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1. Introduction. Let A: be a field of characteristic 0, k its algebraic closure. In
[A] we presented a construction by generators and relations of λ -forms of
(symmetrizable) "derived" Kac-Moody algebras over k, under certain restrictions. This
construction can be roughly described as glueing together suitably chosen three-
dimensional simple Lie algebras (TDS for short) over k. (Let us recall that the TDS's
over k are in one-to-one correspondence with the quaternion algebras over k; hence
the notation sq(a, b), see Section 1). It was shown in [AR] that, in the real case, these
forms are inner "almost compact", using Rousseau's terminology.

Another approach is followed in [BP]. The classification of the real forms of the
first kind of affine Lie algebras is contained in [L], see also [BR].

In this paper we extend the results of [A] and construct forms of (non-derived)
Kac-Moody algebras. We drop also here the requirement a^> —3 of [A]. As in the
quoted paper, we are also able to construct a symmetric bilinear invariant form.

Lie algebras become more interesting when (some of) its representation theory is
understood. In the Kac-Moody case, the theory of highest weight modules, inspired by
the finite case, has many deep connections with other areas of Mathematics: see for
example [K]. Again, the theory relies on the s/(2)-case.

In this article, we propose a definition of "quadratic" highest weight modules for
the introduced forms. As in the split case, we need first to understand the sq(a, fc)-case,
(cf. Section 4).

Let us emphasize that we have no longer the notion of Borel subalgebra, nor is
Lie's theorem applicable, and the action of the Cartan subalgebra is not in general
diagonalizable. We can however, manage the situation and define a "quadratic" highest
weight module for each non-zero element of the dual of the Cartan subalgebra as a
cyclic one, subject to some quadratic relations. In Sections 6 and 7 we extend this
definition to the general case.

As a first application, we give a presentation of the "derived" forms of Kac-Moody
algebras (in the spirit of Gabber-Kac's theorem) generalyzing formulas (13), , (16),
(23), , (26) of [A], (cf. Section 5).

This work was supported by CONICET, CONICOR and FAMAF (Argentina).
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We also obtain a classification of the finite dimensional irreducible modules, in the
finite case. In particular, we get the classification of the irreducible real finite dimensional
representations of a real inner form of a complex simple (finite dimensional) Lie algebra.
Of course, there are other methods to obtain these results. The classification of the
irreducible finite dimensional representations of a simple real finite dimensional Lie
algebra was first obtained by E. Cartan [Ca]; over an arbitrary field this task was
accomplished by Tits [T]. Their method can be succinctly described as "Galois descent".
Satake also obtained some important results in this direction, see [Sa]. On the other
hand, Seligman [Se] constructed explicitly finite dimensional modules, using for exam-
ple non-associative algebra. But for the moment, his method does not apply to the
Kac-Moody case.

We feel however that our approach could have some additional interest. For
example, the square of any element of the Cartan subalgebra diagonalizes in a quadratic
highest weight module. Thus every such module has a formal character, whose
computation can be done exactly as in the split case.

Let us also remark that despite the fact that our statements are formulated without
mentioning Galois actions or involutions, some of our proofs uses this tools in an
elementary way. In other words, we take in mind all the time the split case results. We
do not know if it is possible to avoid this, i.e. reproving the split case theorems as a
particular case of our more general situation.

Part of this work was done during a visit of ΓEcole Politechnique (Paris); I would
like to express here my gratitude to Alain Guichardet for his kind hospitality and his
stimulating interest in this work. I extend also my thanks to Fernando Levstein, Raphael
Freitas, Guy Rousseau and Victor Kac for interesting conversations.

2. Preliminaries and definitions. Let X, Y, Z be a basis of a 3-dimensional &-vector
space V. For fixed a, bek*=k— {0} we can define a Lie algebra structure, which we
shall call sq(a, b) on V by the rule:

IX, Y] = 2Z, lY9Z]=-2bX, lZ,X]=-2aY.

Let (d1, , dn) denote the quadratic space (kn, q), where q is the quadratic form such

that q(Σhλheh) = Σhdhλl. ({eh} is the canonical basis.) In addition let ξ^ — a, — 6> denote

the quaternion algebra having a basis {l,I,J,K} with the multiplication table

I2 = a, J2 = b, IJ=-JI=K.

Endowed with the usual norm, it is a quadratic space isomorphic to (1, —a, —b, ab),
which is in turn the Pfister 2-form ^ — a, —by (hence the notation). Then it is well
known that sq{a, b) is isomorphic to sq(c, d) if and only if the quadratic spaces
(— α, — b, ab) and (— c, —d, cd) are; moreover sq(a, b) is simple and every 3-dimensional
simple Lie algebra over k arises in this way. In fact, sq(a, b) can be realized as the Lie
algebra of the traceless elements of the quaternion algebra ^ — a, —bs}\ it is the Lie
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algebra of the group SQ(a, b) of the elements of <̂  —α, — by having norm equal to one.

sl(2, k) is isomorphic to sq(\, —\) and if k = R, sq(— 1, — 1) is su(2, R).

We will use the notation of [K]. Let A = {a^ e Zn x n be a generalized Cartan matrix,

i.e.

aa = 2

atj^O, iφj

As usual, we will say that A is finite if it corresponds to a finite dimensional complex

Lie algebra. Let A be a generalized Cartan matrix. We will assume that the correspond-

ing Dynkin diagram is connected. A realization of A ([K, 1.1]) is a triple (A, 77, 77v)

where A is a A -vector space of dimension 2n — rkA, 77 = {αl5 • , αn}c=A*, /7V =

{α^, , απ

v}c:/r are linearly independent indexed sets and

As in the proof of ([K, 1.1]) we will fix a realization (A, 77, 77v) of A as follows: first,

after reordering the indices if necessary, we will assume that

AJAiA2

where At is a non-degenerate rkAxrkA matrix. Thus we can choose {αn

v

+1, •••,
a2n-rkA } c ^ m- s u c r l a w a Y that {a}', *, α^-rk^} ^s a basis of A and

for
Let us recall the definition of a Kac-Moody algebra:

DEFINITION 1. gk(A) is the Lie algebra over k with generators {Eh Ft: \<i<n)

and A, and defining relations

(1) [7/,77']=0

(2)

(3)

(4) [77, F J = - < α i , / O F i

for all H, H1 eh and i,j=\, ,n. There exists a unique maximal ideal rk(A) of gk(A)

among the ideals intersecting A trivially (see [K, 1.2]). Then

gk(A):=gk(A)/rk(A).

Let us also recall the following notation: g'k(A) = [gk(A), gk{Ά)~\.
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Let us fix a, bek*. Our first task is to define a form of g^{A) with sq(a, b) playing

the role of si (2).

DEFINITION 2. gk(A, a, b) is the Lie algebra over k with generators {Xh Yir. 1 < i < n)

and A, and defining relations

(5) [H,i ί ' ] = 0

(6) [X,, Yi] = 2ay

(7) lH,X^=-{aj,HyaYj

(8) lYJ,H}=-(aj,H}bXj

and if /#/

(9) iXι,YA = ίYt,Xj]

(10) [Λr1,jfJ] = - β 6 - 1 [ r ( , r J ]

for all H,H'eh and i , j=l , , n. There exists a unique maximal ideal rk(Λ, α, fo) of

gk(A, a, b) among the ideals intersecting h trivially (see Lemma 1 below). Then

gk(A, a, b) :=gk(A, a, b)/rk(A, a, b).

LEMMA 1. (i) There is a natural isomorphism

gk(A, a, b)®kk'~gk.(A9 a, b)

if k' is an extension of k.

(ii) Let t, sek*. Then X\i—• tXh Y\\-+s Yh //ι—• tsH (Heh) provides an isomorphism

between g(A, at2, bs2) (with generators X'h Y'h h) and g(A, α, b).

In particular, putting t = — 1, s=\, we obtain an automorphism of g(A, a, b\ called

the Car tan involution.

(iii) Xf\-+ Yh Yf\—>Xh H\-^ — H (He Λ), provide an isomorphism between g(A, a, b)

(with generators Xf, Yf, h) and g(A, b, a).

(iv) Let us fix /cz{/ί: 1 <h<n). There exists an involution φ3 of gk(A, a, b) given

by

ψj(Xd=-Xi9 φj(Yi)=-Yi if

φj{H) = H for all Heh.

(v) Qk(A, 1, — 1) is isomorphic to gk{A).

(iv) Among the ideals of gk(A, a, b) intersecting h trivially there exists a unique

maximal ideal rk(A, α, b). Moreover, it is preserved by the isomorphism given in (i).

PROOF, (i) to (iv) are easy, (v): The applications gk(A)^gk(A, 1, —1)
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and gk(A, 1, l)->0fc(/4)

for all //e/r and 1 <ij<n are well defined and inverse of each other.

(vi): This is true for k: use [K, 1.2], (ii), (v). For the general case we only need

to check:

r®kk = r^(A, a, b)

(up to the canonical identification given in (i)) if r is any maximal ideal among the ones

that intersect h trivially (such an ideal exists thanks to Zorn's lemma). One inclusion

is clear and the other follows because r£(A9 a, b) is stable under Gal(fc, k). •

We get at once:

PROPOSITION 1. The statements (i), , (v) of Lemma 1 hold for gk(A, α, b) instead

of gk(A, a, b).

Now let us recall from [PK]:

THEOREM 1. Two maximal a,d-diagonalizable subαlgebrαs of α Kαc-Moody algebra

are conjugate.

This suggests to define a Cartan subalgebra of an arbitrary Lie algebra as a maximal

subalgebra in the set of abelian subalgebras consisting of ad-locally finite semisimple

elements. We get from Proposition 1:

COROLLARY 1. h is a Cartan subalgebra of gk(A, a,b). Moreover, the center of

The following step is to define forms of Kac-Moody algebras by glueing together

suitably chosen TDS. For this, we need some transition scalars. So let use fix elements

(sij)ij=ι,- ,n of k* such that

(11) su=\

(12) SJ^SΓJ1

(13) Sij = SirSrj

for all ij,r. ((11), (12) are special cases of (13)). Now let us also fix ah bek* (1 <i<ή)

and set

bi=b, bj = biar1ajsfj.

Thanks to (13), there is no ambiguity in the definition of by
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Let us also introduce the following notation:

j j n+\<i<2n-rkA

Sij = SirkA-n+j if 1 </</!, Λ + 1 <y<2«-rk Λ

^7 = 5rkΛ-π + irkA-n+j if « + 1 < Uj < 2n - ΐk A .

DEFINITION 3. gk(A, ai9 sip b) is the Lie algebra over k given by generators
{Xh Yt: 1 <i<n} and h with relations

(14) [#,/Γ] = 0

(15) [ ^ , ^ ] = 2 a i

v

(16) W ^ ^

and if iΦj

(18) [^^ ]=^[^^]

(19) lXhX^=-aib^s^lYhY^

for all //, //re/r and i,j= 1, ••*,«, A:= 1, , 2« —rk^4. There exists a unique maximal

ideal rk(^4? <*& Sψ b) of gk(A, ah sip b) among the ideals intersecting h trivially (see Lemma

2 below). Then

gk{A, ah sip b) :=gk(A, ai9 sip b)/rk(A, ai9 sij9 b).

LEMMA 2. (i) Ifk' is an extension ofk, there is a natural isomorphism

gk{A, ah sφ b)®kk'~gk.(A, ah sij9 b).

(ii) Let aek* and set at = a, stj= 1. Then g(A, ah sip b) is isomorphic to g(A9 a9 b)

(cf. Definition 2).

(iii) Let 7, λi9 v^ efe* (1 <i<ή) such that the vtj satisfy (13). Let us put

a\ = atλf , V = by2 , s'i} = s^Vy .

Then g(A9 a'h s'ip b') is isomorphic to g(A9 ai9 sip b).

(iv) Let c,dek* and let us assume that there exist λi9yek* satisfying:

Then g{A, ab sip b) is isomorphic to g(A, c,d) {cf. Definition 2).

(v) Ifk is algebraically closed, then g(A, ab sip b) is isomorphic to g(A) (cf Definition

1).
(vi) Among the ideals ofgk{A, ah sip b) intersecting h trivially there exists a unique
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maximal ideal rk(A, ab sip b). Moreover, it is preserved by the isomorphism given in (i).

(vii) If A is a Car tan matrix, then gk(A, ah sip b) is absolutely simple.

PROOF, (i) and (ii) are clear,

(iii) We have:

That is, if yj = γλϊ1λjVlj then b'j = yfbj and b'j = yfλ[~2λjvfjbp Let us also put

yj = y^A-n+p λj = λτkA_n+j, n+\<j<2n-rkA.

We will show that

gives an isomorphism from g(A,a^f,SijVip by2) (with generators X'h Yf

h Πv' = {oc?'},

etc. and relations (14'), , (19')) onto g(A, ah sip b).

We can reduce ourselves to showing that it is well defined, i.e. that the images of

X'j, Y'j, Z'j satisfy the relations (14'), , (19'). (14'), (15') are obvious, and (16'),

(19') are straightforward computations, taking into account that the vu satisfy (13).

Now (iv) follows from (ii), (iii); (v) is a consequence of (iv) and Proposition 1;

(vi) can be proved as in Lemma 1 and (vii) follows from (vi). •

PROPOSITION 2. The statements (i), , (vi) of Lemma 2 hold for gk(A, ah sij9 b)

instead of gk(A, ah sip b).

COROLLARY 2. hk is a Car tan subalgebra of gk(A, ah sip b).

Let us denote gk(A, ab sij9 b) = [gk(A, ah sip b), gk(A, ah sip b)~\. For A symmetriza-

ble the explicit presentation of g'k(A, ah sip b) by generators and relations is given in

Section 5.

3. The invariant bilinear form. Let us define gι

k

oc(A, ab sip b) = gloc as the linear

subspace of gk(A, ah sip b) spanned by {Xh Yh h}. The Lie algebra L freely generated

by {Xi9 Yh h] has an Aggraded structure given by deg^Q = deg( Y^) = 1, deg(//) = 0 for

all Heh. Let us consider the ascending filtration on L given by

Lm = {ueL:deg(u)<m]

and let gm = π(Lm), where π : L-+g(A, ah sip b) = g is the canonical projection. Thus

teϋme vo i s a n ascending filtration of g. Moreover, [gm,gn]=gm+n and g1=gloc. Now,

if ueg, let us put

v(u) = inf{m:uegm} .

Let us also remark, though it is obvious, that the introduced filtration is compatible

with the isomorphisms given by Propositions 1 and 2. On the other hand, let us consider
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the principal gradation of g(A, 1, — \) = g(A) (cf. [K, 1.5]) denoted (gj(l))jeZ I n t m s

case we have

gm= θ g}(\).
-m<j<m

Let us recall that an n x n matrix A is called symmetrizable if there exists a

non-degenerated diagonal nxn matrix D = (di, , dn) such that DA is symmetric. In

the rest of the Section, A will denote a symmetrizable generalized Cartan matrix.

Let us define a symmetric bilinear form ( | ) 0 on g)°c(A, ah stp b) = gXoc as follows:

(α;v I α/)o = ~ y sijbjaijdj1 i f 1 < ̂ <« , 1 </< w

| M k ^ - π + / ' Γ 1 i f 1 ^

( α /

v | α / ) o = 0 if /

THEOREM 2. There exists a unique symmetric bilinear form ( ) (adding a subscript

k if necessary) on gk(A, ab stp b) satisfying

( i ) ( I ) is invariant, i.e. ([w, υ] | w) = (u | [v, w]).

( i i) ( I ) |,.oc x,loc=( I ) 0 .

Moreover we have

(iii) V(M) < v(t?) => (M I ϋ) = 0.

(iv) ( I ) w non-degenerate.

PROOF. (AS in [A]). First of all, let us observe that the isomorphisms given by

Propositions 1 and 2 preserve ( | ) 0 . (For Proposition 2, (iii) use (13)). Moreover, ( | ) 0

is invariant, i.e. satisfies (i) whenever w, υ, w, [w, ι;], [v9 w] egloc. Indeed, we only need to

show that

But if j<n

and if j>n
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Now for gk(Ά, 1, — 1) the theorem is just [K, Th. 2.2]. Thus we only need to prove:

We can do this on gm by induction on m\ for m= 1 it is clear and for the inductive step

we use (i), (iii). •

4. Representation theory of sq(a, b). In this Section, we develop some re-

presentation theory of the TDS sq(a, b). We begin by introducing quadratic highest

weight modules associated to an element λ in k — {0}. As in the representation theory

of sl(2), every such module has a unique (up to isomorphism) irreducible quotient,

denoted by J?(λ); <£(λ) is finite dimensional if and only if λ is a non-negative integer,

and every finite dimensional irreducible module arises in this way. Let us denote by

U(a, b) the universal enveloping algebra of sq(a9 b). Let £, F, H be the canonical

generators of 5-/(2). They satisfy the following bracket relations:

[£, F ] = / f , [if, E] = 2E, [if, F] = -2F.

Let us recall that a highest (resp., lowest) weight module for s7(2, k) is cyclic, with a

generator v satisfying Hv = λv, Ev = 0 (resp., Hv = λv, Fv = 0). We will denote by M(λ)

(resp., m(λ)) the highest (resp., lowest) weight module of highest (resp., lowest) weight

λ which covers any other such module. Let us recall the well known description of

M(λ), m(λ) (see [Hu, Ex. 7.7]). M(λ) has a basis (Vi)ieNo such that the module structure

is defined by

(20) Hvi = (λ-2i)vi, /fy = (i+l)!? i+1 , Evi = {λ-i+\)vi_1 .

(By convention, υ_x =0). M(λ) is irreducible if λ is not a non-negative integer; but if it

is, M(λ) has a unique submodule, which is irreducible, isomorphic to M( — λ — 2) and

is spanned by vλ+ί.

In an analogous way, m(λ) has a basis (wj)jeNo and the action is given by

(200

(By convention, w _ 1 = 0 ) . Here, m(λ) is irreducible if λ is not a non-positive integer;

otherwise, ra(Λ) has a unique submodule, which is irreducible, isomorphic to m( — λ + 2)

and is spanned by wA + 1 . (In fact, one has a pairing between M(λ) and m( — A)).

Clearly, a submodule of a highest (resp., lowest) weight module is again such one.

A module which is both highest and lowest weight module (for different generators) is

necessarily finite dimensional and irreducible and cannot be realized as a proper

submodule of a highest or a lowest weight module.

There are various statements equivalent to the fact that sq(a, b) is not isomorphic

to sl(2, k). We shall record for further use that if —abek2, then sq(a, b)~sl(2, k).

DEFINITION 4. Let λek — {0}. Jί{λ) is the U(a, 6)-module generated by v subject

to the relations
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(21) XZv = λaYv, Z2v = -abλ2υ , YZv = -λbXv .

Any cyclic U(a, fr)-module whose generator satisfies (21) is called a quadratic highest

weight module (of highest weight λ). Thus a quadratic highest weight module is a

quotient of J

Let us remark that the first two conditions of (21) imply the third, provided that

. Indeed, if the first two conditions are satisfied, then

λa YZv = {ZY- 2bX)λaυ = ZXZv - iλabXv

= XZ2v - 2a YZv - 2λabXv =-2a YZv - a(λ + 2)λbXv .

Now, iff satisfies (21), then Zv also does. On the other hand, if sq(a9 b)φsl(2, k\ v

and Zv are linearly independent: Zv = cv implies —abλ2v = c2v.

Now let k' be an extension of &, F a fc-vector space, TeEnάk(V) and σeGa\(kf\k).

Let us also denote by T (resp. σ) the fc'-endomorphism of V®k' (resp. the k-

endomorphism) given by Γ®id (resp. id®σ); clearly, such T and σ commute. We

shall always identify V with V® 1. In what follows, k' will be kQ — ab), where Λ/ — ab

is a fixed root of T2 + ab in k. Thus, if -abφk2, then Gal(A:'|fc) = {l, σ} where

Now let V be any sq(a, fr)-module. Then V®k' is a sq(a, b)®k'-module. We will

exploit the fact that sq(a, b)®k' is isomorphic to sl((2, k'). Indeed

H=
J-ab 2 \ ^-ab ) 2\a J-ab

provide one such isomorphism, which will be fixed from now on. (Note that for

a=\,b= — \,y] — ab=\ this is the identification claimed in Lemma 1).

EXAMPLES. 1) The adjoint representation is a quotient of Jί{2). X and Y are

generators which satisfy (21).

2) As \_sq(a, b), sq(a, £?)] =sq(a, b), iϊsq(a, b)^>gl(2, k) is a non-trivial representation

then sq(a, b) is isomorphic to sl(2, k).

3) Let us assume that sq(a, b) and sl(2, k) are not isomorphic. Then M(X) has a

four-dimensional quotient. Indeed, the assignment

y.
i 1—•

ί°
0

0

ί°0
1

—

0

0

0

1

0

0

ba~

0

a

0

0

0

1

0\
a

0

0/

0

— a

0

0

b

0

0

0
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/0 -b 0 0\

α 0 0 0

0 0 0 fc

\0 0 -a 0/

induces an irreducible representation of sq(a, b) in k4. Any non-zero vector is

a generator satisfying (21), for λ = 1.

4) Let V, W be quadratic highest weight modules of highest weights λ, μ and

generators v, w, respectively. Then the submodule of V® W spanned by

u = μZv ® w + λυ ® Zw is a quadratic highest weight module of highest weight

λ + μ. Combining this with 1), 3) we get that Jί(ή) has finite dimensional

quotients for a non-negative integer n.

5) Let us consider a ̂ -vector space TΓ, which has a basis {Rn}neNo u {Sm}meJVo; i.e.,

f is the direct sum of two copies of a polynomial ring in one variable over

k. For λek, we can define a representation of sq(a, b) on Ψ\ by the rules

even
odd

even

odd

n

n

even

odd

γ s = .~n + ί-n(λ-n+\)Rn-ί9 « even

" U - ^ + i - ^ - H + l R - α Λ Odd.

(By convention, Λ_1=5_1=0). With this action, V becomes a quadratic

highest weight module of highest weight A, with a generator Ro (or So).

PROPOSITION 3. (i) For sq( 1, -1)-s/(2, A:) we /ZΛve Ji(λ)~M(λ)®m(-λ).

(ii) Jί{λ) is isomorphic to the module Ψ* constructed in Example 5.

(iii) Ifsq(a, b) φ sl(2, k), two irreducible quadratic highest weight modules V of highest

weight λek— {0} are isomorphic.

An irreducible module of highest weight λ will be denoted by 5£{X).

(iv) <Sf(λ) is finite dimensional if and only if λ is a non-negative integer.

(v) If V is an irreducible finite dimensional sq(a, b)-module, then V is isomorphic

to J£(λ), for some λ.

PROOF, (i) Let v (resp. vθ9 resp. w0) be the generator of Jt(λ) (resp. M(λ), resp.

m( — λ)). The assignments
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v0 ι—• λv + Zv , w0 \->λv — Zv

and

2/L

give rise to the claimed isomorphism and its inverse.

(ii) We need to prove that the surjection Ji(λ)-+Ψ~ with v\-+R0 is actually an

isomorphism. Tensoring with fc, we may assume that a=\,b= — 1. Using (i) this is

equivalent to proving that

is an isomorphism; and this can be deduced from the formulas

F

(iii) Put

where veV satisfies (21).

It is easy to see that Eu+ =Fu_ = 0, Hu+ = ±λu+. Thus V®k' = M+ + Λ/_, where

Λ/+, the module spanned by w+, is a highest (lowest) weight module over sl(2, k').

It follows that K = 0 f 6 i V K(A_2i)5 where

Viλ-2i) = {teV:Z2t=-ab(λ-2i)2ή .

In other words, Viλ-2i)
ιs a weight space for Z 2 . Exactly as in [Hu, 20.2], each submodule

of V is the direct sum of its weight spaces.

Let us assume first that λ$N. Then dim K ( A_ 2 l)<2 for all /. We shall prove that

the sum of all proper submodules of V is still proper. It suffices to show: if / l 5 1 2

are proper submodules of F, so is lγ+I2. If K = / 1 + / 2 , then kv + kZv = (Ix)λ + (I2)λ

and hence there exist oc, βek such that ocv + βZvel{ — {0} for, say, / = 1. Then

lγ. The matrix

κ-abλ2β a)

has determinant a2 + abβ2, which is non-zero. Thus v, Zveί^ and the claim follows.

There remains the case λeN. Using the description of Jί{λ) given by (ii), we

see that J((n) contains a copy of Jί{ — n — 2), namely, the submodule spanned by

Rn+ί9 Sn+i. Using the above introduced gradation, it is easy to see that any maxi-

mal submodule of Jί(rί) contains Jί{ — n — 2); in other words, we have an epi-

morphism Jί(n)/Jί( — n — 2)-^Ϋ\ for any irreducible quotient Ψ' of Jί(ή). However,

(Ji{n)\Ji{— n — 2))®k' is a direct sum of two isomorphic absolutely irreducible re-
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presentations.
(iv) If ̂ (λ) is finite dimensional, then so are M±, and hence λ is a non-negative

integer. The converse follows from the proof of (iii). (We have constructed finite
dimensional modules of highest weight λ for each non-negative integer λ in the examples
above).

(v) Let we V®k'-{0} such that Eu = 0, Hu = nu, for some neN That is,

yj— abXu = aYu , Zu = n-S/—abu .

It follows easily that u + σu satisfies (21) for λ = n. And u + σu^O, because

u + σu = 0 => Zu + Zσu — 0 => n«J — ab(u — σu) = 0 => u = 0 .

Therefore, V is spanned as a U(a, &)-module by u + σu and V~$£{ή).
Finally, (vi) follows from the sl(2) theory, in view of the proof of the preceding

points. •

The following fact will be useful later, when considering the presentation by
generators and relations of a form of a derived Kac-Moody algebra, associated to a
symmetrizable matrix. Let us first introduce the following notation. Let x be an element
of a /c-algebra, neN0, tek. Then we define

Π (x 2 -(2/+l) 2 /), if Λ = 2 / + 1 is odd
0<i<j

x Π (x2-(2i)2t), if 71 = 2/ is even.

PROPOSITION 4. (i) The following identities hold in S£{n) for neN:

Fn, -ab(Z) = 0 , FnJX) = 0 , Fn%ά Y) = 0.

(ii) Conversely, if iV is a quadratic highest weight module of highest weight neN

where any of the preceding identities holds, then it is finite dimensional.

PROOF, (i) Arguing as in the proof of Proposition 3, we get that Fn 1(//) = 0 in
£e{ή)®k'. But Fn^(λx) = λn+1FnΛ(x) and hence Fn_ab(Z) = 0; the rest is similar. (Use
the fact that over k, X, Y are conjugated to yj a //, yf b //, respectively).

(ii) Let us recall that Jί(rί) contains a copy of Jί{ — n — 2). We observed in the
proof of Proposition 3 that Jt{ή)= ®ieNoJf{ri){n-2iy As in (i), we can deduce that

J((n)= 0 {teJί(n): X2t = a(n-2i)2ή .
ίeNo

If, for example, Fna(X) vanishes identically on iV and n = 2j+\ is odd, then

τT= 0 {weiT :X2w = a{n-2ί)2w} .
0<ί<j
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Thus a copy of Jί{ — n-2) is contained in the kernel of any epimorphism

and hence W is finite dimensional. •

Let us remark that Fna(X) vanishes identically on a quadratic highest weight module

generated by v if

as follows from the formulas in Example 5.

Finally, let us observe that we can integrate the finite dimensional representations

of sq(a, b) to the group SQ(a9 b) of elements of the quaternion algebra ^ — α, — by of

norm one. For this, let us recall first that SQ(\, —1) is SL(2, k). Taking k' as above,

we have <ζ — a, — byk®k' = ζ^ — a, —byk>, and hence SQk(a,b) is a subgroup of

SQk(a, b)~SL(2, k'). So, let V be a finite dimensional representation of sqk(a, b)\ then

V®k' is a finite dimensional representation of sqk{a, b)~sl(2, k') and, a fortiori, of

Sβfc'(α> b)~SL(2, k'). Now Galois argument shows that T(V)^V for any TeSQk(a, b).

5. The presentation of the derived algebra. For simplicity, let us denote in this

Section gk = gr

k(A, ah sip b). We shall give here a presentation by generators and relations

of g'k, when A is assumed to be symmetrizable. Let us recall first what happens in the

split case.

THEOREM 3 (Gabber-Kac [GK]). [_g{A\ g{A)~] is isomorphic to the Lie algebra

given by generators {Ei9 Fi9 H^. 1 <i<n) and relations

(22) [Hi9Hj] = 0

(23) [ £ , F ] = <5 //

(24) lHhEj]=aijEj

(25) lHhFj]=-aijFj,

and for iφj

(26) (ad Et)
1 ~ aiJEj = 0

(27) (adFi)
1-aiΨj = 0.

THEOREM 4. Let g0 be the Lie algebra over k given by generators {Xt Yh Zt:

1 <i<n} and relations

(28) [Z,,ZJ=0

(29) [Xh r ί ] = 2 Z i

(30) lZi,Xj]=-ais^auYj

(31) [yi,zj=-vϋβ«Λ,
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and for iφj

(32) ί^Yj^s^Y^Xj]

(33) L^i^j]=-aibΓ1sΓjιίYi9YJ']

(34) F-at

(35) F . β | J , | }

77z£« g 0 is isomorphic to g'k.

PROOF. First of all, using [g®kf, g®kfl^[g, θ~] ® * / for any field extension / z> A:

and any Lie algebra g, we can reduce ourselves to the cases a=\,b= — \. Taking

Gabber-Kac's result in mind, we only need to prove that the assignments

and

provide an isomorphism between g0 and \_g{A), g{A)~]. That is, we must check that

relations (22), , (27) imply (28), , (35) and vice versa. That relations (22), , (25)

are equivalent to (28), , (33) is easy. So, let gx (resp. g2) be the Lie algebra generated

by {Eh Fh Ht: 1 <i<n) (resp. {Xh Yh Z, : 1 <i<n}) with relations (22), , (25) (resp.

(28), , (33)) and let /x (resp. 72) be the ideal generated by the relations (26), (27)

(resp. (34), (35)). The above assignments give rise to an isomorphism φ from g1 onto

g2\ we want to show that φ maps 7X onto 72. Let st (resp. t() be the Lie subalgebra of

#! (resp. g2) spanned by {Eh Fh //"J (resp. {Xi9 Yi9 Z j ) ; clearly φ(si) = ti.

Let us first assume that atj ^ 0 and consider the sΓmodule Vi} spanned by the images

of Ep Fj in g1/Ii. VV} is finite dimensional and a sum of copies of L( — ai}). Thus, via φ,

F-a.j^.fadXi) and F_ f loί,.(ad Yt) vanish identically on Vφ in particular (34) and (35)

hold,'i.e. φ-χ(I2)^h.

Reciprocally, let Uu be the /Γmodule spanned by the images of Xp Yj. By (34),

(35) and Proposition 4 it is finite dimensional and hence (26), (27) are true.

It only remains to treat the case α ι7 = 0, which is very easy. •

REMARK 1. In the case a^ > — 3 the preceding theorem was obtained in [A] by

elementary computations.

6. Representation theory of g(A, α, b). In the next sections we will begin to in-

vestigate some modules over the introduced forms of Kac-Moody algebras, which

are in certain sense generalizations of the highest weight modules (cf. [K, Ch. 9]).

Conceptually, its structure relies heavily on the sq{a, fc)-modules introduced in Section

4, as well as in the split case. Let us refer to [K, Ch. 9], for the definition of the
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highest weight Verma module M(λ) and the lowest one, which we shall denote here

m(λ). The irreducible quotient of M(λ) (resp. m(λ)) will be denoted L(λ) (resp. /(A)). For

simplicity, we begin by g(A, a, b) which will be denoted in this Section as g. Also, U{a, b)

will be its universal enveloping algebra and k' = k(xJ — ab) as in Section 4.

DEFINITION 5. Let λeh* — {0}. Jί(λ) is the U(a, b)-module generated by v subject

to relations

(36) X{Zv = aλ(Z) Y:V , Z2v = - abλ2(Z)v , Y{Zv = - bλ{Z)Xiv

for all Zeh and 1 <i<n.

(The first two relations imply the third at least if λ + α ^ O for all /). A quadratic

highest weight module (of highest weight λ) is a quotient of Jί(λ)\ i.e., a cyclic

U(a, Z?)-module whose generator satisfies (36).

Before collecting some fundamental facts about this quadratic highest weight

modules, let us introduce the following notation: let V be an Λ-module, λeh* — {0}.

Then

V(λ) = {veV:H2=-abλ(H)2v , for all Heh} .

But if λ = 0, put V{O) = {veV:H=0, for all Heh}; i.e. K ( 0 ) = Ko.

Let us also recall the following notions: Q = YjZocic:h* is the root lattice;

Q+=YaZ+ai\ P={λeh* : </l, α ί

v > e Z } ; P + = {λeP : <A, a £

v >>0}. There is a partial

ordering in A* given by λ>μoλ — μeQ + .

Let Kbe a quadratic highest weight module of highest weight λ. Let v be a generator

of V satisfying (36); let Zeh such that λ(Z)φO. Let us set

u± =v® 1 ±Zv® (λ{Z)^l-ab)~ι e V®k'.

u± do not depend on Z; we get from (36) that for any Z '

(ZZ')2v = {abλ{Z)λ{Z'))2v => Z'v = ( - ab) ~ U(Z)" 2Z'Z2v = A(Z)" ιλ(Z')Zv .

As in the sq(a, ft)-case, ι? and λ(Z)~ιZv are linearly independent if g(A, a, b)φg(A).

Clearly, (h®k',y] — abΠ, Q-ab)~ιΠy) is a realization of A over A;' which we

will use in this Section to construct gk{A). With respect to this realization yj — abQ (resp.

yj -abP) is the root (weight) lattice. Moreover, we shall fix the isomorphism from

gk'(A) to g®kf given by

and is multiplication by {^J — ab) x (resp. by y] — ab) in Λ®/:' (resp. (Λ®/:')*)•

As before we check easily that E{u+ =F-μ_ = 0 , Hu± = +Λ(//)w±. Thus V®k' =

M+ + M_, where M ± , the module spanned by w±, is a highest (lowest) module over

gk{A) of highest (lowest) weight ±Λ=±y/-abλ. It follows (cf. [K, 9.2]) that
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y_ (φ\ y

The following fact is inspired by [K, Ch. 9]. Let F* be the ^-module contragredient

to V. Then V* = Y[μVfβ).
 L e t u s d e ί i n e

Clearly, V2 is a quadratic highest weight module of highest weight λ generated by

φeV*λ), φ(v)=\, φ(Zv) = 0. In particular, M{λ)~J((λf.

PROPOSITION 5. Let g(A, a, b)φg(A) and λeh*-{0}.

(i) If λφQ, then Jί{X) has a unique irreducible quotient. If λeQ, two irreducible

quadratic highest weight modules of highest weight λ are isomorphic.

Let us denote by ££{λ) an irreducible quadratic highest weight module of highest

weight λ.

(ii) Ifa=\,b=-l, we have Jί{λ)~M{λ)®m{-λ).

Now let us assume that A is of finite type.

(iii) ££ (λ) is finite dimensional if and only ifλ e P+. In such a case, ^(λ) is isomorphic

to <£{λ') if and only if L(^J — abλ) and L(yJ — abλ') are isomorphic or contragredient.

(iv) Any irreducible finite dimensional non-zero g-module is isomorphic to i f (λ),

for some λeP+.

PROOF. The proofs of (i) (for λ φ Q) and (ii) follow as in the sq(a, b)-case. So let

λ e Q — {0} and let if, ££* be two irreducible quadratic highest weight modules of highest

weight λ.

Let us assume that A is not finite. Then 5£ ®kf~M+ +Λ/_ as above. Now the

weights of M± are contained in the cone {±^J — abλ + oc: (xe^J — abQ + }. Thus the

weights of Λ/+nM_ are contained in {^/— abμ: —λ<μ<λ}. It follows that

Λ/+ nΛ/_ = 0 and hence J^ ® k' ^ L(yJabλ) © l(yf — abλ) and we are done.

Let us assume now that A is finite. There are two possibilities:

or &®k'~L(J-abλ)~lQ-abλ).

Looking at L(^J — abλ), l(yj — abλ) as ^-modules, we see that ££* cannot achieve a differ-

ent possibility that 5£ and the statement follows.

For (iii), it is clear that ^(λ) finite dimensional implies λ e P+. Conversely, if λ e P+,

the irreducible highest and lowest weight #^(v4)-modules of highest weight and lowest

weight A, —A and generators vOi w0, respectively, are finite dimensional over k' and a

fortiori over k. Thus in their direct sum vo + wo satisfies (36) and therefore the (finite

dimensional) g-submodule spanned by v0 + w0 is a quotient of Ji{X)\ hence if(λ) is finite

dimensional.

It remains to prove (iv); this is very analogous to the proof of the sq(a, b)-case,

taking in mind the proof of (iii). •
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7. Representation theory of gk(A, ah sip b). Let us remark first that gk(A, ab sij9 b) =
gk splits after tensoring with a quadratic extension. Indeed, let us assume that
gk φgk(A); then for some / we have — aιbι φk2; but — apj = — afilμμl γsx^

2\ Let us denote
by yj—aιbι a fixed root of the polynomial T2 + aιbι in k, k' = k{^ — afi^, V ~ α A =

yj — aιbιajaι~
1sιjek'. Let us observe that

J-afij = yj-aibflp. Γ ι Sij, for all i, j .

Now we shall use a realization (h\ 77, Πv) of A over k' where A' is a A:'-vector
space of dimension 2n-τkA,Π = {βί9 , βn}^h'*, Πv ={β?, - ,β^}^h'.

We will reorder the index set as in §2 and hence we will choose
{βn+i, •• ,/?2n-rkΛ}c=Λ'insuchaway that {0ί\ , jS2

v

π_rk^} is a basis of A' and

for \<i<n, \<j<n-τkA. In the following, we shall consider gk{A) as constructed
using this realization.

LEMMA 3 (See also [AR]). gk ® k' is isomorphic to gk{A) via

a< \ _ 1 / 1 1

Let A be the root system of gk{A) with respect to the Cartan subalgebra h'\ and
as in the preceding Section, let Q = YjZβiah'* be the root lattice; Q+=YjZ+βi\ P —
{λehf* : <λ, β?>eZ}; P+ = {λeP: <λ, ̂ /v>>0}. We will consider the partial ordering
in A'* given by λ>μoλ — μeQ + .

Now we shall consider an application ξ: h'*^>h*®k' defined by

Clearly, ξ(A), ξ(Q), ξ(P) are contained in A*, because ξ{βj) = 0Lj.
Let V be a grk-module, μeh* — {0}, μ—μfay). Let us define

(If μ = 0, put K(O) = {ι>eK://=0, for all //GA}; i.e. K (0)=K0). Of course, V(μ)=V{_μ).
Lemma 3 enables us to consider a generalized root decomposition in g.

LEMMA 4. PFzY/z the module structure given by the adjoint representation, we have

gk = h®\ ® (gk\Λ)

\aeξ(Δ) J

PROOF. By Lemma 3, we have

h'®(®{
\βeA
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Let ve(gk®k')β. Then

aιyayv = y/^aibi^ajbjβyβ?v= -aibisijβ{βy)β{β )v = -afi^iPK^KM*j )v

•
DEFINITION 6. Let ΛeΛ*-{0}, λ~λ(aLΪ). Ji{λ) is the gk-module generated by v

subject to relations

(37) X&Jv — ajsijλjYfl , α y α / v = — aibiSijλiλjV , ^ ; α / v = — bjSβλjXiV .

(There are some redundancy, at least generically). A quadratic highest weight

module (of highest weight λ) is a quotient of Ji{λ)\ i.e., a cyclic module whose generator

satisfies (37).

PROPOSITION 6. Let gkφgk{A) and λeh*- — {0}.

(i) If ξ~ι(λ)$Q, then J/(λ) has a unique irreducible quotient. If λeξ(Q), two

irreducible quadratic highest weight modules of highest weight λ are ίsomorphic.

Let us denote by J£(λ) an irreducible quadratic highest weight module of highest

weight λ.

(ii) If A is not of finite type, then

'^L(ξ~1 (λ))Θl(ξ~*(λ)).

Now let us assume that A is of finite type.

(iii) ££(λ) is finite dimensional if and only if ξ~1(λ)eP+. In such a case, J£(λ) is

isomorphic to J2?(Λ/) if and only if L(ξ~ι{λ)) and L(ξ~ι(λ')) are isomorphic or contra-

gredient.

(iv) Any irreducible finite dimensional non-zero g-module is isomorphic to ^(λ)for

some λeξ(P+).

PROOF. Taking into account Lemma 3, the proof is quite similar to the sq(a, b)

and g(A, a, fr)-cases.

REMARKS. 1. Compare Proposition 6 (iii), (iv) with [T, Th. 7.2].

2. Let us recall the following well-known theorem of Duflo:

Let g be a complex finite dimensional simple Lie algebra, /<= U{g) a primitive ideal

(i.e., /=Ann(K) for some simple ί/(^f)-module F), hczg a Cartan subalgebra. Then

/ = Ann(L(λ)) for some λ e h *. We can deduce a real analog of this fact from Proposition 6.

As in [K, Ch. 9], let us consider a subcategory (denoted here Θ+) of the category

of all gfc,(,4)-modules. V is an object of Θ + if the following is satisfied:

(i) It is Λ'-diagonalizable, i.e., it admits a weight space decomposition V=

{ }

(ii) dim Vμ is finite for all μ.

(iii) P ί ^ c z U ^ . ^ ^ ^ f o r s o m e / ί 1 , , Aseh'.(HereD(A) = {μehf* : μ<Λ}.)

There is another subcategory Θ_, which is defined by replacing the above D(Λ) by
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d(Λ)={μehf* : μ>A). Θ+ and (9_ are (anti-) equivalent, by means of the functor

V-> V®, defined exactly as in Section 6, before Proposition 5 (cf. [K, 9.4]). We have

already pointed out that in the non-finite case, a module belonging to both categories

must be trivial. This is related to the fact that the opposite Borel subalgebras are not

conjugate.

DEFINITION 7. Θ is the subcategory of the category of all ^-modules whose objects

V satisfy the following:

( i ) V= ®V{μ) (μeh*). Let P(V) = {μ : Viμ)Φ0}.

(ii) dim Viμ) is finite for all μ.
(iii) i W c z U i ^ s ^ W for some λ\ ,λseh.
(Here &(λ) = {μih* : ±μeξ{D{ξ-\λ)))}).

In this case, V^VΘ maps Θ into itself.

The condition (i) of Definition 7 implies that V is diagonalizable under the action

of the abelian Lie algebra of degree 2 homogeneous elements in the symmetric algebra

of A.

Let {e(v): veΛ'*} be the canonical basis of the group ring Z[Λ'*] and let $ be the

group of all series of the form

Σ cve(v)
veil'*

with cveZ and the support of the family {cv} contained in a finite union of sets of the

form D(λ). The multiplication of Z[Λ'*] can be extended to S. Let us recall (see [K,

9.7]) that the formal character ch W of WeΘ+ (resp. WeΘ_) is ch W = £ v d i m Vve(v)

(resp. chW=chW®).
Let Kbe any ^-module satisfying the conditions (i), (ii) of Definition 7. Let μeΛ'*;

let us fix some j such that μe@(λj) and put ξo(μ)= ±ξ~\μ) if ±μeξ(D(ξ~1(λj))). Let

us define the formal character of V as

χ( V) = dim ViO)e(0) + -1 £ dim Viμ)e(ξ0(μ)).
2 μeΛ*-{0}

On the other hand, let s—kXi + kYi + kay (1 </<«); 5 t is isomorphic to 5^(αί5 6f).

Let us say as in [A] that a ^-module V is integrable if it is sΓlocally finite for all /:

We postpone to a forthcoming paper the study of the category Θ, which can be

derived from the split case. We will also give the definition of the quadratic Verma

module of highest weight 0. Nevertheless, let us include here some results which can

be proved without an extra effort (we are assuming that A is not of finite type):

PROPOSITION 7. Let gkφgk(A).

(i) <£(λ) is integrable if and only if ξ~1(λ)eP+.

(ii) χ(if(λ)) = 2 ch(L(ξ~ ^A))). In particular, if ξ~ ι(λ)eP+ and A is symmetrizable,
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then χ(J£(λ)) can be expressed with the help of the Kac- Weyl character formula (cf

IK, 10.4]).

(iii) 5£(λ) and (^{λ)f are isomorphic; in particular <$?(λ) admits an invariant bilinear

form B(,), i.e.

B{t{x\ y)=-B(x, t(y)) for all x,ye2{λ\ tegk

(see IK, 9.4]).
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