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Abstract. We investigate the problem of the classification of smooth projective
toric varieties ¥ of dimension 4 with a given Picard number p over an algebraically
closed field. For that purpose we introduce a convenient combinatorial description of
such varieties by means of primitive relations among d+ p integral generators of the
associated complete regular fan of convex cones in d-dimensional real space. The main
conjecture asserts that the number of the primitive relations is bounded by an absolute
constant depending only on p. We prove this conjecture for p <3 and give the classification
of d-dimensional smooth complete toric varieties with p=3.

1. Introduction. Let k be an arbitrary algebraically closed field. A d-dimensional
algebraic torus 7 is a product of d copies of the multiplicative group k* of k. A toric
variety V is a normal algebraic variety containing T as a Zariski open dense subset with
an algebraic action of T on V which extends the group law of 7. Any toric variety
can be described by a finite system of cones spanned by integer points in the real space
R°. The reader is referred to [1] for the precise definitions.

In this paper we restrict ourselves to complete smooth toric varieties V. Moreover,

" we shall often assume that V is a projective toric variety.

One can notice that any description of smooth toric varieties has two sides: the
combinatorial structure of the corresponding fan and unimodularity conditions on its
generators. The weighted triangulations of (d— 1)-dimensional sphere introduced in [7]
is an example of such a description. One of our objectives is to give a new description
of complete smooth toric varieties.

In §2 we introduce the notion of a primitive collection of generators and the notion
of an associated primitive relations among generators. We use these notions to describe
toric varieties. If a toric variety V is projective we define also the degree of a primitive
relation and the distance between a generator and a d-dimensional cone of the
corresponding fan X (V).

All these notions are used in §3 to get some properties of the combinatorial structure
of a d-dimensional fan X(¥) associated with a toric variety V. It should be remarked
that if the Picard number p(¥) >3 there exist combinatorial types of simplicial polytopes
which do not give rise to any complete regular fan defining a smooth toric variety [2].
We prove that an arbitrary d-dimensional projective regular fan of cones has a primitive
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collection 2={x,,...,x,} of its generators such that x;+---+x,=0. The last
statement is a generalization of a result of Oda in [7] for d=2.

Our next purpose is the classification of several types of smooth complete toric
varieties. This problem for d<3 was investigated by Oda and Miyake in [7]. They
obtained the list of all 3-dimensional smooth complete toric varieties with the Picard
number p <5 which cannot be blown down. It is easy to see that the projective space
is the unique smooth complete d-dimensional toric variety with p=1. Recently
Kleinschmidt [4] has classified all smooth complete d-dimensional toric varieties with
p=2. It turns out that all such varieties are projectivizations of a decomposable bundle
over a projective space of a smaller dimension. In this paper we give two generalizations
of this result of Kleinschmidt. First in §4 we give a criterion for a smooth complete
d-dimensional toric variety V to be produced from a projective space by a sequence of
projectivizations of decomposable bundles. On the other hand, in §§5-6 we give the
classification of all smooth complete d-dimensional toric varieties with p=3.

In §5 we prove strong combinatorial restrictions on a d-dimensional fan X with
d+ 3 generators which generalize the result of Gretenkort, Kleinschmidt and Sturmfels
[2]. After that in §6 we find all primitive relations describing X. Finally, in §7 we state
some open questions.
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2. Basicdefinitions. We first recall some standard definitions used in the geometry
of toric varieties (see [1]).

2.1. DEFINITION. A convex subset ¢ = R? is called a regular d-dimensional cone if
there exists a Z-basis {e,, ..., ¢,} of the integer lattice Z?<= R such that
0'={)'1e1 + - +/lded|iiGR, 1120} .
In this case the elements e, .. ., e, are called generators of X.
2.2. DEFINITION. Let ceR? be an arbitrary regular d-dimensional cone with
generators ey, . ..,e,€ Z%. For any subset Ec {e,,. . ., e;} we denote by L(E) the linear

hull of E (if E= &, we let L(E)=0). Then we call ¢'=L(E)n ¢ a face of ¢ and we write
o'<o.

2.3. DEFINITION. A convex subset ¢’ € R? is called a regular k-dimensional cone if
there exist a regular d-dimensional cone o e R? and a subset E of its generators such
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that k=dim L(E) and ¢'=L(E)no is a face of . In this case we call E the set of
generators of ¢’.

2.4. DErFINITION. A finite system 2= {0, ..., g} of regular cones in R? is called
a complete regular d-dimensional fan if the following conditions hold:

(i) ifoeZ and o'<o then ¢’ X;

(ii) ifo, ¢’ are in X, then ono’<o and ano’' <o’

(i) Ri=o,u---Ua,

We call any generator of a cone g€ X a generator of X.

Every complete regular d-dimensional fan X' is associated with a smooth complete
d-dimensional toric variety V(X). Moreover, two smooth complete d-dimensional toric
varieties V(X) and V(Z’) are isomorphic algebraic varieties if and only if the
corresponding fans X and X’ are isomorphic up to unimodular transformation of Z¢.

2.5. DEFINITION. A complete regular d-dimensional fan X in R? is said to be
projective if there exists a function @ : R“— R such that

(i) ¢(Z9)<=Z

(ii) ¢ is a linear function on each cone of X;

(i) for two arbitrary distinct d-dimensional cones ¢ and ¢’ in X the restrictions
¢|, and ¢/, are different linear functions;

(iv) ¢ is a convex function: ¢(x)+@(y)=>@(x+y) for all x, ye R°.
We call such a function ¢ a support function on X.

It is well-known that a smooth complete d-dimensional toric variety V(X) is
a projective variety if and only if the corresponding fan X has a support function ¢ (see
(11, [7D.

We introduce now our new definitions.

Let X~ be a complete regular d-dimensional fan and Let G(Z) be the set of all
generators of X.

2.6. DEFINITION. A nonempty subset Z={x,, ..., x,} = G(Z2) is called a primitive
collection if for each generator x;e 2 the elements of #\ {x;} generate a (k—1)-
dimensional cone in X, while 2 does not generate any k-dimensional cone in X.

2.7. DEFINITION. Let Z={x, ..., x,} be a primitive collection in G(X). Let S(2)
denote x; + - - - +x;. The focus o(2) of 2 is the cone in X of the smallest dimension
containing S(2). (It follows from 2.4 (iii) that such ¢(2) exists.)

2.8. DEFINITION. Let Z={x, ..., x,} be a primitive collection in G(X) and ¢(2)
its focus. Let y,, ..., y,, be generators of o(2). It follows from 2.1-2.3 that there exists
a unique linear combination n,y, + - - - +n,,y,, wWith positive integer coefficients n; which
is equal to x; + - - - +x;. Then the linear relation

X1+ A Xe— Y = — Ry, =0
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is called the primitive relation associated with 2 and is denoted by Z(Z).
Suppose that X is a projective regular d-dimensional fan with a support function ¢.
2.9. DEFINITION. Let Z={x,, ..., x,} be a primitive collection in G(Z) and let
X+ X —ny = =y y,=0
be the associated primitive relation. The integer
Dy(2)=(x))+  +o(x)—n o) = —np@(Vm)
=0(x)+  +o(x)—olx + +x)

is called the degree of  relative to ¢. (It follows from 2.5 (iii), and 2.5 (iv) that D (2)
is always a positive integer.)

2.10. DeFINITION. Let o be an arbitrary d-dimensional cone in X with generators
Xy, ..., Xx; and let x be an element of G(Z). There exists a unique linear combination
a,;x;+ - +ayux,; with integer coefficients a,, .. ., a, which is equal to x. The integer

dq)(x’ 0)=@(x)—a;p(x,)— - —a,p(x,)
is called the distance between x and o. (It follows from 2.5 (iii), and 2.5 (iv) that
d,(x, 0)=0, and d,(x, 0)=0 if and only if xes.)

2.11. DErFINITION. Let o be an arbitrary d-dimensional cone in X with generators
X4, ..., Xxg and let x be an element of G(X). We call x a nearest generator of X relative
to o if x¢ o and for any generator x' ¢ o, one has d,(x,0)<d,(x, 0). (It is possible that
o has several nearest generators.)

We recall the computation of the Picard group Pic(V(2)) of a smooth toric variety
V(2) associated with a regular fan X (see [1], [6], [7]).

2.12. PROPOSITION. There exists a short exact sequence

0—zt Y P Pi(V(E)) — 0,

where F is the free abelian group whose generators are the elements of G(X), and the map
VY is defined by the integer matrix ¥ whose rows consist of coordinates of the corresponding
elements of G(2).

2.13. CorROLLARY. If X is a complete regular fan, then the dual group
Pic(V(2))* =Hom(Pic(V(2)), Z)

can be identified with the group A,(V(X)) of algebraic 1-cycles modulo numerical
equivalence, and it consists of all possible linear relations with integer coefficients among
the elements of G(2) <= Z°.
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2.14. REMARK. The group Pic(V(2)) consists of all functions é: R* - R which
satisfy 2.5 (i), (ii)) modulo integral linear functions. If

a;x i+ +ax,=0

is an integral linear relation among generators of X, which is an element R of 4,(V(Y)),
then

(R, 0)=a;6(x)+ - +ad(xy)

is the corresponding intersection number. Obviously, this number does not change its
value if we replace 6 by a sum §+f, where f: R‘—R is an integral linear function. In
particular, the degree of a primitive collection relative to a support function ¢ is also
an intersection number.

We finish this paragraph by the following important theorem.

2.15. THEOREM. Let X be a projective regular d-dimensional fan of cones in R? and
let Pr(X2) be the cone generated in A{(V(Z2))®R by all primitive relations. Then Pr(X)
coincides with Mori’s cone NE(V(ZX)) of effective 1-cycles (see [9]).

The proof of this theorem is contained in [6], [8], [9].

3. Someproperties. Let X be acomplete regular d-dimensional fan of conesin R?.

3.1. PROPOSITION. Let #={x,, ..., x,} be a primitive collection in G(X) with the
focus 6(P). Then P no(P)=J.

Proor. Let {y,,..., .} be the generators of o(2). It is sufficient to prove that
{x1s - s Xk b0 {y1s - - o Y} = . Assume, for instance, that x, =y,. It follows from the
definition of primitive collections that the element x=x,+ - - - + X, is in the interior of
the (k— 1)-dimensional cone ¢’ generated by x,, ..., x,. On the other hand, it follows
from the equality x, =y, and the primitive relation

Xi+ A Xe—ny— =Y =0
that
Xpt+ o +xe=m— Dy + - A1,

and the element x =X, + - - - + X, is in the interior of the cone ¢” generated by y,, ..., Y
@(if n,>1), or by y,,..., ¥, (f ny=1). By 2.4 (ii), one has ¢'=¢". The last equality
is possible only if {x,,...,x}={yy, ..., Vm} and ny=2, ny=---=n,=1, or if
{x3,. s xi}={Var-- s Vmy and ny;=ny=---=n,=1.

If 6" is generated by {y,, ..., ym}, then y; must coincide with one x,, ..., x;. This
contradicts the assumption that x,, . .., x, are different generators of X.

If 6" is generated by {y,, ..., Y}, then {x, ..., x,} ={»y, - .., Yn}. This contradicts
the fact that y,, ..., y,, are generators of a(2).
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Now we assume that X is a projective regular d-dimensional fan of cones in R*
with a support function ¢.

3.2. PROPOSITION. There exists a primitive collection P={x,, ..., x} in G(Z)
such that the associated primitive relation is of the form

X+ 4 x=0,
In the other words, the focus 6(?)={0}.

Proor. Since X is a complete fan, there exist generators x,, ..., x,, € G(X) and
positive integers 4y, . . ., a,, such that

ax;+ - +a,x,=0.
We can assume that the sum
al(p(x1)+ e +am¢(xm)

has the smallest possible value r (by 2.5 (iii), (iv), r is a positive integer).
Now we shall prove that in fact ¢, =---=a,=1 and {x,,...,x,} is a primitive

collection in G(2).
Obviously, x;, .. ., X, cannot be generators of a cone g€ X. So, there exists a subset
in {x,...,x,} (e.g. {x,...,x,}) which is a primitive collection. Let

X+ +x,—byy,—-—by,=0
be the corresponding primitive relation. One has
r=a;0(x)+ " +ape(xy)
=(a,—Do(x)+ - +(a,— Do(x,)
+aq+1(p(xq+ 1)+ e +am(p(xm)+(p(x1)+ e +(p(xq)
>(ay—De(x)+ - +(a,— Dolx,)
+aq+l(p('xq+l)+ e +am(p(xm)+bl(p(yl)+ e +bp(p(yp) .
On the other hand,
(@ —Dxi+ - +(ag—Dxgtag 1 X010+ +auXpy+byy, + - +b,y,=0.

This contradicts the choice of runless @, = - - - =a,,= 1, g=m and the subset of generators
{x1,..., x,} is a primitive collection in G(Z).
3.3. PROPOSITION. Let 6 be a d-dimensional cone in X and let x,, ..., x,; be the

generators of o. Consider two generators x, x' € G(X') which do not belong to ¢. By 2.6,
there exists a primitive collection P < {x, X1, ..., x;}. Then the following hold:

(1) if 6(P) contains X', then d,(x, 6)>d (X, 0),

(ii) if all generators of 6(P) are in o, then d (x, 6)= D (2);

(iii) there exists at most one primitive collection P = {x, x,, * - *, x4} such that the
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focus o(P) <o,

(iv) if x is a nearest generator in G(X) relative to o, then P is a unique primitive
collection in {x, xy, . .., Xz}, and d(x, 6)=D (P).

ProOF. (i) We first prove that if a primitive collection 2 (e.g., Z={x, x,
X}, k<d), gives rise to a primitive relation

oy

X+xi 4+ 4+x—nmy;— = n,yY,=0,
then
€))] d,(x,0)>n,d,(y,, 0)+ ** +1,d,(Vm 0) -
Let y;=b; 1x;+ - +b;4x, (b;j€Z), and x=a,x,+ - - - +a,x,;. Then

ay=niby + - +n,b,—1,

akb=n1b1,k+ Tt +nmbm,k—l .

Qo1 =n1by g1+ by,

ad=n1b1,,,+ to +nmbm,d .

By 2.5 (iii), (iv), we get

e(x)+ -+ o(x) +e(X)> ey + 1Y) -
It follows from 2.5 (ii) that

Y1+ 1Y) =10V )+ 1,00, -
Hence,

(p(x1)+ e +(p(xk)+d¢(-xa O')

=@(x)+ " +o(x) + @(x) —a;0(x,) =+ - — 240(xa)
>n0()+  F ) — a1 (X)) — - —a0(x,)
=n1(@(1) —by10(x1)— " —byp(x)+

1 (@Vm) = b1 P(X1) = * " — b a@(X)) + 0(x1) + -+ + (%)

=(p(X1)+ e +(p(xk)+nld¢(yla 6)+ e +nmd¢(ym’ O').
This inequality implies (1). Thus, d,(x, 6)>d, (X, 0), if x'=y, for some i (1 <i<m).
(i) Let
X+X1+ - +x—ny;— = ny,=0

be a primitive relation associated with the primitive collection 2. Then

D, (P)=0(xX)+@p(x)+  +@(Xp) =110 ) — " —1p®@(Vy) -
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Let yy, ..., V. be generators of o (i.e. {yy,..., Y} <{X1, ..., x4}). Using 2.5 (ii), we
get

a;p(x)+ - +a,0(x)=n0(y)+  + 1,00, —@(x) = —o(x) ,

where x=a;x; + - +a,x,. Hence, d (x, 6)=D(2).
(iii) Assume that there exist two different primitive collections 2, and 2, in

{x, X0, .0 x4}

such that 6(2,) c o and 6(#,) 0. Then, from the corresponding primitive relations, we
get two different linear combinations of x,, .. ., x; which are equal to x. This is impos-
sible, since x;, ..., x; form a basis of Z*.

(iv) This statement is a corollary of (i), (ii) and (iii).

3.4. T-invariant Divisors. Every generator xe€G(X) of a complete regular d-
dimensional fan ¥ in R? gives rise to a complete rugular (d— 1)-dimensional fan X in
R?~! corresponding to a smooth T-invariant divisor on V(X). The fan X, consists of
images of all cones in X containing x via the natural pojection R? - R?~! = R%/R{x).
The following easy statement describes all primitive collections for X ..

3.5. PROPOSITION. (i) The set G(Z.) of all generators for X consists of the images
X € RYR{x) of all generators x' such that {x, X'} generate a 2-dimensional cone in X.
(i) If {xy, ..., X} is a primitive collection in G(Z,), then

{x,x1, ..., x ), or {x,...,x}
is a primitive collection in G(X).

Proor. (i) The first statement is an immediate consequence of 3.4.

(i) Let {x,, - -, X} be a primitive collection in G(Z,). By 3.4, x, x,, - * -, x; are
not generators of a cone in Z. Hence, there exists a primitive collection Zc
{x, X1, ..., x}. Since {x, xy, ..., x;,}\{x;} generates a cone in Z for all i (1<i<k), we

get {xy,...,x}=2. Thus, Z={x, x;, ..., X}, or P={xy, ..., X}
4. Toric bundles. By [7], using the language of primitive collections and
associated primitive relations, we get the following characterization of toric bundles.

4.1. PROPOSITION. A regular complete d-dimensional fan X corresponds to a toric
variety V= V() which is a toric P*-bundle over a smooth (d— k)-dimensional toric variety
W if and only if there exists a primitive collection P ={x, ..., X, 4,1} < G(Z) such that

(i) the corresponding primitive relation is

X1+ 4+ x4=03
(i) PnP = for any primitive collection P’ = G(X) such that P +P'.

4.2. DErFINITION. We say that a regular complete d-dimensional fan  is a splitting



SMOOTH PROJECTIVE TORIC VARIETIES 577

fan if any two different primitive collections in G(X) have no common elements.

4.3. THEOREM. Let X be a splitting fan. Then the corresponding toric variety V(X)
is a projectivization of a decomposable bundle over a toric variety W which is associated
with a splitting fan of a smaller dimension.

Proor. By 4.1, we have only to prove the existence of a primitive collection with
zero focus (we cannot use 3.2 without knowing the projectivity of the fan X). We prove
the last statement by induction of #G(X).

By 3.5 (ii), any divisor D, = V(X) corresponding to a generator x;€ G(X) on the
toric variety V(2) is also associated with a splitting fan. This allows us to apply the
induction hypothesis.

Assume that any primitive collection in G(2') has no zero focus. Choose a generator
Xo€G(Z). Let {X,, ..., X} be a primitive collection in G(Z,,) having zero focus (by the
induction hypothesis, it exists). By 3.5 (ii), we have to consider two cases.

CasE 1. 2={xq, x;,...,x} is a primitive collection in G{X). It follows from
our choice of the set {X,, ..., X} that the sum S(?)=x,+x;+ - +x, is an integral
multiple of x,. By 3.1, S(£) cannot be a positive multiple of x,. Assume that
S(P)= —ax,, where ae Z. ,. Then

X+ +x=—(a+1x, .

Thus, S(2) is in the interior of the cone geX generated by {x,,...,x.}. By 3.1,
ono (#)=J, a contradiction. Hence only the next case is possible.

CASE 2. 2={x,,..., X is a primitive collection, and the sum S(Z)=x, + - - - + x,
is an integral multiple of x,.

Since every primitive collection has at least two generators, the number of primitive
collections for a splitting fan X is not greater than a half of the number of generators
of Z. So, there exist two different generators x;, x;e G(X) and a primitive collection
P={xy, ..., x) such that the sum S(?)=x,+ - - +x, is an integral multiple of both
x; and x;. This is possible only if x;= —x;. So, {x;, x;} is a primitive collection with
zero focus.

The statement is proved.

4.4. COROLLARY. A smooth complete toric variety V is produced from a projective
space by a sequence of projectivizations of decomposable bundles if and only if the
corresponding fan X(V') is a splitting fan.

4.5. REMARK. One can notice that any complete smooth toric variety with Picard
number 2 is associated with a splitting fan [4].

5. Toric varieties with p =3: the number of primitive collections. Kleinschmidt
and Sturmfels [5] have proved that an arbitrary smooth complete toric variety V of
dimension d with Picard number p=3 is projective. Consequently, for any complete
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regular d-dimensional fan with d+ 3 generators there exists a strictly convex support
function ¢ : R‘— R asin 2.5. Thus, the notions of the degree and the distance introduced
in §2 are well-defined.

5.1. Let X={x,,...,x;.3} be an arbitrary set consisting of d+3 elements. We
divide X into m nonempty subsets X,, X1, ..., X,,_; without common elements, where
m=2p+3 and p is a nonnegative integer. We can assume that

Xo={x1, ..., x,

Xi={Xgs1> > X,

Xm—lz{xsm_1+1a . -,xsmfl} ’

where so<s,*** <S,,-1=d+3 and #X,=s;—s,_, for i>0. It is more convenient in the
sequel to assume that the index i for X; is an element of the residue ring Z/mZ. We
denote by &'; the union

XX U UXy,.

5.2. PROPOSITION. Let X be an arbitrary complete regular d-dimensional fan with
d+ 3 generators. Then there exists a nonnegative integer p such that the set

GX)=X={xy,.. .,xd+§}

of all generators of X can be represented as a union of subsets Xy, X1, ..., X,,— without
common elements (see 5.1) and the corresponding subsets Z'; (i€ Z/mZ) are exactly all
primitive collections of the generators of X.

Proor. This statement is a simple translation of the well-known description of
combinatorial types of d-polytopes with d+ 3 vertices from the Gale-transform language
(see [3], [8]) to the one of primitive collections.

5.3. COROLLARY. Let x,€X,, x,€ Xy, x.€ X, be three of d+3 generators of a fan
2 as in 5.2. Then the elements of X \{x,, x,, x.} generate a d-dimensional cone of X if
and only if the zero point 0 of the complex plane C is in the interior of the triangle with the

vertices e*™m 2mibim qpd e?mivim

5.4. PROPOSITION. In the situation as in 5.2, one has m<7.

PrROOF. Assume that m> 7. Since m is odd, we have m>9. Choose three generators
Xg Xy, X.€X such that x,eX,, x,€X,, x.€X,, where m=3t+1¢,t'|<l. By 5.3,
XN\ {*a X3, x.} generates a d-dimensional cone ¢ of Z. By 5.2, for each x;e {x,, x;, x.}
there exist at least two primitive collections which contain only x; and generators of a.
This contradicts 3.3 (iv), since at least one generator form the set {x,, x,, x.} is a nearest
generator relative to o.

5.5. PROPOSITION. In the situation as in 5.2, one has m+#17.
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FIGURE 1.

PrOOF. Assume that m=7. We have seen primitive relations

RE): Y, xi— Y. a, ;x;=0,
xi€Zr xjea(Zy)
where a, ; are positive integers and r € Z/7Z. It is convenient to use a picture of heptagon
with the vertices ie?™"'7 e C (see Figure 1).

5.6. LEMMA. For any o€ Z|1Z, one has
O-(Xa)nG(Z)CXa+4UXa+5 .

PROOF OF LEMMA 5.6. Choose x,€ X, 1, X4€ X, 43, X. € X 1. By 5.3, X\ {x, X3,
x.} generates a d-dimensional cone ¢ in Z. By 3.3 (iv), in {x,, x,, x.} only x, can be a
nearest generator relative to g, since X, € %, 4 ;N % y13 and x, € X4y 4N % 4+ 5- By 3.3 (D),
o(%,) does not contain x, and x,.. But we can choose an arbitrary element in &, as x,.
So, o(X)NX,+3=C. Similarly, o(Z)nX,;,6=. By 3.1, o(X)n(X,uX,4 U
X,+,)=. Thus, the lemma is proved.

We return to 5.5.
We can take a e Z/7Z such that

D (% ,)=max{D,(Z,)|peZ|1Z}.

Choose again x,eX,.{, X3€X,+3, X.€X,;¢. Using 5.6 and 3.3 (ii)), we get
D (% ,)=d,(x,, o), where g is generated by X\ {x,, X, X.}. We have already seen in
the proof of 5.6 that in {x,, x,, x.} only x, can be a nearest generator relative to o€ X.
So, d,(x, 0)<d,xp o) and d,(x,, 0)<d,x., o). Assume, for instance, that
d,(xy, 0)<d,(x., o). Applying 5.6 after the cyclic permutation a+ a+2, one has
X, ¢ 0(%,+,). Since x,€ X, 4 », if follows from 3.3 (i) that x, ¢ 6(Z, + ,)- Hence, by 3.3 (ii),
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we have D (%, +,)=d,(x;, 0). Consequently, D (%,+,)>D,(%,). This contradicts the
choice of e Z/7Z. Thus, the case m=7 is impossible. '

Propositions 5.4 and 5.5 imply the following theorem.

5.7. THEOREM. If X is a complete regular d-dimensional fan with d+ 3 generators,
then the number of primitive collections of its generators is equal to 3 or 5.

If 2 has exactly three primitive collections in G(X'), then we come to a particular
case of 4.3. In this case the associated smooth toric variety V(Z) is isomorphic to a
projectivization of a decomposable bundle over a smooth toric variety W of a smaller
dimension with Picard number 2. Hence, we have to investigate only the case of five
primitive collections in G(X). This is the object of the next section.

6. Toric varieties with p =3: the classification of primitive relations. Let X be a
complete regular d-dimensional fan of cones in R? with d+3 generators and with a
support function ¢.

We use the notation of the previous section and assume that G(Z') contains exactly
five primitive collections #,=X,uUX,,,, where ae Z/5Z. In our investigation it is
convenient to use a picture of the pentagon with vertices ie?™** e C (see Figure 2).

6.1. PROPOSITION. Suppose that 6(X,)nG(Z)< X, 5 for all o€ Z|SZ. Then for any
a€ Z/5Z at least one of the following statements hold:

(i) o(Z42)nG(2)=Xy

(1) o(Zo43)NG(2) =Xy .

Proor. It follows from our conditions that ¢(%,,,)NG(Z)<= X, and o(Z,+3)N
G(2)= X, , . Assume that there exist x,€ X, and x,€ X, such that x,¢ a(Z,,) and
xp ¢ 0(Z 4+ 3). Choose an arbitrary element x.€ X, , ;. By 5.3, X\ {x,, X;, x.} generates a

Xo

FIGURE 2.
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d-dimensional cone o€ X. Thus, we have two primitive collections %, ,, Z,+3 < X\
{x4 x,} such that 6(Z,+,), 6(%,+3)<o. This contradicts 3.3 (iii).

The sum S(Z,) of all generators in %, is denoted by S,. Let P, be the sum of all
generators in X,.

6.2. PROPOSITION. Suppose that c(Z )N G(X)< X, 3 for all ue Z|SZ. Then up to
a cyclic permutation of indices, one has Sq=0, S;=P,, S,=0, S;=P,, S,=P,.

Proor. Using6.1 forall a e Z/5Z, one can easily conclude that there exists f € Z/5Z
such that

0(Z5+2)nG(2)=X; and o(Zp)NG(Z)=Xp, 5.
Thus, we have
Pyir+Pgi3=8p.,=Ps+Pp, Py+ Py =Sg=Pg 3+Pp.5,
where Pyea(%X ;4 ,) and Pp,3€a(Z,). It follows from these two equalities that
Py + Py =Pp+Pps.

By 5.3, X3u X, ;5 is contained in a d-dimensional cone o€ X. So, the focus o(%, ) is
generated by a subset in XU X;, 5. On the other hand, it follows from our conditions
that (6(2'5+ 1) N G(2)) = X, 4. Consequently, Py and Py, 3 must be zero and S, , = Pp,
Sp+2=Pp, Sp,;=0. Using again 6.1, we get

0(Zp+a)NG2)=Xpyy, OF 0(Zp13)nG(Z)=Xpy .
In the first case, we can repeat the above arguments relative to
0(Zp+0)NG(2)=Xp,, and a(X;p,,)nG(2)=X;.

As a result, we obtain S;,3=0, S5, ,=P;,,. In the second case, applying the same
arguments to

0(Zp+3)nG(2)=Xp,; and o(Xp)NnG(2)=Xp,5,
we get Sy 3=Ps. 4, Spi4=0. Thus, the statement is proved.

6.3. PROPOSITION. Suppose that a cone o(Z,) contains a generator x,€ X, ,. Then
the following statements hold:

(1) Xon(0(Z s DVO(Zy42)V0(Z413)) =5

(i) S,+,=0;

(i)  o(Zp+ )NG(X) =X, 45

(iv) o(Z43)nG2)=Xys 15

(V) Sar1=Posar Sur3=Poiy.

ProOF. (i) Choose arbitrary x, € X, x.€ X, 1 4- By 5.3, X\ {x,, X}, X} generates a
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d-dimensional cone ¢ in X. By 3.3 (i), d,(x;, 0) >d(x,, 0). By 3.3 (iv), x, is not a nearest
generator relative to . Consequently, d,(x,, 6)>d,(x,, 6) and x, ¢ 0(Z, ;1) U(Z 44 2) U
a(&,) (see 3.3 (i)). Thus, X,n(0(Z 4+ DV (X1 2)V0(X 4 3) =, since x, is an arbitrary
element of X,.

(i) Assume that there exists x,€ X, such that x,eo(%,,,). Take an element
X €X, 44 Then X\ {x,, x,, x.} is the set of generators of a d-dimensional cone o€ Z.
By 3.3 (i), it follows from x,ea(Z,) that d,(x,, 0)>d,(x,, 0). Similarly, x,€ (%, ,)
implies d(x,, 6) > d,(x,, 6). This is a contradiction. So, 6 (%, +,) N X, .+, =. Using 3.1,
one has (%, ,,)N (X1, UX,13)=. By 6.3 (i), one has o(%,,,)n X,=. It suffices
to prove that 6(Z,,,)N X, ,=.

Assume that there exists a generator x,€ X, ,, such that x,e (% ,,,). Using 6.3
(i) after the cyclic permutation ar>a+2, we get

Xo2N(0(Z 4 3)V0(Z s ) VO(Z)) =T -

This contradicts x,€ a(Z,).

(iii)) By 6.3 (1) and 3.1, 0(% 4 1) N (X, 41U X, 4, UX,)=(F. Assume that there exists
X, €Xyr3nNo(&,+1). Using 6.3 (ii) after the cyclic permutation ar—o+1, one has
(4 ,+3)=0. This contradicts 3.3 (iii), since we have o(%,,,)=0(Z,+3)=0. Thus,
02+ )NGR)= X, g

Suppose that there exists x, € X, , 4 such that x, ¢ 6(%,+4)- Take an element x € X,,.
Then X\ {x,, x;, x.} is the set of generators of a d-dimensional cone 6 e X. We get two
primitive collections &, ,; and '+, in G(Z)\{x,, x.} such that o(Z,, )V6(Z,+,) 0.
This contradicts 3.3 (iii).

(iv) By 6.3 (i) and 3.1, 6(Z,4+3)N(X, 13U X, ., UX,)=J. Assume that there exists
Xp € Xyt 2N0(Z,+3) Using 6.3 (ii) after the symmetry o+ f+—a— f of pentagon and the
cyclic permutation a—>a+ 1, one has o(%,,,)=0. This contradicts 3.3 (iii), since we
have 0(%,)=0(¥,+,)=0. Thus, 6(Z,+3)NG(E)= X, 4.

Suppose that there exists x,€ X, ,, such that x,¢d(Z,,3). Take elements x € X,
and x € X, ; 5. Then X\ {x,, x., x4} is the set of generators of a d-dimensional cone g€ X.
We get two primitive collections %,,, and %,.; in G(Z)\{x,, x.} such that
(X 4+ 2) V(X 44+ 3)=o. This contradicts 3.3 (iii).

(v) By 6.3 (iii) and 6.3 (iv), one has

Poi1 4P 2=8sv1=Pasat+Pois, PosztPoia=S;13=Pyr1+Poyy,
where P, ,e0(%,+,) and P, ,,€0(Z ;). It follows from these two equalities that
Poia+Pyy3=Poiy+Pois.

Thus, 6(Z ,+,)NG(Z)= (X, 41 UX,+4). Onthe other hand, we have S, , , =0 (see 6.3 (ii)).
So, P,.,=P,,4s=0and S,,;=P,+4, Sy+3=P,,,. The statement is proved.

6.4. COROLLARY. Suppose that a cone o(Z',) contains a generator x,€ X, ,. Then
one has
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(0(‘%’.a)uO-('%‘a+4))nG(Z)CXa+2 U'%‘a+3 .

PrROOF. Assume, for instance, that there exists x,e X, ;no(Z,+4). By 6.3. (i),
after the cyclic permutation ar—a+4, one has (%, ;) =0. This contradicts 6.3 (v).

Now we assume that there exists x,€ X, ;4 na(%Z,). By 6.3 (ii), after the symmetry
o+ pr—a—p and the cyclic permutation a+—a+ 1, one has o(Z,,3)=0. This again
contradicts 6.3 (V).

Using 3.1, we finish our proof.

6.5. PROPOSITION. Suppose that a cone o(Z,) contains a generator x,€ X,. Then at
least one and only one of the following statements hold.:

(i) Xyrs3c0@)NGE);

(i) Xpr2c0(Zy14)NG(2).

Proor. We first assume that there exist x,€%,,, and x,e%,,; such that
Xy ¢0(X,44) and x,.¢ a(Z,). Choose an arbitrary element x,€ X,. By 5.3, X\ {x;, x., x;}
generates a d-dimensional cone o €X. Thus, we have two primitive collections %', 4,
X = XN\ {x, X} such that o(Z, ), 6(Z,) =o. This contradicts 3.3 (iii). Hence, the “at
least one” part is proved.

Assume then, for instance, that (i) holds. Since X, , U X, 5 is a primitive collection,
at least one element x,€ X, , is not a generator of a(%,). So, we have

Pa+Pa+1:Sa=Pa+3+P’

where Pe a(4,) is a linear combination of (X, , U X, + ;)\ {x,} with nonnegative integral
coefficients. On the other hand, it follows from 6.3 (v) that

Pors+Pria=Pyiy.
These two equalities imply
P,oa+P,=P.
Hence, 0(%,+4) < 0(%,). This shows that x,¢ 0(%,,4) and X, ., ¢ 0(Z,+4.)NG(2).
We can now finish our classification of primitive relations.
6.6. THEOREM. Let us assume that X,=X,U X, ,, where a€ Z/5Z,
Xo={vis  svpts Xi={y ..y, Xo={z4,..., Zp,} s
Xo={t, ...t} , Xo={uy,...,u,},

and po+p,+p,+ps+psa=d+3. Then any complete regular d-dimensional fan X with the
set of generators G(X)=|JX, and five primitive collections &, can be described up to a
symmetry of the pentagon by the following primitive relations with nonnegative integral

coefficients ¢, ..., Cpy by, ..., by

Vit AU Yt Y =z — =z, — (b D)t — - — (b, + 1)1,,=0,
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ittty tz otz —uy— 0 —u,, =0,
4z, + 1, =0,
t1+-‘--ﬁtm+u1+"'+u,,3—y1—"'—yp,=0,

g+t o+ o, —CZ— CpaZp,— b1t — —bpty, =

PROOF. One of the following two conditions hold:

(i) o @ )nGX)=X,,, forall ue Z/5Z,

(ii) up to a symmetry of the pentagon there exists a cone o(%,) containing a
generator X, €%, -

In the first case, we can use 6.1 and get the above primitive relations for a=0,
where ¢; =+ =c,,=b,="-=b, =0.

In the second case, we can use 6.3-6.5 and get the above primitive relations, where
Zq :xb, 0(=0,

P=cyzy4 - +c,,zp,+ byt + - +b,t,,

(We use the notation in the “only one” part in the proof of 6.5).

We can take the set

(V15 oo s Vpgs Yoo oo s Vpis Zas v o5 Zpys Lis v os Upyy Uy ooy Uy}

as a basis of Z%. Thus, ¢, y,, v, are defined by

Zl=_Zz_.-~_Zp2_tl_..._l‘pa,
y1=_yz__..._ypl+Zl+...+Zp2_ul_...__u
Up=—Uy— """ — Uy, —V;— " =V, +CrZy+ " +Cp, ,,2+b i+t b,t,, .

7. Open questions. The most interesting problem related to smooth complete
projective toric varieties seems to me the following:

7.1. MAIN CONJECTURE. For any d-dimensional smooth complete toric variety with
Picard number p defined by a complete regular fan X, there exists a constant N(p) depending
only on p such that the number of primitive collections in G(X) is always not more than N(p).

It is easy to see that N(1)=1, N(2)=2. Using our result in §5, we get N(3)=S5. For
2-dimensional toric variety with p+2 generators the number of primitive collections
equals (p—1)(p+2)/2. In connection with the conjecture, it is interesting to ask the
following:

7.2. QUESTION. Does there exist for p>1 a complete regular d-dimensional fan X
with p+d generators such that the set G(X) contains more than

(p—D(p+2)/2

primitive collections?



SMOOTH PROJECTIVE TORIC VARIETIES 585

REFERENCES

[1] V.1 DaniLov, The geometry of toric varieties, Uspechi Math. Nauk (2), 33 (1978), 85-134.

[2] J. GRETENKORT, P. KLEINSCHMIDT AND B. STURMFELS, On the existence of certain smooth toric varieties,
Discrete Comput. Geom. 5(1990), 255-262.

[3] B. GrUNBAUM, Conves Polytopes, John Wiley and Sons, London-New York-Sydney, 1967.

[4] P.KLEINSCHMIDT, A classification of toric varieties with few generators., Aequationes Math. 35 (1988),
254-266.

[5] P. KLEINSCHMIDT AND B. STURMFELS, Smooth toric varieties with small Picard number are projective,
MIP, preprint, Univ. Passau, June, 1989.

[6] T. Oba, Covex Bodies and Algebraic Geometry—An Introduction to the Theory of Toric Varieties,
Ergebnisse der Math. (3) 15, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo
1988.

[7]1 T.ODpAa, Lectures on Torus Embeddings and Applications (Based on Joint Work with Katsuya Miyake),
Tata Inst. Fund. Research 58, Springer-Verlag, Berlin, Heidelberg, New York, 1978.

[8] T.Opa anDp H. S. PaRk, Linear Gale transforms and Gelfand-Kapranov-Zelevinskij decompositions,
Tohoku Math. J. 43 (1991), 375—399.

[9] M. Rep, Decomposition of toric morphisms, in Arithmetic and Geometry, papers dedicated to 1. R.
Shafarevich on the occasion of his 60th birthday (M. Artin and J. Tate, eds.), vol. II, Geometry,
Progress in Math. 36, Birkhauser, Boston, Basel, Stuttgart, (1983), 395—418.

CHAIR OF ALGEBRA

DEPARTMENT OF MECHANICS AND MATHEMATICS
Moscow STATE UNIVERSITY

LENINSKIE GORY

119899, Moscow

USSR

and

FB 6 MATHEMATIK
UNIVERSITAT-GESAMTHOCHSCHULE ESSEN
UNIVERSITATSSTRABE 2

D-4300 EsseN

FEDERAL REPUBLIC OF GERMANY








