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Abstract. This paper is devoted to the systematic study of some qualitative
properties of solutions of a nonautonomous nonlinear delay equation, which can be
utilized to model single population growths. Various results on the boundedness and
oscillatory behavior of solutions are presented. A detailed analysis of the global existence
of periodic solutions for the corresponding autonomous nonlinear delay equation is
given. Moreover, sufficient conditions are obtained for the solutions to tend to the unique
positive equilibrium.

Introduction. Using the adsorption theory of chemical kinetics, Ciu and Lawson
[1] established the following equation concerning the growth of single populations

(i.i) nt
Af 1 W f ϊ/γ
iΛL -L Λι\Li Λ/γ*.

where x(t) is the population density at time t; xm is the maximum value of x allowed
by the limiting nutrient, which is equivalent to the so-called carrying capacity; x'm is a
parameter which is related to the amount of nutrient and its utilization efficiency by
an organism (in units of concentration); μc is a parameter related to the growth velocity
(in units of time"1), i.e., the so-called intrinsic growth rate.

The ratio of xm and x'm is a very important parameter for Equation (1.1). It is
assumed that [1-4] 0<xm/x'm<\. When χm = χ'm, (1.1) reduces to the Malthus expo-
nential equation, and when x'm»xm, (1.1) reduces to the well-known logistic equation. In
other words, the Malthus and logistic equations are two special cases of Equation (1.1).

Most growth observed in nature seems to support the new equation (1.1) rather
than the logistic hypothesis. In the logistic equation, the per capita growth rate is
assumed to be linear [1— x/xm], so that the population growth rate μcx(t)[l—x(ή/xm~]
always achieves its maximum at 0.5xm. However, as observed by Thompson [5],
microorganisms, plants and animals all show a maximum growth velocity when the
population density is greater than 0.5xm. One can show easily that the maximum growth
velocity of (1.1) is achieved at xm(l— \Jl— fy'1 where c = xjx'm. Since 0 < c < l , we
have y/l — c<l-c/2, thus l - ^ l - o c / 2 , which implies (l—yJT^c)c~1>0.5. This
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fact is of particular importance in forest management. Since a good estimate of the
maximum velocity of the population growth and the time at which this occurs is necessary
for the reasonable estimates of indices, such as the cutting age, the cutting intensity
and the cutting cycle period.

As pointed out by May in [6], due to the effect of aging, digestion or other factors,
it is necessary and more realistic to incorporate time delay into the per capita growth
rate of the population, which may result in the following delay differential equation

<••?>• *Mw-*;'
l-x(t

where τ(ί) is continuous and positive. If one takes into account the death rate of the
population, then μc may be an arbitrary real function. In the follwing, we denote it by
r(ί), which is assumed to be continuous. By letting u(t) = x(t)/xm, c = xjxf

m, Equation
(1.2) reduces to

From an ecological point of view, we will restrict our attention to the bounded positive
solutions of Equation (1.2). Denote

(1.4) ^ 0 = {/-τ(ί):ί-τ(ί)<0,ί>0}u{0}.

For θeE0, we assume

(1.5) c-
1
>u(θ)

where φ(θ) is continuous on Eo. In the rest of the paper, we assume τ(r)>τ>0, for all
t>0. It is well-known that Equation (1.3) with initial condition (1.5) always has a
unique positive solution (locally) (see Hale [7]).

For any given constant K, we say the solution u(t) of (1.3) is oscillatory with respect
to K, if there is a positive sequence {/m}, lim,,^ /„= + oo, such that u(tn) = K, n= 1,2,
Otherwise, we say u(t) is nonoscillatory with respect to K. When K=0, we simply say
the solution is oscillatory or nonoscillatory. It is easy to see that all the positive solutions
of Equation (1.1) are monotone and tend to xm. Due to the effect of the introduced
time delay, it is natural to study the possible oscillatory behavior of the solutions of
Equation (1.3) and the existence of periodic solutions. This will be our principle theme
in the following sections.

For convenience, we would like to introduce the following change of variable by
letting

(1.6) ΊO-Ά
1 — cu{t)

Then, Equation (1.3) reduces to
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(1.7) y(t)= - ^ - ( 1 -y(tW -cy(t))y(t-τ(ή).
1-c

The initial function becomes

(1.8) y{θ) = [\-φ{θ)M[\-cφ{θy], θeE0.

Obviously, — oo<y(θ)< 1, y{0)< 1. Thus, the study of the oscillatory behaviour of

solutions of (1.3) with respect to 1 is equivalent to the study of the oscillatory behavior

of solutions of (1.7) with respect to zero.

It is easy to see that the solution of (1.3) with initial condition (1.5) is positive,

which implies that the solution of (1.7) and (1.8) satisfies 1— y(t)>0, and 1— cy(t)>0.

In the next section, we establish some results on the boundedness of solutions for

Equations (1.3) and (1.7). These results are essential for the proof of the existence of

periodic solutions of these equations in Section 3. Section 4 and Section 5 contain oscil-

latory results for Equation (1.7) under various assumptions. Section 6 presents suf-

ficient conditions for the solutions to tend to the unique positive equilibrium u(t) = 1 in

Equation (1.3). We complete the paper by a brief discussion.

2. Boundedness of solutions. Generally speaking, solutions of (1.7) and (1.8) may

not be bounded. In fact, they may not exist for all ί>0. For example, let τ(t)= 1 and

r(ί)>0. Then, for 0 < / < l , it is easy to obtain the solution of (1.7) and (1.8) by direct

calculation, which takes the form

(2.1) y(t) = 1 -(1 -c) p ^ | e x p ( - ( 1 - c ) ^ r(θ + \)y(θ)dθ)j-cj \

Obviously, for some choices of r(ί), c and y(θ), - 1 < 0 < O , there is a ί*e(0, 1), such

that

(2.2) c = 1 p ^ e x p f -(1 -c) f r(θ+ \)y(θ)dθ) ,

which implies

(2.3) \imy(ή=-oo.
ί->ί*

This is due to the fact that for some initial function φ(θ), — 1 <0<O, the solution u(t)

of Equation (1.3) may achieve the value c'1 at some time /*, 0 < α * < l , which will

render the Equation (1.3) meaningless at time /* + 1 . For this sake, it is necessary for

us to consider first the boundedness of the solution of these equations.

THEOREM 2.1. In Equation (1.3), suppose t — τ(t) is continuous and nondecreasing,

\imt^o0(t — τ(t))= +00, and there is a τ > 0 such that τ{t)>τ for t>0. Assume further
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that r(t) > r0 > 0 is continuous,

σ = s u p | r(θ)dθ,t>0

is finite, eσ<c~1, and that the initial function φ(0) satisfies 0 < φ(θ) < c ~~1, - τ(0) < θ < 0,
φ(ϋ)<c~ιe~σ. Then the solution u(ή of (13) is bounded, andlim sup^^ u(t)<eσ.

I
have

(2.4)

PROOF. It is easy to see that there exists a 7>0 such that 7=τ(F). For 0<t<T, we

l-cκ(0-τ(0))

Since 0<φ(θ)<c~\ l-u(θ-τ(0))/( 1 -cu(θ-τ(0)))< 1, thus, for 0< t<T

(2.5)

Obviously, (2.5) implies that for 0<t<t,

(2.6) wW

Hence, we have shown 0<w(ί)<c"1, for — τ(0)</<^
Assume tί satisfies tί—τ(t1) = ϊ. Then for t<tί9 we have

(2-7)

since (1-φ(ί-τ(ί))/(l-cu(ί-τ(ί)))>0. From (2.7), we have

(2.8)

In particular, we have

(2.9)

which yields

(2.10)

Hence

(2.11)

This implies for T<t<tί,

«(ί)<w(ίo)exp( I r(θ)dθj.

u(t)<u(ί-τ(ί))expU r(θ)dθ ) ,
't-τ(ί)

M(t-τ(ί))>«(t)exp r(θ)dθ).
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ί \-u(t)e~
(2.12) ύ(t)<r(t)u(t) γ—

\l—cu(t)e

Since r(t) > r0 > 0, we see that all positive solutions of

l-u(t)e~
(2.13) ύ(t) = r(t)u(t)

l-cu(t)e~

with initial values less than δ>0, eσ<δ<c xeσ will be bounded by δ and have eσ as
their limit. Therefore, for T<t<t1, 0<w(ί)<<:~1 <c~1eσ. By repeating this argument
(assume that t2 — τ(t2) = t1, we can show that (2.12) holds for t1<t<t2. Define
ti+1— τ(ti+1) = th then /t-> + oo, as i^ + co), we see u(t) is bounded and satisfies (2.12)
for all t>T, thus the solution u(t) of (1.3) is bounded by u(0)eσ<c~1, and

limsup u(ή<eσ .
ί-> + 00

This completes the proof of the theorem.

The following theorem is equivalent to Theorem 2.1 for Equation (1.7). It is ob-
tained by applying the transformation (1.6).

THEOREM 2.2. Suppose r(t) and τ(t) are the same as described in Theorem 2.1, and
the initial function y(θ), #e[-τ(0),0] satisfies y(θ)<l, y(0)>(l-c~1e~σ)/(\-e~σ).
Then the solution y{t) tf/(1.7) is bounded, and lim inf^^ y(t)>(l -eσ)/{l — ceσ).

We call a solution of a differential equation global, if it exists for all t>0. In the
rest of this paper, we will consider only global solutions of the concerned differential

equations.

THEOREM 2.3. Suppose r(ή and τ(t) are positive and continuous, lim,^ + 00(/ — τ(ί)) =

+ oo and §Qr(θ)dθ= +oo. Then every global solution of (1.3) is either oscillatory with

respect to 1 or tends to 1 as ί~* + oo. If we assume further that t — τ(t) is increasing, and

there is a t1>0, such that for t>t1

Γ
0< r{θ)dθ<σ, and eσ<c~1.

Λ-τ(ί)

Then every oscillatory solution of(\3) (with respect to 1) has maximum value less than
eσ,for t>T+tί9 where T=τ(Γ).

PROOF. Suppose that 1 < u(t) < c~x for /> T. Since u(t) is global, we see that ύ(t) <0
for t>T*, where Γ*-τ(Γ*)> T, and hence

(2.14) lim u(t) = μ>\ exists .
ί-> + oo

If μ > 1, then we have
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(2.15) ύ(t)<r(t)-μ-^- for t>T* .
\—cμ

(2.15) together with the assumption \™r(θ)dθ = + oo yields

(2.16) lim w(ί)=-oo.
t~* + 00

This contradicts (2.14). Therefore, we have shown that μ must be 1.

Similarly, we can prove if 0 < u(t) < 1, for t > Γ, then lim, _ + ^ u(t) = 1.

Now, suppose u(t) is oscillatory with respect to 1. Since t — τ{t) is increasing and

\imt^ + o0(t — τ(t))= +oo, we see there is at least one I, 7>0, such T=τ(ϊ). Assume u(t)

achieves its local maximum at t*, t* >ϊ+tί. Then ύ(t*) = 0, which implies u(t* — τ(ί*)) = 1,

since u(t)>0 for all />0. Thus

u(t*) = ι<ί -τ(ί*))exp( r(θ) \ X\}J dθ <e* .
\Jt*-τin l-cu(θ-τ(θ)) )

Since eσ<c~1, we see that u(t) must be bounded and has maximum less than eσ for

t>t-\-t1. This proves our theorem.

Obviously, Theorem 2.3 indicates that the last statement of Theorem 2.1 can be

strengthened as u(t)<eσ for t>T. Again, by applying the transformation (1.6), we have

the following theorem for Equation (1.7), which is equivalent to the above theorem.

THEOREM 2.4. Suppose r(t) and τ(t) are positive and continuous, limf ̂  + ^(t — τ(t)) =

+ oo, and j^r(θ)dθ = + oo. Then every global solution of (1.7) is either oscillatory or tends

to zero as t—• + oo. If we assume further that

r(θ)dθ: / > θ i < + o o , eσ<c~1 ,

andt — τ(t) is increasing, then every oscillatory solution of (1.7) has minimum value greater

than (l-eσ)/(\-ceσ),for t>T, where F=τ(F).

3. Existence of periodic solutions. In this section, we assume r(t) = r, τ(t) = τ,

where r, τ are two positive constants. Under this assumption, we can consider the

existence of periodic solutions for the autonomous equations (1.3) and (1.7). Clearly,

the local stability of the steady state u(t)= 1 in (1.3) is the same as the local stability of

the steady state y(ή = O, and the existence of positive periodic solutions of (1.3) is

equivalent to the existence of a periodic solution y(t) of (1.7), such that — oo <y(t)< 1.

For this sake, we will restrict our attention to Equation (1.7).

Our analysis will be based on the Hopf bifurcation theorem (Hale [7, pp. 245-249])

and a general fixed-poiont theorem due to Nussbaum [8] (also in Hale [7, p. 249]).

Letting z(t)= —y{t\ (1.7) becomes
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(3.1) ^() (
\ — c

and (1.8) becomes

(3.2) - l ^ z ( 0 ) = - [ l - 0 ( θ ) ] / [ l - ^ ( θ ) ] < + o o , 0e[-τ,O].

Let t' = τ~1t, (x = rτ/(\—c) in (3.1), and then drop the primes on t. We have

(3.3) z(t) = -α( l +z(ί))(l + cz(t))z(t-1),

and

(3.4) - l < z ( 0 ) < + o o , 0 e [ - l , O ] , z ( 0 ) > - l .

The linearized equation of (3.3) at z(ί) = 0 is

(3.5) z ( ί ) = - α z ( ί - l ) .

Its characteristic equation is

(3.6) λeλ + oc = 0.

The following lemma is proved in Hale [7, pp. 254-255]. It can also be proved easily

by other methods (e.g. see Freedman and Kuang [9]).

LEMMA 3.1. ίfθ<a< π/2, every root of (3.6) has a negative real part. If a>e~1,

there is a root λ(α) = y(α) +//?(α) of (3.6) which is continuous together with its first deriv-

ative in a and satisfies 0<β(α)<π, β(π/2) = π/2, y(π/2) = 0, y'(π/2)>0, and y(α) > 0 for

α>π/2.

As an immediate consequence of this lemma and the Hopf bifurcation theorem

(Theorem 1.1 in Hale [7, p. 246]), we have the following theorem. For more details,

see Hale [7, pp. 245-249].

THEOREM 3.1. Equation (3.3) has a Hopf bifurcation at α = π/2.

From Lemma 3.1, we see if 0<α<π/2, then the zero solution of (3.3) is locally

asymptotically stable (see Hale [7]), and when α>π/2, the zero solution of (3.3) is

unstable. This is equivalent to saying that u(t)=l is locally asymptotically stable if

rτ < π(l — c)/2, and is unstable if rτ > π(l — c)/2.

Similarly to Lemmea 4.2 in Hale [7, p. 255], we have the following results for

Equation (3.3). As pointed out earlier, all solutions considered here are assumed to be

global.

LEMMA 3.2. For Equation (3.3), the following statements are true.

(i) If z(0)> — 1 and z(t) is nonoscillatory, then z(t)—•() as t-+ + oo.

(ii) // -l<z(0)<[c-^ ( c - 1 ) α -l]/[l-β ( c - 1 ) α ] and e{1~c)a<c-\ then z(t) is

bounded. Furthermore, ifz(t) is oscillatory, then z(t)< [e{l~c)α- 1]/[1 — ce(ί~c)Λ\for t>\.
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(iii) Ifz(0)> — 1 and a>e~1, then z(t) is oscillatory.

(iv) // z(0) >0, - 1 < θ <0 lor if z(θ) > - 1 , z(θ)< 0, - 1 < θ <0], then the zeroes

{if any) of z(t) are simple and the distance from a zero of z(t) to the next maximum or

minimum is > 1.

PROOF, (i) is contained in the first half of Theorem 2.4.

(ii) is a combination of Theorem 2.2 and the second half of Theorem 2.4.

(iii) can be viewed as a special case of a more general result to be proved in

Section 5. We omit its proof here to avoid repetition.

(iv) Suppose z(to) = 0 and z(r)>0, to-l<t<to. For to<t<to+\, z(t)<0.
Similarly, if z(t) < 0 for t0 -1 < / < t0 and z(ί0) = 0, then z(t) > 0, for t0 < t < t0 + 1. Thus,

the assertions of (iv) are obvious and the lemma is proved. •

Let K be the class of all functions φeC [where C is the space of real continuous

functions defined on [—1,0], with the norm defined as | φ \= max -1 <»<ol Φ(β)\> f° r

</>eC], such that 0<(/>(#)<[c~V c ~ 1 ) a - 1]/[1 - e ( c - 1 ) a ] , - 1 < 0 < O , φ ( - l ) = 0, Φ is

nondecreasing. Then AT is a bounded, closed and convex set in C. If α > 1, φeK, φ^0,

we denote z(φ, oc)(t) as the solution of Equation (3.3) with initial function as φ. Let

(3.7) p(φ, α) = min{/: z(φ, α)(0 = 0, z(φ,

This minimum exists from Lemma 3.2, part (iii). Also p(φ, α)> 1. Furthermore, Lemma

3.2, part (iv) implies z(φ, ot)(t) is positive and nondecreasing on (p(φ, oc),p(φ, α ) + l ) .

Suppose ce2il-c)<x<\. Then e ( 1 - c ) α < c - ^ ( c - 1 ) α , which implies

(3.8) [e{1 ~ c ) α-1]/[1 -ce { 1 " c ) α] < [<Γ ίeic~1)α- 1]/[1 -e { c ~

Consequently, if τ(φ, oc) = p(φ, α)+ 1, then the mapping

is a mapping of K into itself, where zτ(φa)(φ, oc)(θ) = z(φ, oc)(τ(φ, α) + 0), for — 1 <θ<0.

Since z{φ, ot)(τ(φ, α)—1)>0, the continuity of z(φ, oc)(t) in /, φ, cc implies that τ(φ, α) is

continuous in (AΓ\{0}) x (1, oo). In fact, the following stronger conclusion is true.

LEMMA 3.3. τ(φ, α) is completely continuous in (Λ^\{0}) x (1, oo).

PROOF. First of all, we claim a solution z(t) = z(φ, ot)(t), φeK, cannot take a time

longer than 2 to become negative because, if z(l) = η > 0, then z(t) > η for 0 < t < 1. Since

Equation (3.3) is equivalent to

(3.9) A±^=i±^W-( l - φ ['Z(θ-ί)dθ) ,
l+cz(t) l+cz(ί0)

 PV J,o /
we have
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(3.10) l±*2)<l±l,-u-^.
l+cz(2) l+cη

This implies

(3.11) <
+ cz(2)

Let q(η) = ((\+η)l(\+cη))e-il-c)"»-\. Then «(<>) = 0, and tf(f/) = [((l +ιy)/(l
l)α + (l-c)/(l+cf/)2]έΓ(1~c)α*<0for ι/>0. Thusz(2)<0.

For any bounded set 5 g ^ and any φeB, αe(l, oo), let-to(φ, α)<3 denote the
point where the solution z(φ,oc) has a minimum. Since to(φ,aι)>l, it is well-known
(Hale [7]) that the closure H(tx) = Cl\J φeBztoiφta)(φ, α) is compact and

, φ nonincreasing} .

For any φ e Kl9 define a continuous function τx\ \_KX \{0}] x (1, oo)-+(0, oo) by the
relation τ^φ, α) = min{/>0: z(φ, α)(ί) = 0}. Clearly, if we prove ^(//(oOX fO}, α) is
bounded for each αe(l, oo), then τ(i?\{0}, α) is bounded for each α, thus the lemma.

Since H(oc) is compact, it is therefore only necessary to prove that τ^φ, α) is bounded
on a neighborhood of zero in Kv This can be proved in the following manner. If
^eAΊ\{0} andz(^, α)(l) = β<0, that is, τ 1 (^,α)>l, then z{φ, α)(0-l)<j8, 1<0<2,
and

(3.12) ' v y ' >y> > ^ - ^ e x p ( - ( l -c)aβ).
1 + cz(φ, α)(2) 1 + cβ

This implies

l+cz(φ, a)(2)

a)(2) l+β
~->q(β):=- -
)(2) β

Since (̂0) = 0, ^G8) = (l+'ci8)-2[l -a( l +)8)(1 +c]8)](l -c)exp(-(l -φjS), we see
that q(β)>0 for small and negative β. Thus τ1(//(α)\{0}, α) is bounded for each
αε(l,oo). •

Lemma 3.3 implies (for details, see Hale [7, p. 257]) that A(a) is completely
continuous. Obviously, the Lemma 4.4 in Hale [7, p. 256], is true for Equation (3.3)
as well.

If we now take M>0 such that

( -c)α _ i - le(c-ί)a _ 1

then the above lemmas imply that all of the conditions of Theorem 2.2 and Theorem
2.3 in Hale [7, pp. 249-251] are satisfied. (Note, the proof of Theorem 2.3 in [7,
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p. 250] may be incomplete. For a complete proof, see Alt [17].) Thus, we have proved

the following main result.

THEOREM 3.2. Ifooπ/2 and α? 2 ( 1~ c ) α< 1, then Equation (3.3) has a nonzero peri-

odic solution.

The equivalent result for Equation (1.3) is:

THEOREM 3.3. If τ(ή = τ > 0, r{t) = r > 0, ce2rτ < 1, and rτ > π(l -c)/2, then Equation

(1.3) has at least a nonzero positive periodic solution.

Theorem 3.3 implies that if c is small enough, and rτ is big enough, then the steady

state u(t) = 1 is not stable and periodic solutions may exist. This amounts to saying that

if the intrinsic growth rate is high, if the time delay is long, and if Equation (1.3) is

close to the logistic equation (in which case c = 0), then solutions of (1.3) are oscillatory,

and periodic solutions exist.

If we define the following two sets for Equation (3.3)

S=Cl{(φ, oc)eKx(\, oo)\ A((x)φ = φ

So = maximal closed connected component of S which contains (0, π/2),

then we have the following results similar to Theorem 4.3 and Theorem 4.4 in Hale [7,

pp. 259-260]. The proofs of those results can be obtained by modifying properly those

arguments presented in Nussbaum [10]. We choose to omit these proofs here in order

to avoid repetition.

THEOREM 3.4. For Equation (3.3), So is unbounded and, for any α o > l , there is

an oc>(xo and φ such that (φ, oc)eS0.

THEOREM 3.5. Foranyp>4, there is aperiodic solution of Equation (3.3) of period p.

4. Oscillatory results when r(t) is nonnegative. In this section, we always assume

r(t) and τ(t) are positive and continuous on [0, oo), and \imt^ + O0(t — τ(t))= + oo. We will

first restrict our attention to Equation (1.7) with initial function satisfying (1.8). In

addition to Theorem 2.4, we have the following two results concerning the oscillatory

behavior of solutions of (1.7):

THEOREM 4.1. If \immft^ + aD$t

t-mr(θ)dθ>(l-c)e~ί, then every solution of

Equation (1.7) is oscillatory.

This result is clearly more general then part (iii) of Lemma 3.2, but still can be

viewed as a special case of a more general result to be proved in the next section. Thus,

we omit the proof here.

THEOREM 4.2. Suppose r(t) is bounded above, and there is a t1>0, such that
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L r(θ)dθ< forallt^t^.

Then Equation (1.7) has a bounded nonoscίllatory solution on [T, oo) for some T>0.

PROOF. Assume | r(t) \ < M, for all / > 0. Let C[0, oo) denote the space of all bounded
continuous functions defined on [0, oo), with the norm defined as | φ | = sup{| φ(θ) \,θe
[0, oo)}, for φeC[0, oo). Let

y(t) is lipschitzian and nonincreasing on [0, + oo),

S=\ ye CIO, co)

y(t)=l-a,

ey(t - τ(ί)) > y(t)e > y(t - τ(ί)), t > t x .

r{θ)dθ\<y{t)<\-oi, ί > ί 1 ?

\y\t)\<Me

where 1 > a > 0 is a constant. Denote

1-α

\-c
, ί e [ 0 , + o o ) , ί > ί 1 ?

r(θ)dθ)

Then yo(t)eS and 5 is nonempty. It is easy to show that 5 is convex and compact.
Now, we define an operator F: S^>C[0, +00) as

ί 1-α,
F(ym=\ ( _ i r.

{ (l-α)exp

Obviously, F(y)(r)< 1 - α , ί>0 when >>eS, and when t>tu F(y)(t)>(l -α)exp(-e/(l -
c)γtr{θ)dθ). Thus we have

;)(0 / - i f
— — = exp
-τ(ί)) Vl-cJ t_τ ( (.

>exp

Clearly, F(j;)(0 < ̂ ) ( ί - τ(ί)), and | (^)(ί)) r | < (1 - a)r(t)e/(l - c) < (1 - α)Me/(l - c).
Therefore, we have shown that FSaS. It is easy to see that the operator F is

completely continuous. Hence, by the well-known Schauder-Tychonov fixed-point
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theorem, we conclude that Fhas a fixed point in S. That is, there is a y* e S, y*(t) = F(y*)(t)
for all t>0. Choose T>t1. Then y*(ή is differentiable for t> T. By differentiating both
sides of y*(t) = F(y*)(t) for t> T, we see y*(t) satisfies Equation (1.7) for t> T. Obviously,
y*(t) is positive, bounded and nonoscillatory. This proves the theorem.

COROLLARY 4.1. If r(t) = r, τ(t) = τ where r and τ are positive constants, then all
solutions of (\J) are oscillatory if and only if rτe> \—c.

PROOF. This is obvious from Theorem 4.1 and Theorem 4.2. •

In the real system, we should expect that all those parameters that appeared in
equation (1.2) are time dependent. For this reason, we may replace xm by K(t), and x'm
by Kiήc'1. This results in the following equation

(4.1)
dt K(t)-cx(t-τ(ή)

For convenience, we assume τ(ί) = τ > 0 in the following theorem. Naturally we assume
K(t)>cx(t-τ), for 0<t<τ.

THEOREM 4.3. In Equation (4.1), we assume K{t) is a nonconstantpositive continuous
periodic function of period τ and lim inf,^ r(t)>0. Then all global solutions 6>/(4.1) are
oscillatory with respect to K(t), i.e., there is a positive sequence {/„}, lim,,^ tn= +oo,
such that x(tn) = K(tn).

PROOF. Otherwise, there is a global solution x(t) of (4.1), x(t)> K(t) or x{t)< K(t)
for all large t. We may assume first that x(t)>K(t) for />/*>0. Since x(t) is global, we
see K(ή-cx(t-τ)>0 for all ί>0, and x(ί)<0, for t>t*. Thus there is a β>0, such that
limf_ + αox(t) = )J. Denote

a = min{K(t): 0<ί<τ}>0, b = mzx{K(t): 0<ί<τ}>0.

Then β>b. From (4.1), we have

(4-2) 4t) = X(
Jt*K(s) — cx(s — τ)

which implies

/ 1 Π \

(4.3) χ(ί) < x(t*) exp I — (K(s) - β)ds
\bjt* )

Since b > a, we see

(4.4) lim (K(s)-β)ds= - oo .
ί~* + 0 0 J ί *

Thus
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(4.5) lim χ( ί )<0.
ί-» + 00

This obviously contradicts β>b>0.

Similarly, we can show that there is no x(t) such that x(ί) < K(t) for all large time

t. This proves the theorem.

5. Oscillatory results when r(t) is arbitrary. As we mentioned before, when r(t)

is viewed as the difference of the growth rate and the death rate, then r(t) may not

always be positive. Denote

(5.1) r + (0 = max(r(r), 0), r-(ί) = max(-r(t), 0).

LEMMA 5.1. Suppose τ(t) is positive and continuous, l i m , ^ (ί —τ(ί)) = + oo, and

Λ oo I* 00

(5.2) r-(t)dt<cc, r+(t)dt=+oΰ.
J o J o

Then all positive nonoscillatory solutions of Equation (1.7) bounded by 1 tend to zero as

/-•oo.

PROOF. Let y{i) be a bounded positive nonoscillatory solution of Equation (1.7).

Suppose y(t)>0, y{t-τ(t))>0, for t>T. Let t2>t1>T. Then

(5.3) y(t2)-y(ti) = r+(θ)(\ -y(θ))(l-cy(θ))y(θ-τ(θ))dθ

l Π2

+ r"(βχi -><Θ)X1 -C3<ff))><β-τ(β))dβ .

The first integral is negative and decreasing with respect to t2, while the second one is

nonnegative and increasing. Since j^r~(£)dί<oo, we see the second integral converges

as t2-+ + oo. Together with the boundedness of y(t\ we see that the first integral must

converge as ί2-> 4- oo. Thus there is an α, 0 < α < 1, such that

lim y(t) = α .
t~* + 00

If α = 1, then (1.6) implies limf_ + oou(ί) = 0 in Equation (1.3). Thus there is a T > 0 ,

when ί > T, [1 - u ( ί - τ(t))]/[l -ciι(ί-τ(t))] > 1/2. Hence

(5.4) -i

Integrating both sides of (5.4) yields

(5.5) I n ^ - > U \'r+(θ)dθ- (\-(θ)dθ) .
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Letting t-> + oo in (5.5), we obtain a contradiction.
If 0 < α < l , then there exists ε, 0<ε<min{α, 1— α}, and Tι>T such that when

t>Tl9

O<oc-ε<y(t —

Hence, when t>Tu

(5.6)
dt \-c

ί-c

Integrating (5.6) leads to

(5.7) mλ r+(θ)dθ<y(T1)-y(t) + m2\ r~{θ)dθ,

where

" ' - c ( α + ε)](α-ε)>0,
1— c

m 2 [ l ( α
1— c

In (5.7), letting /-• + oo, we obtain J^ r+(θ)dθ< + oo, a contradiction to our assumption
that $™r+(θ)dθ= +oo. Thus α = 0. This proves the lemma.

THEOREM 5.1. In Equation (1.7), let h(t) = t — τ(t), and choose 0 < ε < 1, d>0, such
that μ = d(l—ε)(l—cε)/(l—c)>e~1. Let N be an integer greater than 2(ln 2 — In μ)(l +
In μ) ~x. Assume:

(HI) r(ί), τ(t) are continuous on [0, oo) and \™r~(θ)dθ<oo\
(H2) τ(ί)>0, h(t) is nondecreasing, lim^ + „ h(t) = + oo.
(H3) There is a sequence tn, lim,,^^/„=+oo, such that: (i) r(ί)>0 for te

En+\ (ΰ) K ( ί ) r ( θ ) ^ > J > ( l - c ) M / o r ί e ^ N , wAerβ /ι= 1, 2, , A^(ί) =
h(h( -/z(ί) * "X the n-th composition ofh(t), E" = [hN(tn\ ί j .

Then all solutions of (1.7) are oscillatory.

PROOF. We assume first that (1.7) has an eventually positive solution y(t). From
Lemma 5.1, we know lim ί^ + ooy(ί) = 0.

When teE?+1, r( ί)>0, thus j>(ί)<0. For the given ε, there is a Γ 2 > 0 such that
y(ή < ε when t > T2. By (H2), there exists n0 such that h(t) > T2 for t e £ ^ . Thus, for ί e E?o,
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^i-β)(i-cβ)Γ {θ)dθ^μ>e-^

1 — c J h(

which implies

Ah(t))Mt)>e">eμ>l, for

For

cε) f
where we used the fact that E"o

 ιaE^o. Thus

y(h(t))/y(t) > eeμ2 > (eμ)2 for

By repeating the above argument, we obtain

(5.8) y(Kt))/y(t)>(eμ)N for

From (H3), we have

r(θ)dθ>d>-^

J ^
hence, there is a t*0 e (h(tno), tno) = E^o such that

2 J,* 2

Integrating (1.7) from h(tno) to ί*0 yields

r(θ)(l-y(θ))(l-cy(θ))y(h(θ))dθ

Thus

Similarly, we have
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Therefore

(5.9) y(hK))/y(tϊo)<4/μ2.

By combining (5.8) and (5.9), we obtain

(5.10) (eμ)N<4/μ2 .

This implies

2(ln2-lnμ)
(5.11) N<-

1+lnμ

which contradicts our assumption on TV. This proves that (1.7) cannot have an eventually

positive solution.

Similarly, we can show that (1.7) has no eventually negative solution. We omit

the details to avoid repetition. •

REMARK 5.1. Obviously, the proof of the above theorem implies that Theorem

4.1 is true.

REMARK 5.2. Assume (1.7) has y(t) as its eventually negative solution. Without

loss of generality, we assume y(t)<0 for />0. Then

y(tτ(t)) +
\—c \—c

We may rewrite (5.12) as

(5.13)

where

-cy(t))y(l -τ(ί)) + ^ ( 1 -y(t))(l-cy(t))y(t-τ(ή)
\—c

-Cy(t))y(t-τ(ή).

\—c \—c

P(t) r ( t ) (
1—c \—c

Thus

-cy(ή).

P(t) r(t).
l—c

Under the assumptions of Theorem 5.1, the proof of the nonexistence of an eventually

negative solution of the differential inequality (5.13) is essentially contained in the proof

of Theorem 2.1 in Erbe and Zhang [11].

6. Global stability. Our objective in this section is to derive sufficient conditions
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for global solutions of Equation (1.3) with initial conditions satisfying (1.5) tend to its

unique positive equilibrium u(t)=\. In the following, u(t) denotes a solution of (1.3)

and (1.5).

THEOREM 6.1. We consider Equation (1.3) with initial condition (1.5). Assume

(i) r(t) and τ(t) are positive and continuous, t — τ(t) is increasing,

Λoo

(6.1) lim (t - τ(ή) = + oo and r(θ)dθ = +oo;

o

(ii) there is a t1>0, such that for t>tu

>t-τ(ι

(6.2) 0 < I r{θ)dθ<σ , and eσ<c~1

τ(t)

(iii)

(6.3) σ<\-ceσ.

Then, every global solution of (1.3) and (1.5) tends to 1 as ί-> + oo. In particular, if

φ(O)<c~ιe~σ, then \imt^+ O0u(t)= 1.

PROOF. Clearly, all conditions of Theorem 2.3 are satisfied. Thus, for every

oscillatory solution u(t) (with respect to 1), we have

(6.4) u(t)<eσ , for t> Γ+1γ , where T= τ(t).

From (2.3), we know that if u(t) is nonoscillatory with respect to 1, then X\mt^ + Oΰ u(t)= 1.

Thus, in the following we always assume u(t) is oscillatory with respect to 1.

Let

(6.5) υ(t) = u(t)-l.

Then (1.3) reduces to

v(t-τ(ή)
(6.6)

l-c-cv(t-τ{ή)

Thus, u(t) is oscillatory with respect to 1 if and only if v(t) is oscillatory. Denote

(6.7) p = lim sup v(t), q = - lim inf v(t).
ί-+ + oo t-+ + oo

Then, we have 0<p<eσ-l, 0<q<\.
Let ε be a small positive constant such that 1 — c — c(p + ε)>0, and choose

t2(ε) >T+t1 such that for / > t2(ε)

(6.8) -q-ε<v(t)<p + ε.

Assume v(t*) is a maximum or a minimum such that t* — τ(ί*) — τ(ί* - τ(ί*)) > ί2(ε). Then
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ι/(ί*) = 0, which implies υ(t* - τ(ί*)) = 0. Thus

(6.9)

Since t* — τ(t*) — τ(ί* —τ(ί*))>ί + ί l9 we have for te[t* — τ(t*)9 ί*],

(6.10) [l-c-c^ί-τίίM-^Cl-c^]-1,

and

(6.11) _ ί ; ( ί _ τ ( ί ) ) < ^ + ε .

Hence, from (6.9), we obtain

(*t*

(6.12) ln(l+ι;(ί*))< — r(t)dt< (q + ε)<q + ε.

\-ceσ]t*_τ{n l-ceσ

That is

(6.13) v{t*)<eq + ε-\ .

Similarly, we have

(6.14) v(t*)>-l+e~ip+ε).

By the definition of p and q, we see that there always exist t3 > t2(ε), t± > t2{ε) such that

(6.15) v(t3)>p — ε, t;(ί4)<— q + ε.

Therefore

(6.16) /7-ε<^+ ε-l, q-ε<l-e-{p+ε).

By letting ε-^0, we obtain

(6.17) p<eq-l, q<l-e~p.

From (6.17), we see that /? = 0 if and only if # = 0. Thus we may suppose that

(6.18) p>0, 0<q<\.

Clearly, (6.17) leads to

(6.19) 1 +p<έ*<exp(l -e~p).

But, since p > 0, we have

\+p — exp(l— e p ) = (1—e P 2 )exp( l— e P2 — p2)dp2dp1 > 0 ,

Jo Jo
a contradiction to (6.19). This proves the first conclusion of the theorem.

If φ{0)<c~1e~σ, then Theorem 2.1 implies that u(t) is global. Thus, by the first
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conclusion of the theorem, we have

lim u(t) = 1 ,
t~* + 00

proving the theorem.

7. Discussion. Our main finding is that the introduction of delay in Equation

(1.2) can destabilize a locally stable steady state, thus causing the solution to oscillate.

For large time, together with large intrinsic growth late and small parameter c, the

autonomous version of Equation (1.2) may have periodic solutions. This suggests that

small growth rate and small delay are essential for the equation to be stable. Large

growth rate and/or long time delay may result in the destabilization of the ecological

system, thus rendering the system out of control and the prediction hard to make.

Our results on the existence of periodic solutions are similar to the ones obtained

by Jones [12]. The present work is distinguished from previous work principally by

the fact that the solutions of the equation may not exist for all t>0. Thus the bound

estimation of the solutions under certain conditions become important. This was

accomplished in Section 2.

We note that our sufficient conditions for the oscillation and nonoscillation of

Equation (1.7) are sharp in the following sense: if c = 0 then (1.7) reduces to

(7.1) y(ή= -r(t)[l+y(t)ly(t-τ(t)),

an equation discussed in detail in Zhang and Gopalsamy [14]. By taking c = 0, all our

results coincide with those obtained in [14]. Clearly, our work extends many previous

ones on the autonomous versions of Equation (1.7), e.g., the work of Wright [15],

Kakutani and Markus [16], and some others contained in the recent monograph of

Ladde, Lakshmikantham and Zhang [13].

Our analysis of Equation (1.3) can serve as a stepping stone for future works on

two-interacting population models, assuming each of the species' growth is governed

by Equation (1.3).
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