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1. Introduction. Let G be a discrete subgroup of the automorphism group

GM(Bn + 1) of (n + l)-dimensional hyperbolic space Bn+1. We shall present in § 3 a certain

number δ(G) which is called the exponent of convergence of Poincare series associated

to G. Let L(G) be the limit set of G and d(L(G)) its Hausdorff dimension. It is already

known [2], [7] that δ(G) = d(L(G)) for geometrically finite discrete groups. Our motiva-

tion is based on the following results. The authors in [3] showed the inequality

(HUfii *G2))>Max(ί/(L(G1)), d{L(G2))) for Shottky groups G1 and G2 where G1*G2

is the free product of G± and G2. And also Patterson in [6] proved inequality

δ(Gx * G2)>Max(<5(G!

1), δ{G2)) for Fuchsian groups Gx and G2 where Gί * G2 is the free

product of Gi and G2. In this paper, we extend the above statement generally, that is,

the exponent of convergence of Poincare series of a discrete group G is smaller than

that of the discrete group which is obtained by applying the combination theorem with

an amalgamated subgroup to G. This is discussed in §§4 and 5.

2. Preliminaries. Let Rn+1 be the one point compactification of Rn + 1. Mobius

transformation g in Rn+1 is defined as compositions of even number of reflections in n-

spheres or ^-planes in Rn + 1. Let GM{n+\) be the group of all Mobius transformations

in Rn+1. A subgroup of GM(n+ 1) is called a Mobius group. The identity in GM(«+1)

is denoted by /. For a set EaRn+1, we denote by GM{E) the subgroup of GM(«+1)

which fixes E, and by GM| dE the group {/| dE \fe GM{E)} wheref\ dE is the restriction

o f / t o dE. The two models for E we consider are Hn+1 = {x = (x1, x2, * ,JCΠ + 1 ) G

Rn + 1\xn+ί>0}, and Bn + 1 = {xeRn + 1\\x\<\} with respective boundaries Ίϊ" =

dHn + xand Sn = dBn+1. For each/e GM(n), there exists a unique fe GM(Hn + 1) such that

f\dHn+ι=f with the identification Rn = dHn+1. In this way, we have an isomor-

phism GM\eHn+i^ GM(n)^GM(Hn+1). Hence we identify the elements in GM(n)

with the elements in GM(Hn + 1) and use the same letters. Let s be the usual stereo-

graphic projection of Sn onto Rn, then s can be extended to an element of GM{n + \)

so that s(Bn + 1) = Hn+1 ([4]). The conjugat ion/-^^" 1 is an isomorphism GM(Hn+1)

onto GM(Bn + 1). By this isomorphism, we have isomorphisms

GM\δBn+l.
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The elements of GM(Hn+1) — {I} are classified as following three types:
(i) T is elliptic if it has a fixed point in Hn+1.

(ii) T is parabolic if it has exactly one fixed point in Rn.
(iii) T is loxodromic if it has exactly two fixed points, both in Rn.

For a Mobius transformation AeGM(n+\), we write A\x) the Jacobian matrix
at xeRn + 1. Then A'(x) = kB for some k>0 and BeO(n+\). We put k=\A'(x)\.

LEMMA 1 ([1, p. 19]). Let g be a Mobius transformation. Then we have

(i)

Let V = JC | X Γ 2 , xeRn+1 (xφO). If 0(00)9*00, then #(x) = r2Λ(x - a)* + & where
a = g~1(oo\ b = g(oo), r>0 and ^ is an orthogonal matrix ([1, p. 21]). The set I(g) =
{xeRn + 1 \\gr(x)\ = 1} is an π-sphere centered at gf~1(oo) with radius r. This sphere
is called the isometric sphere of g. The chain rule applied to g~1(g(x)) = g(g~1(x)) = x
yields | (<Γ 'XtoW) 11 g\x) I = I g'(g~\x)) 11 to" ̂ 'OO I = 1. From these equalities we have the
following facts: #(ext /(#)) = int I{g~x) and g~x(ext ϊ(g~1)) = mt I(g), where ext and int
denote the exterior and interior, respectively.

3. Discrete groups. Let G be a discrete subgroup of GM(Bn+1). The points g{0),
geG, are isolated and more generally, if KaBn + 1 is compact there are only finitely
many geG such that g(K)nKΦ0. A point ζeBn+1 is called a limit point of G if there
exists an infinite distinct sequences gneG and a point aeBn+1 such that gn(a)->ζ. The
set of all limit points of G is the limit set L = L(G). The set of accumulation points of
G(a) = {g(a) \ g e G} is denoted by L(α). Clearly, L = \J L(a). Then we have the following
fact (see [1]) that L = L(a) for all aeBn+ *. The limit set L has the following properties:
(i) L is a closed set contained in δBn+1. (ii) L is invariant under G and is a perfect set
if L contains more than two elements.

An open set F of Bn +1 is called a fundamental region for a discrete group G acting
o n 5 n + 1 if F satisfies the following conditions:

(i) Fng(F) = 0 for all geG-{I},
(ii) \JgeGg(F)^Bn + 1 where Fis relative closure of Fin Bn+1.

The existence of a fundamental region for discrete group acting on Bn+1 is well known.
For instance, the Dirichlet polyhedron is a fundamental region (cf. [5, p. 71]).

Now the exponent of convergence of a discrete group G<^GM(Bn + 1) is defined
as

δ(G) = mf{s>0\ Σ l^(x) | s <+oo}.
geG

This does not depend on the choise of x e Bn +1 and it satisfies δ(G) ̂  n (see, for instance,

[1]).
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4. Free product with amalgamated subgroup. Following the statement in [5,

Chap. VII] we give some definitions. Let Gx and G2 be subgroups of GM(Bn+1) with

a common subgroup H. We also assume throughout §4 that Gm — Hφ0 (m =

1, 2). A normal form is a word of the form g1g2 '' Q$i + \ ''' Qn where gieGί—H

for even / and g}eG2 — H for odd j , or vice versa, that is, the element of G± — H or

that of G2 — H appear in a normal form alternatively. A normal form g1g2 -gn is

said to be in a (/?, q) form if g1eGp — H and gneGq — H for p,q =1,2. There is a

natural identification of normal forms as follows. If heH, then we regard the forms

0i02 ' ' 'Qn and gxg2 ' '(gkh)(h~1gk+ι) gn as being equivalent. Using the above

equivalence, the product of two normal forms is equivalent to either a normal form,

or an element of H. The set of equivalence classes of normal forms together with the

elements of //, is called the free product of Gλ and G2, with amalgamated subgroup

//, and written as G1*HG2. Let (GuG2y be the group generated by G1 and G2.

Then there exists a natural homomorphism Φ: G1*HG2-+ζG1, G2} given by re-

garding juxtaposition of words as composition of mapping, that is, Φ{gγg2 gn) =

gx og2o ogn. It is clear that equivalent normal forms are mapped onto the

same transformation. If Φ is an isomorphism, then we say that <G1 ? G2} = G1*HG2,

and we do not distinguish between {Gi9G2} and G1*HG2. If <G1 ? G2) = G1 *HG2,

and H is trivial, then every non-trivial element of <G l 5 G2} has a unique normal

form, while if H is non-trivial, the normal form of an element of <G l 9 G2} is clearly

not unique.

PROPOSITION. Let Gt (/= 1, 2) be a discrete subgroup ofGM(Bn+1) acting on Bn+1

with a fundamental region Ft satisfying the geometric condition

where F- is the complement of the set of Ft with respect to Bn + ί. Then the group

G = <G1? G2> is the free product Gx * G2 with the amalgamated subgroup {/} and Fx n F2

is precisely invariant under the identity in G.

PROOF. The geometric conditions (*) implies F1uF2 = Bn+1. Furthermore, we see

that Fx nF2Φ0. Hence we are done by Theorem A. 13 in [5, p. 139].

5. The case H trivial. Let G : and G2 be discrete subgroups of GM(Bn + 1) with

fundamental regions Fx and F2, respectively, satisfying the geometric conditions (*) and

let G = (GUG2}. Then by Proposition, G = G1*G2 and FίnF2 {Φ0) is precisely

invariant under {/} in G.

Now under the conditions stated above, we have the following lemma.

LEMMA 2. For geGk (/:= 1, 2), we define the number βK3-k(g) by
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(2) βk,3-k(θ)= Sup^ "

where j(g, x) = | g'(x) |. Assume that

Σ βiiigiϊ Σ βii(gi)s>^ , then
0ieGi-{/} g2eG2-{I}

PROOF. The chain rule applied to goh(x) = g(h(x)) and g~\goh(x)) = h(x) yield

j(gh,x)=j(g,h{x))j(g~ι,gh(x))~ιj(h,x). Using the equality (1) stated in §2, we have

Ig-\x')-h(x)|2 = \g-\x')-g-\gh{x))I2 =j(g~\ x')j{g'\ gh(x))Ix'-gHx)|2. Thus we

have

(3) j{gKx)=j(g-\x')j{Kx)\x'-gh{x)\2\g-\x')-h(x)\-2 .

Suppose geGx -{/}, x, x ' e ^ n F 2 and h(x)eF\, then h(x)eFί and gh(x)eF[. Therefore

we have

(4) j(gKx)^j(Kx)β12(g).

Similarly, we have

(5) j(gh, x) ̂ j(h, x)β21 (g),

for geG2-{I}, xeF1nF2, heG such that h{x)eF[. If g = g[1]g[2) '' ' ditW? i s (h 2)

form stated in §4 and if xeF1c\F2 then gψ g^gί^eFl Hence j(g,x)t
XgP'-tfVfrxWM1*) by (4). Furthermore, since ^ - r f t t ) ^ for
x 6 F± n F2, we see that

Λ01 gk gk iχ)=Λg2 gi gu g* ̂ )P2\\g\ )

by (5). Continuing this argument, we have j(g, x)^βl2(g(ι))β2i(giι)) '' ' βi2(gk1))J(g<k2\ x)

for xeFx n F 2 . Hence the sum of 5-th power of 7(0, x) for the elements g of (1, 2) form

in Gx * G2 is not smaller than

Σ { Σ βi2(gi)s}\ Σ /?21(02)si Σ ;%,*)
fc^otflneGi-ί/} J U2eG2-{/} J ^eG2-{/}

Therefore we have the following inequality considering all (/?, ̂ ) forms,

Σ JUX)*I+\Σ\( Σ jSiztexί Yf Σ ^
feGλ*G2 Lfe^OLV^ied-U} / \g2eG2-{/}

Σ 7s(02,x)Yl+ Σ i?i2(0

+( Σ j5tei,χ)Yi+ Σ
\gίeGί-{I} J\ g2eG2-{I}
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Thus we have our assertion by this inequality.

Now we have the following theorem from Lemma 2.

THEOREM 1. Let Gx and G2 be discrete subgroups ofGM{Bn + x) with the fundamental

regions F1 and F2 respectively, satisfying the geometric condition (*). Assume that

δiGx)^δ(G2) andΣgeG/
iGί)(g,x)=+π. Then δ(G1*G2)>δ(G1).

PROOF. Let r be the radius of a ball Br which is contained in F1nF2. Then by

(2), we have βk ̂ -k(θ)^r2J{G~1^ *)/4 f° r k=\,2,xeBr and geG1*G2. Therefore we

have

(6) Σ βnigiT Σ βiiigiY^ίζ)28 Σ J'foi,*) Σ Άθi.x) (xeBr).
gieGι-{I} g2eG2-{I} \ 4 / gieGi-{I} Sf2eG2-{/}

By the assumption we see lim^^G^Σ^gG^'%, x)= +oo, so that the right hand side of

(6) is greater than 1 for some so>δ(G). Hence by Lemma 2, we have δ(Gι*G2)}t

so>δ(G1). This completes the proof.

REMARK. The assumption ΣgeGj
δiG)(g,x)=+oo in Theorem 1 is satisfied by

convex cocompact groups and geometrical finite groups.

6. The case H non-trivial. Throughout this section, all groups we consider are

subgroups of GM(H3). From §2, we have isomorphisms GM(B3) ^ GM(H3)^GM\ dH3.

As C=Cu{oc} is identified with dH3, Gλf\dH3 is the class of orientation preserving

Mobius transformations Conto itself and denote it M{C). A discrete subgroup of M(C)

is called a Kleinian group.

Let Gx and G2 be Kleinian groups acting on C with a common subgroup H and

let Gm — HΦ 0 for m = 1, 2. An interactive pair of sets (Xx, X2), consists of two non-empty

disjoint sets X1 and X2 in C, where Xk (k— 1, 2) is invariant under //, every element of

Gx — H maps X1 into X2, and every element of G2 — H maps X2 into Xx. Note that if

(Xl9 X2) is an interactive pair, then Xk is precisely invariant under //in Gk (k=l, 2).

From §4, any element geGί*HG2 — H is represented by a normal form

9 = 9ιQ2 ''' 9n Every normal form has a length, n = \g1 - gn\. If he//, then

0i ' ' 0fc0fc+i Sfπ and gfi • {gkh)(h~1gk+1) " gn are equivalent. Therefore equi-

valent normal forms have the same length, so if G=(G1,G2} = Gί*HG2, then \g\

is well defined for all elements of G (if h e H, we put | h | = 0). Thus we have the following

lemma due to Maskit.

LEMMA 3. Let G= <G1? G2) be α Kleinian group with G = G1*H G2. Let Xί and X2

be mutually disjoint topological closed discs in C bounded by a simple closed curve W and

let (Xu X2) be an interactive pair, where Xt is the interior ofXt. Furthermore, assume that

W= dXx = dX2 is precisely invariant under H in either Gλ or G2. Then there is a loxodromic

element of G with one fixed point in Xί and the other in X2.
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PROOF. Let g be an element of G such that | g \ > 1 and | g | is minimal among all

conjugates of g in G. Then g is a (3-/c, /c) form and ^ A ^ c ^ ^ A ^ c : ^ ( ^ = 1> 2)> a s

in [5, p. 150]. Hence we see that g is a loxodromic element with one fixed point in Xx

and the other in X2 (see [5, p. 150]).

By Lemma 3, we have the following theorem.

THEOREM 2. Let the Kleinian group G = (GU G2> be Gγ *H G2 and let the topological

closed discs Xx and X2 satisfy the hypothesis in Lemma 3. Then there exist fundamental

regions F1 andFofG, and a loxodromic cyclic subgroup ofG, respectively, satisfying the

geometric condition (*).

PROOF. By Lemma 3, there is a loxodromic element g in G with one fixed point

ζ in XΛ. Suppose that a fundamental region FH of H contains a given fundamental

region Fί of G x . As ζφL(H), and Xx = \J heHh(F1 n Xx), there is an element h of H such

that one fixed point h(ζ) of hgh'1 in d =/*! n J?\ and also h(ζ) is not an isolated point

of L(G). Hence we can find two disjoint open balls Vu V2 in A both of which intersect

L(G). Thus, by [5, p. 96], we have a loxodromic element g in G with one fixed point

in Vι and the other in V2. If we consider sufficiently large k then the isometric spheres

gk and g~k are contained in V1 and V2, respectively. Thus, putting f=gk and

F=(ext /(/))n(ext /(Z" 1)), we have our theorem.

Finally we have the following theorem from Theorems 1 and 2.

THEOREM 3. Let the Kleinian group G = <G1 ? G2> be the free product of Gx and

G2 with an amalgamated subgroup H and let the topological closed discs Xγ and X2 satisfy

the hypothesis in Lemma 3. Suppose that δifi^^δifi^ and Σ^ i e G l J^ ( G l ) (^ i 9 * ) = +oo,

thenδ(G1*HG2)>δ(G1).

PROOF. By Theorem 2, there exist fundamental regions Ft and F of G t and a

loxodromic cyclic subgroup </> of G, respectively, satisfying the geometric condition

(*). Hence δ(Gx * </»><5(G1) by Theorem 1. Furthermore, since G x * < / > is a sub-

group of G and since G = GX * H G 2 , we have δ(Gλ * H G 2 )^(5(G 1 * < / » > ^ ( G 1 ) .
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