2.
Theorem 1. Let G_{1} and G_{2} be discrete subgroups of $G M\left(B^{n+1}\right)$ with the fundamental regions F_{1} and F_{2} respectively, satisfying the geometric condition (*). Assume that $\delta\left(G_{1}\right) \geqq \delta\left(G_{2}\right)$ and $\sum_{g \in G_{1}} j^{\delta\left(G_{1}\right)}(g, x)=+\infty$. Then $\delta\left(G_{1} * G_{2}\right)>\delta\left(G_{1}\right)$.

Proof. Let r be the radius of a ball B_{r} which is contained in $F_{1} \cap F_{2}$. Then by (2), we have $\beta_{k, 3-k}(g) \geqq r^{2} j\left(g^{-1}, x\right) / 4$ for $k=1,2, x \in B_{r}$ and $g \in G_{1} * G_{2}$. Therefore we have

$$
\begin{equation*}
\sum_{g_{1} \in G_{1}-\{I\}} \beta_{12}\left(g_{1}\right)^{s} \sum_{g_{2} \in G_{2}-\{I\}} \beta_{21}\left(g_{2}\right)^{s} \geqq\left(\frac{r^{2}}{4}\right)^{2 s} \sum_{g_{1} \in G_{1}-\{I\}} j^{s}\left(g_{1}, x\right) \sum_{g_{2} \in G_{2}-\{I\}} j^{s}\left(g_{2}, x\right) \quad\left(x \in B_{r}\right) . \tag{6}
\end{equation*}
$$

By the assumption we see $\lim _{s \rightarrow \delta\left(G_{1}\right)} \sum_{g \in G_{1}} j^{s}(g, x)=+\infty$, so that the right hand side of (6) is greater than 1 for some $s_{0}>\delta(G)$. Hence by Lemma 2, we have $\delta\left(G_{1} * G_{2}\right) \geqq$ $s_{0}>\delta\left(G_{1}\right)$. This completes the proof.

Remark. The assumption $\sum_{g \in G} j^{\delta(G)}(g, x)=+\infty$ in Theorem 1 is satisfied by convex cocompact groups and geometrical finite groups.
6. The case H non-trivial. Throughout this section, all groups we consider are subgroups of $G M\left(H^{3}\right)$. From §2, we have isomorphisms $\left.G M\left(B^{3}\right) \cong G M\left(H^{3}\right) \cong G M\right|_{\partial H^{3}}$. As $\overline{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$ is identified with $\partial H^{3},\left.G M\right|_{\partial H^{3}}$ is the class of orientation preserving Mobius transformations $\overline{\boldsymbol{C}}$ onto itself and denote it $M(\overline{\boldsymbol{C}})$. A discrete subgroup of $M(\overline{\boldsymbol{C}})$ is called a Kleinian group.

Let G_{1} and G_{2} be Kleinian groups acting on $\overline{\boldsymbol{C}}$ with a common subgroup H and let $G_{m}-H \neq \varnothing$ for $m=1,2$. An interactive pair of sets (X_{1}, X_{2}), consists of two non-empty disjoint sets X_{1} and X_{2} in $\overline{\boldsymbol{C}}$, where $X_{k}(k=1,2)$ is invariant under H, every element of $G_{1}-H$ maps X_{1} into X_{2}, and every element of $G_{2}-H$ maps X_{2} into X_{1}. Note that if $\left(X_{1}, X_{2}\right)$ is an interactive pair, then X_{k} is precisely invariant under H in $G_{k}(k=1,2)$.

From §4, any element $g \in G_{1} *_{H} G_{2}-H$ is represented by a normal form $g=g_{1} g_{2} \cdots g_{n}$. Every normal form has a length, $n=\left|g_{1} \cdots g_{n}\right|$. If $h \in H$, then $g_{1} \cdots g_{k} g_{k+1} \cdots g_{n}$ and $g_{1} \cdots\left(g_{k} h\right)\left(h^{-1} g_{k+1}\right) \cdots g_{n}$ are equivalent. Therefore equivalent normal forms have the same length, so if $G=\left\langle G_{1}, G_{2}\right\rangle=G_{1} *_{H} G_{2}$, then $|g|$ is well defined for all elements of G (if $h \in H$, we put $|h|=0$). Thus we have the following lemma due to Maskit.

Lemma 3. Let $G=\left\langle G_{1}, G_{2}\right\rangle$ be a Kleinian group with $G=G_{1} *_{H} G_{2}$. Let X_{1} and X_{2} be mutually disjoint topological closed discs in $\overline{\boldsymbol{C}}$ bounded by a simple closed curve W and let $\left(\dot{X}_{1}, \dot{X}_{2}\right)$ be an interactive pair, where \dot{X}_{i} is the interior of X_{i}. Furthermore, assume that $W=\partial X_{1}=\partial X_{2}$ is precisely invariant under H in either G_{1} or G_{2}. Then there is a loxodromic element of G with one fixed point in \dot{X}_{1} and the other in \dot{X}_{2}.

Proof. Let g be an element of G such that $|g|>1$ and $|g|$ is minimal among all conjugates of g in G. Then g is a $(3-k, k)$ form and $g\left(X_{k}\right) \subset g_{1} g_{2}\left(X_{k}\right) \subset \dot{X}_{k}(k=1,2)$, as in [5, p. 150]. Hence we see that g is a loxodromic element with one fixed point in \dot{X}_{1} and the other in \dot{X}_{2} (see [5, p. 150]).

By Lemma 3, we have the following theorem.
Theorem 2. Let the Kleinian group $G=\left\langle G_{1}, G_{2}\right\rangle$ be $G_{1} *_{H} G_{2}$ and let the topological closed discs X_{1} and X_{2} satisfy the hypothesis in Lemma 3. Then there exist fundamental regions F_{1} and F of G, and a loxodromic cyclic subgroup of G, respectively, satisfying the geometric condition (*).

Proof. By Lemma 3, there is a loxodromic element g in G with one fixed point ζ in \dot{X}_{1}. Suppose that a fundamental region F_{H} of H contains a given fundamental region F_{1} of G_{1}. As $\zeta \notin L(H)$, and $\dot{X}_{1}=\bigcup_{h \in H} h\left(\bar{F}_{1} \cap \grave{X}_{1}\right)$, there is an element h of H such that one fixed point $h(\zeta)$ of $h g h^{-1}$ in $\Delta=\bar{F}_{1} \cap \dot{X}_{1}$ and also $h(\zeta)$ is not an isolated point of $L(G)$. Hence we can find two disjoint open balls V_{1}, V_{2} in Δ both of which intersect $L(G)$. Thus, by [5, p. 96], we have a loxodromic element g in G with one fixed point in V_{1} and the other in V_{2}. If we consider sufficiently large k then the isometric spheres g^{k} and g^{-k} are contained in V_{1} and V_{2}, respectively. Thus, putting $f=g^{k}$ and $F=(\operatorname{ext} I(f)) \cap\left(\operatorname{ext} I\left(f^{-1}\right)\right)$, we have our theorem.

Finally we have the following theorem from Theorems 1 and 2.
Theorem 3. Let the Kleinian group $G=\left\langle G_{1}, G_{2}\right\rangle$ be the free product of G_{1} and G_{2} with an amalgamated subgroup H and let the topological closed discs X_{1} and X_{2} satisfy the hypothesis in Lemma 3. Suppose that $\delta\left(G_{1}\right) \geqq \delta\left(G_{2}\right)$ and $\sum_{g_{1} \in G_{1}} j^{\delta\left(G_{1}\right)}\left(g_{1}, x\right)=+\infty$, then $\delta\left(G_{1} *_{H} G_{2}\right)>\delta\left(G_{1}\right)$.

Proof. By Theorem 2, there exist fundamental regions F_{1} and F of G_{1} and a loxodromic cyclic subgroup $\langle f\rangle$ of G, respectively, satisfying the geometric condition (*). Hence $\left.\delta\left(G_{1} *\langle f\rangle\right)\right\rangle \delta\left(G_{1}\right)$ by Theorem 1. Furthermore, since $G_{1} *\langle f\rangle$ is a subgroup of G and since $G=G_{1} *_{H} G_{2}$, we have $\left.\delta\left(G_{1} *_{H} G_{2}\right) \geqq \delta\left(G_{1} *\langle f\rangle\right)\right\rangle \delta\left(G_{1}\right)$.

References

[1] L. V. Ahlfors, Möbius Transformations in Several Dimensions, Univ. of Minnesota Lecture Notes, Minnesota, 1981.
[2] T. Akaza, Local property of the singular sets of some Kleinian groups, Tôhoku Math. J. 25 (1973), 1-22.
[3] T. Akaza and T. Shimazaki, The Hausdorff dimension of the singular sets of combination groups, Tôhoku, Math. J. 25 (1973), 61-68.
[4] A. F. Beardon, The Geometry of Discrete Groups, Springer Verlarg, New York-Heidelberg-Berlin, 1983.
[5] B. Maskit, Kleinian Groups, Springer Verlarg, New York-Heidelberg-Berlin, 1987.
[6] S. J. Patterson, The exponent of convergence of Poincaré series, Monatsh. F. Math. 82(1976), 297-315.
[7] S. J. Patterson, Lectures on measures on limit sets of Kleinian groups, in Analytical and Geometric Aspects of Hyperbolic Space (D. B. Epstein, ed.), London Math. Soc. Lecture Notes 111 (1984), 281-323.
[8] N. J. Wielenberg, Discrete Möbius groups: fundamental polyhedra and convergence, Amer. J. Math. 99 (1977), 861-877.

Department of Mathematics
Kanazawa Women’s College
Kanazawa 920-13
Japan

