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Abstract. This paper describes the data needed to specify a map from a scheme
to an arbitrary smooth toric variety. The description is in terms of a collection of line
bundles and sections on the scheme which satisfy certain compatibility and nondegeneracy
conditions. There is also a natural torus action on these collections. As an application,
we show how homogeneous polynomials can be used to describe all maps from a pro-
jective space (or more generally a toric variety) to a smooth complete toric variety.

A map Y- Pj is determined by a line bundle L on Y together with n+ 1 sections
which do not vanish simultaneously. In fact, P} is the variety representing the functor

1) Y {(L,ug,...,u,): u;e H°(Y, L) do not vanish simultaneously}/~ ,

where ~ is the obvious equivalence relation. The goal of this paper is to generalize this
description to the case of an arbitrary smooth toric variety.

We will work with schemes over a field k£, and we will fix a smooth n-dimensional
toric variety X determined by a fan 4 in Ng=R". As usual, M denotes the dual lattice
of N and 4(1) denotes the set of 1-dimensional cones of 4. We will use Zp to mean
Zps 401y @nd similarly for &) ,. Each p € A(1) determines a divisor D, < X and a generator
n,epnN. Finally, let 4,,,, denote the set of maximal cones in 4 (i.e., those which are
not proper faces of cones in 4). Basic references for toric varieties are [3], [5] and [7].

1. A-collections and functors. If a fan A determines a smooth toric variety X,
then we can generalize the data in (1) as follows:

DerFINITION 1.1. Given a scheme Y over k, a 4-collection on Y consists of line
bundles L, and sections u,e H°(Y, L,), indexed by ped(l), and isomorphisms
et ®,LE<m> ~ 0y, indexed by me M, such that:

(1) (Compatibility) ¢,®cpy =Cpin for all m,m e M.

(i) (Nondegeneracy) ForeachyeY, thereisoed,,, withu,(y)#0 forall p¢o.

A A-collection on Y is written (L, u,, c,). The compatibility condition on the
isomorphisms c,, implies that Zp [L,1®n,=0in Pic(Y)® zN. However, the triviality of
this sum is not sufficient: data of the A-collection includes an explicit choice of
trivialization (the c,,’s), which is not unique. The examples given below will show why
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this is needed. As for the nondegeneracy condition, note that u,e H°(Y, L,) gives
u,: Oy—L,, which induces u}: L, '—0,. Then nondegeneracy is equivalent to the
surjectivity of the map

Z ®pq‘_‘¢7u:: @ ®p¢_aLp—l_’(9Y~
0€Amax €A max
Finally, when dealing with a toric variety X determined by 4, we will sometimes speak
of X-collections rather than A4-collections.

We get a canonical 4-collection on the toric variety X as follows. For each p, the
divisor D, gives a line bundle Ox(D,) since X is smooth. Furthermore, the natural
inclusion Uy = Ox(D,) corresponds to a global section 1,€ H(X,0x(D,)). Finally, given
me M, the character y™ is a rational function on X such that div(x'"):Zp {m,n,>D,.

Thus we get an isomorphism of sheaves

Cym: (@‘,@X(D‘,)@“'"*"ﬂ> :@X<zp<m, np>Dp>:@x ,

where the second isomorphism is induced by x™.

LeMMA 1.1. (Ox(D,), 1,, ¢,m) is a A-collection on X.

m+m’

Proor. Compatibility is trivial since yx =yx™y™ for m,m eM. To prove
nondegeneracy, take x€ X. Since X=J,., X, where X, is the affine toric variety
determined by o, we have xe X, for some g€ 4,,,,. Then X—XG=ZP¢GD,, shows that
1,(x)#0 for all p ¢, and nondegeneracy follows. O

The A4-collection (Ox(D,), 1,, c,m) Will be called the universal A-collection. This
terminology will be justified below.

DEFINITION 1.2.  An equivalence (L,, u,, c,)~ (L, u,, c,) of A-collections on Y
consists of isomorphisms y,: L,~ L/, which carry u, to u, and c,, to c,,.

To better understand these definitions, let us look at some examples:

ExaMPLE 1.1. Let X=A}, where the n,’s are the standard basis {e,, ..., e,} of N.
Let {e’, ..., €"} be the dual basis of M. Now suppose we have an A}-collection (L;, u;, ¢,,)
on Y (we write L, instead of L,, for 1 <i<n). Then c,: is an isomorphism c,i: L;~0y.
This maps u; to v;e H°(Y, Oy), and one can check that setting y;=c,: in Definition 1.2
gives an equivalence (L;, u;, ¢,,) ~(0Oy, v;, 1). Furthermore, (Oy, v;, 1)~ (0Oy, v}, 1) if and
only if v;=uv; for all i. Since the nondegeneracy condition is vacuous in this case, we
see that equivalence classes of A}-collections on Y correspond exactly to n-tuples in
HO(Y,0y). As is well-known, such n-tuples are classified by morphisms Y — A%

EXAMPLE 1.2. Let X=Pj, where the n,’s are e, ..., e, and eg=—) {_ e;. Now
let (L;, u;, ¢,,) be a Pj}-collection on Y (where 0<i<n). Here, ¢, is an isomorphism
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Ceit Li®Lg ' ~0Oy. This induces y;: L;~ L, which takes u; to v,e H°(Y, L,). One can
check that the y;’s give an equivalence (L;, u;, ¢,,) ~ (Lo, v;, 1). Thus we get the line bundle
Ly and n+ 1 sections. Since the fan for P} has n+ 1 maximal cones (depending on which
of ey, ..., e, is omitted), the nondegeneracy condition says that the v; never vanish
simultaneously. Thus equivalence classes of Pj-collections on Y correspond exactly to
the equivalence classes in (1) and hence are classified by morphisms Y— P?.

ExaMpPLE 1.3. Let X=Gpy,. In this case, there are no n,’s, and for meM,
& ,LEmn> reduces to Oy, so that a Gh-collection on Y consists of ¢,: Oy~0Oy. The
notions of equivalence and nondegeneracy are vacuous in this case, so that equivalence
classes of G%-collections on Y correspond to homomorphisms M— H°(Y, 0%). Such
homomorphisms are classified by morphisms Y—-Hom,(M, G,) =G5,

Returning to the general case, it is easy to see that the pull-back of a 4-collection
is again a A4-collection. Thus we get a functor C,: k-Schemes®— Sets defined by

C,4(Y)={all d-collections (L,, u,,c,) on Y}/~ .
Furthermore, the universal 4-collection (Ox(D,), 1,, ¢,=) gives a natural transformation
Hom, (Y, X)->C,(Y)

by sending f: Y— X to the pull-back of (Ox(D,), 1,, ¢,m) by f. The main result of this
paper is the following theorem:

THEOREM 1.1. If X is a smooth toric variety, then the above map Hom,(Y,X)—
C4(Y) is a bijection for all k-schemes Y. Thus the toric variety X represents the functor C,.

ProOOF. First assume that the #,’s span Ng. In this case, we know by [2] that X
is a geometric quotient (47" —Z)/G, where A{™ =Spec(k[x,]), Z is defined by the
vanishing of [, ,x, for o€ 4., and G=Hom,(Pic(X), G,,).

We will construct an inverse map C,(Y)—Hom,(Y, X). Let (L,,u,, c,) be a
4-collection on Y, and let Uc Y be an open subset such that the L, are trivial on U.
If we choose isomorphisms y,: L, ,— Oy, then we get an equivalence (L, |y, %, |y> Cmjv) ~
(Oy, v, ¢y, where v,e H(U, Oy) and c,,: O~y can be regarded as a homomorphism
¢': M—H(U, 0%).

Since the n,’s span Ng and X is smooth, we have an exact sequence

) 0—— M2, Z4D __, Pig(X) —— 0,

where « is defined by m+—({m, n,»). Since Pic(X) is torsion free, the above map
¢t M>HO(U, 0F) extends to ¢&: Z4V-HO(U, 0F), which means that there are
A, H(U, 0%) such that c, =[] A{™"” for all me M. Then the isomorphisms
Ay Oy~0y give an equivalence (Oy, v,, ¢,,) ~(Oy, w,, 1), where w,=4,0,.

Now define fi;: U—>A§® by fy(x)=(w,(x)). The nondegeneracy condition implies
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that fy(x)¢Z, so that composing with the quotient mapn: A4M—Z—>X gives
fu=m° fy: U»X. In the argument below, let % = 44" —Z.
We need to see how the choices made in the above construction affect the map f,.
A different set of choices would lead to a 4-collection (O, w), 1)~(Oy, w,, 1). This
equivalence is given by 1,€ H°(U, Op) such that wj,=2,w, and [],AS™"> =1 for all
me M (because the A,’s must preserve the trivializations 1: @ O§™" ~@y). It follows
from (2) that we get a homomorphism g: Pic(X)—>H®(U, 0}) such that g([D,])=4,
for all p. If we evaluate this at a closed point xe U, we get an element g, e G=
Homg(Pic(X), G,,). Then the points (w,(x)) and (w}(x))=(4,(x)w,(x)) are related by
g, and hence give the same point in X.
This shows that f;: U—X depends only on the equivalence class of (L,, u,, c,).
From here, it follows easily that the f;; patch together to give a morphism f: Y- X.
It remains to show that this map is the inverse of the map Hom, (Y, X)—>C,(Y)
obtained by pulling back the universal 4-collection (Ox(D,), 1,, ¢,m). First suppose that
(L, u,, c,,) on Y determines f: Y—X. We need to show that

(3) (Lp’ up’ cm) Nf*((gX(Dp)’ lp’ me) .

An easy argument shows that the natural map C,(Y)—]],. ,C4(U,) is injective whenever
{U,}4e 4 is an open cover of Y. Thus it suffices to prove (3) on an open set Uc Y where
each L, is trivial on U. On such a U, we know that (L, y, 4,y, Cmjv) ~(Oy, w,, 1) and
f=mo f, where f(x)=(w,(x)). We first observe that

(4) n*((OX(Dp)’ lp’ cx"')~((90]1’ xp’ 1) s

where n: % — X is as above. To prove (4), note that n*(Ox(D,)) = 04(div(x,)), so that
multiplication by x, gives an isomorphism O, (div(x,)) ~O,. Hence Oq < O4 (div(x,)) ~
04 is multiplication by x,, and since y™on=]] x{™"*’, (4) follows immediately. Then,
returning to f=mo f, we conclude from (4) that

(5) f*((gX(Dp)’ lp’ cl"‘) Nj’*((goil’ xp’ l):((OU, wpa 1) s

since f(x)=(w,(x)), and (3) follows.

Finally, suppose we have f: Y—X. This gives f*(Ox(D,), 1,, ¢,m), which in turn
determines f': Y—X. We need to show that f’=f. First suppose that f factors f=mno f
for some map f: Y—4%. Then f can be written f(x)=(wp(x)), where wpeHO( Y, Oy).
From (5) and the construction of f”, it follows immediately that f"=f. In the general
case, note that G acts freely on # since X is smooth (this is easy to prove), so that
7: % —X is smooth. Then standard results about smoothness imply that f: Y— X lifts
locally to % in the étale topology. Since Hom,(—, X) is a sheaf in the étale topology
on Y, we obtain f'=f, and the theorem is proved in the case when the n,’s span Ng.

We next study what happens when the 7,’s do not span Ng. Let N; = N n Spang (n,).
The fan 4 can be regarded as a fan 4, in N,, which gives a smooth toric variety X,
of dimension d=rank(N,). The inclusion N; = N induces an inclusion X, c X, and the
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projection N— N/N, induces a surjection X— T, =Hom, (N1, G,)~G" ¢, where N+ =
Hom,(N/N,, Z)= M is the annihilator of N,.

Since N/N, is torsion free, we can write N=N,@® N, for some complement N, = N.
Then 4 is the product fan 4, x {0}, which implies that X is (noncanonically) the product
X, x,T,. If M, is the dual of N, then the projection N— N, determines an inclusion
o: M,—M such that M =a(M,)®N7.

Now suppose that (L,, u,, ¢,) is a 4-collection on Y. Then, for every me N{, we
have {m,n,>=0 for all p. Thus ¢, is an isomorphism c,: Oy=~0y, which gives a
homomorphism Ni—H°(Y, 0%). Since this map depends only on the equivalence class
of (L,, u,, ¢,,), we have a natural transformation

C4(Y)— Homz (N1, HY(Y, 03)) .

Further, if we define ¢}, =c,m,) for m;e My, then (L, u,, c},,) is a 4;-collection on Y,
and it follows easily that we have a natural transformation

Ca(Y) — Cy (Y).
Combining these maps, we obtain
(6) C4(Y) — C,,(Y) x Homg (N7, H(Y, 0%)) .

Since M =a(M)@ N7, it is straightforward to show that the map (6) is a bijection.
Now consider the following diagram:

Hom, (Y, X) — C,(Y)

l

Hom, (Y, X;) x Hom, (Y, T,) — C,,(Y) x Hom (N1, H(Y, 0%)) .

The vertical maps come from (6) and X~ X, x T,, and note that both are bijections.
The map on the bottom is the product of the bijections Hom, (Y, X,)~C, (Y)
(since the n,’s span (N;)g) and Hom, (Y, T;)~Homgz(N7, H(Y, 0%)) (since T,=
Hom,(N+t, G,)).

It follows that the map on top will be a bijection (and the theorem will be proved)
provided the diagram commutes. By general nonsense, we only have to prove com-
mutivity for 1y e Hom, (X, X). Going down and over, 1y maps to (n$(Ox,(D,), 1,, ¢;m,), §),
where 7, : X— X, is the projection and ¢: N1 —H(X, 0%) is defined by m+—s y™ for
me N7i. Going the other way, we need to study what happens to (0x(D,), 1,, ¢,m) under
the map

C4(X) — C4,(X) x Homz (N1, H(X, 0%)) .

Let us start with the second factor. Here, note that for me N1, ¢,m: Oy~ 0y is multi-
plication by y™. Hence the induced map N1i—H(X, 0%) is exactly the above map ¢.
As for the first factor, we get (Ox(D,), 1,, c,,,), Where c,,, = am, for m;e M,. How-
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ever, since ©,: X—X, is a toric map taking n,e N to n,e N, it follows easily that
n10x,(D,)~0x(D,) in a way that preserves the section 1, (this follows, for example,
by looking at line bundles as determined by support functions and studying how w,
affects support functions). For m,e M,, we have y™on, =yx*™) and it follows
immediately that n}(Oy,(D,), 1,, ¢;m,) ~(Ox(D,), 1,, c,,,). This proves commutivity, and
the theorem follows. O

REMARK 1.1. When the n,’s span Ng, we get an alternate description of the
universal 4-collection as follows. By [2], a,=[D,] e Pic(X) gives a sheaf Ox(x,) on X,
which is a line bundle since X is smooth. Furthermore, [2] gives a canonical isomor-
phism S, ~H°(X, Ox(a,)). Since deg(x,)=a, in Pic(X), we have x,€S, , so that we
can write x,,eHO(X, Ox(a,)). Finally, if me M, then Zp {m, n,>a,=0 in Pic(X), which
gives a canonical isomorphism

Cm - ®p(9X(ap)®<m‘np> =~ (9X <Z <m7 np>ap> = (9X .
P

Then (Ox(a,), x,, ¢,,) is equivalent to the universal 4-collection (Ox(D,), 1,, ¢,m). This
follows easily using the isomorphisms Oy (a,) ~0x(D,) constructed in [2, §3].

ReEMARK 1.2. Using the representability criterion given in Proposition 4.5.4 from
[4], one can prove directly that C, is representable, without knowing the toric variety
X. To see how this works, let o€ 4 and define the functor C9 by

Ca(Y)={(L,, u,, ¢,)€C4(Y): u, is an isomorphism for all p¢ o} .

Using the isomorphisms u, ': L,~ @y for p¢ o, one gets an equivalence (L, u,, ¢,,) ~
(L), u,, c,,) where L,=0y and u,=1 whenever p¢o. From here, the techniques of
Examples 1.1 and 1.3 and Theorem 1.1 can be adapted to show that C9 is represented
by A{ x,G" ™4, where d is the dimension of 6. According to Proposition 4.5.4 of [4],
C, is then representable provided we can show the following:

(1) The natural transformation C%—C, is representable by an open immersion.

(ii1) The functor C, is a sheaf when restricted to open subsets of Y.

(iii)) C, is the union (as defined in part (iii) of Proposition 4.5.4 of [4]) of the C9.
The proof of (ii) is completely straightforward, and (iii) follows easily from the
nondegeneracy condition. For (i), we need to show that given a 4-collection (L, u,, c,,)
on Z, the functor Y- {geHom, (Y, Z): g*(L,, u,, c,) € C4(Y)} is representable by an
open subset Z,< Z. This is easy: Z, is the biggest open subset of Z, where u, is an
isomorphism for all p ¢ 0. We leave the details to the reader.

By proving that C, is representable, we get an alternate construction of the smooth
toric variety X. This might be useful for studying toric varieties over more general bases
(for example, over the integers or over finite fields).

ReEmMARK 1.3. Recently, other authors have used concepts similar to 4-collections
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to describe maps from varieties to toric varieties over the complex numbers. For
example, Oda and Sankaran (unpublished) can describe maps from a normal variety
Y to a toric variety X such that the image of Y in X has nonempty intersection with
the torus 7' < X. Every such map is determined by a group homomorphism &: M—
C(Y)™ and Weil divisors E, (one for each p e 4(1)) such that

div(e(m)= ), <m,n,>E,

ped(l)

for all me M (compatibility) and that
E, n---nE, =,

whenever there is no g€ 4 which contains p,, ..., p, (nondegeneracy). This data is
uniquely determined by f, and conversely, given such data, we get a map f': Y— X such
that f(Y) n T is nonempty. This description has the advantage that it applies to all toric
varieties X, not just smooth ones. On the other hand, it only works when Y is normal,
and it doesn’t describe all possible maps. However, this is sufficient for many ap-
plications, including those given in [6].

Another description of maps to toric varieties, due to Jaczewski in [7], uses the
notion of a vast divisor on a complete variety Y. One starts with a divisor with normal
crossings B=) B,. Let M(B)={) a,B,:[ a,B,1=0 in H*(Y, Z)}, and let N(B)
be its dual. For each p, the map zpapo—mp determines n,e N(B). For B to be vast,
there needs to be a smooth complete fan 4 in N(B) with the n, as generators of the
1-dimensional cones. There is also a nondegeneracy condition (about the complements
of certains unions of the B, being an open cover of Y) and a compatibility condition
(that among linear combinations of the B,, homological equivalence implies linear
equivalence). Then Theorem 4.5 of [7] shows that this data determines a map from Y
to the smooth toric variety X determined by 4. This theory is only stated for complete
varieties and seems to require some knowledge about homological equivalence on Y.

2. The torus action. We next describe the torus action on X in terms of
A-collections. Since T=Hom,(M, G,,) is the torus of X, we get an action of 7 on C,(Y)
as follows: a homomorphism ¢ : M—G,, in T acts on a 4-collection (L, u,, ¢,,) via

¢ (L,, u,, €)= (L, ty, p(M)cy,) .

We still have a A-collection since ¢ (m)c,,®@ ¢ (m') ¢,y = P (m+m’)c,, + o> and this operation
also preserves equivalence classes. Hence T acts on C,(Y).

This relates to the natural action of T on Hom, (Y, X) (coming from the action of
T on X) as follows:

PrROPOSITION 2.1. The natural bijection Hom, (Y, X)—>C,(Y) from Theorem 1.1
is a T-equivariant map.
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Proor. By functorality, it suffices to verify equivariance for the case Y=X and
for 1,e Hom, (X, X). This means finding an equivalence

¢*(@X(Dp)’ lp’ cx'")~((9X(Dp), lp’ ¢(m)cx"‘)

for all ¢eT. However, ¢ ~'(D,)=D,, so that ¢*Ox(D,)=0x(D,). Furthermore, if
we represent the global sections of Ox(D,) as {fek(X):div(f)+D,>0}, then
¢*: H(X, Ox(D,))—~»H’(X, Ox(D,)) is the map sending map f to f°¢. Since 1,¢€
HO(X, 0x(D,)) corresponds to the constant function 1, we see that ¢*(1,)=1,.
Finally, to see what happens to ¢, under ¢, recall that y™: T—G,, is a homo-
morphism and that ¢ € T acts on T by translation. Since y™(¢)=¢(m), it follows that
™o p=¢(m)y™ as functions on 7. Thus the rational functions on X given by y™o ¢
and y™ differ by the constant ¢(m). Hence they have the same divisor ), ,<m,n,>D,,
though the trivializations @X(Zp<m, n,»D,)~0y they induce differ by the constant
¢(m). This shows that ¢*(c,m)= ¢ (m)c,m, which completes the proof. O

REMARK 2.1. When the n,’s span Ng, there is another way to view the action of
T on C,(Y). If we apply Hom,(—, G,) to the exact sequence (2), we get the exact
sequence

0] 1 G —— GAD T——1,

where G=Homg(Pic(X), G,,). Then (¢,) e Ga* acts on 4-collections via (L,, u,, ¢,,)
(L,, 1,u,, c,). Since equivalence classes are preserved, G, acts on C,(Y).
To relate this to the action of 7, note that the isomorphisms L,~L, given by

multiplication by 7, ! induce an equivalence

(L, t,u,, c,,,)~<Lp, u, [ 1 tf,"'"‘">c,,,> .
P

But m—[] 5" is the element of T=Hom,(M, G,,) which is the image of (z,) under
the map GA¥ - T in (7). Hence the action of G4 induces the T-action on C,(Y).

3. Maps between toric varieties. As an application of Theorem 1.1, we will
describe all maps from P’ to a smooth toric variety X where the n,’s span Ng. In this
case, recall that X is the geometric quotient (43" —Z)/G.

THEOREM 3.1. Let X be a smooth toric variety such that the n,’s span Ng, and
suppose we have homogeneous polynomials P,ekl[t,, ..., t,], indexed by pe A(1), such
that:

(@) If P, has degree d,, then'y ,d,n,=0 in N.

(b) (P,(to, .-, tu) ¢ Z in A{™ whenever (1o, ..., 1,)#0 in A7
If we define f(to, ..., tw)=(P,(to, ..., 1) € AV, then there is a morphism f: Py—X
such that the diagram
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ar+i_goy T, qa0_7

l l

L, x
commutes, where the vertical maps are the quotient maps. Furthermore:
(i) Two sets of polynomials {P,} and { P|,} determine the same morphism f : Pi—X
if and only if there is g€ G=Hom,(Pic(X), G,) such that P,,=g([D,]) P, for all p.
(i) Al morphisms f : Py — X arise in this way.

ProOF. Given the P,’s satisfying (a) and (b), note that for every me M we have
Zpdp {m, n,»=0, which gives a canonical isomorphism of sheaves

e Q,Opp(d,) ™" > Opp <Z d,{(m, np>>=(9,;(n .
e

Then (Opy(d,), P,, cyi™) is clearly a 4-collection, so that we get a map f: Pi'—X. Using
the arguments from Theorem 1.1, one can show thatif n: Af* ! —{0} - P}y is the quotient
map, then n*(Opy(d,), P,y cii™) ~ (O g+t _ oy P,, 1). From here, the commutivity of the
diagram follows easily.

Now suppose that two sets of polynomials {P,} and {P)} give the same map f.
Then, by Theorem 1.1, we know that (Opy(d,), P,, ci™) ~(Opp(d,), P, c™). This means
that there are constants A,ek* such that P,=A,P, and [] A{™">=1 for all me M
because c" is preserved. As in the proof of Theorem 1.1, this implies that there is
g €G such that g([D,])=4, for all p, and (i) is proved.

Finally, to prove (ii), let f : Pi'— X be a morphism. By Theorem 1.1, we know that
fis determined by some 4-collection (L,, u,, c,,). Since each L,~py(d,) for some d,,
we get an equivalence (L, U, ¢,,) ~(Oppr(d,), F,, c},). Then (c;,) ™" o cg2™: Opm~ Opp, and
thus, as in the second paragraph of the proof of Theorem 1.1, we can find 4,ek* such
that ¢;* =[], 45™"c,, for all m (this uses our assumption that the n,’s span Ng). If
we set P,=41,F,, then (Opp(d,), F,, c,,) ~(Op(d,), P,, csi™), which shows that f is
determined by the P,’s. It is easy to see that conditions (a) and (b) are satisfied, and

the theorem is proved. O
REMARK 3.1. When X'=Pj, the n,’s are ey, ..., e, as in Example 1.2. One can
check that )'7_ die;=0 if and only if d, y="-*=d,, and then Theorem 3.1 gives the

usual description of maps between Py and Pj}.

REMARK 3.2. Theorem 3.1 applies to all smooth complete toric varieties since the
n,’s obviously span Np in this case.

REMARK 3.3. When the n,’s do not span Np, then, as in the proof of Theorem
1.1, we can write X~ X, x, T, where T, ~G?,~“. In this case, a map P"— X is determined
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by maps PP'— X, and Py—G" “. The first of these maps can be described by Theorem
3.1, and the second is obviously constant. Thus we can describe maps from P} to an
arbitrary smooth toric variety X.

ReMArRk 3.4. When X is a complete simplicial toric variety over C, Morrison and
Plesser [8, §3.7] indicate that Theorem 3.1 is still true, and they also describe a toric
compactification of the space of all maps P'— X of fixed degree.

REMARK 3.5. Over C, Theorem 3.1 has been used by Guest to study the topology
of the space of rational curves on X (see [6, §5]). When X is not smooth, Guest instead
uses a certain configuration space to study maps P! — X (see [6, Proposition 3.1]).

Finally, we will discuss a more general version of Theorem 3.1, where P}’ is replaced
by an arbitrary complete toric variety Y. If Y is determined by the fan 4,, then by [2],
Y has a homogeneous coordinate ring S* =k[y,], where e 4,(1). The ring S¥ is graded
by the Chow group 4,_,(Y), and we denote the graded pieces by S for ae 4,_,(Y).
Note also that Pic(Y)= A4, _;(Y). By [2], we can also express Y as a categorical quotient
of A¢*W —Z,. Then we get the following result:

THEOREM 3.2. Let X be a smooth toric variety such that the n,’s span Ng, and let
Y be a complete toric variety with coordinate ring SY. Suppose we have homogeneous
polynomials P,e S, indexed by pe A(1), such that:
(@) If P,eSj,, then f,ePic(Y) and Y B,®n,=0 in Pic(Y)®N.
(b) (P,(t)¢Z in A}V whenever ()¢ Zy in AF¥D.
If we define f(t,)=(P,(t,)) € AZY, then there is a morphism f : Y— X such that the diagram
I

AW _7, A2 _ 7

| l

Y ~—f—> X
commutes, where the vertical maps are the quotient maps. Furthermore:
(i) Two sets of polynomials {P,} and {P} determine the same morphism f: Y—X
if and only if there is ge G=Homg(Pic(X), G,,) such that P,=g([D,]) P, for all p.
(ii) Al morphisms f: Y— X arise in this way.

Proor. We will only sketch the proof, leaving the details to the reader. The key
idea is that by [2], aePic(Y) gives a line bundle Oy («) such that we have canonical
isomorphisms Oy () ® Oy (B)— Oy (a+ p) for a, fePic(Y). Furthermore, from [2] there
is a natural isomorphism H°(Y, Oy(a))~SY. Then it is easy to see that the P.s give a
A-collection (Oy(x,), P,, c;2"), and from here the rest of the proof is identical to what
we did in Theorem 3.1. O
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4. Concluding remarks. Another description of the functor represented by a toric
variety X is due to Ash, Mumford, Rapoport and Tai (see [1, Chapter I, §2]). They
consider pairs (&, ) such that:

(i) & is a sheaf of sub-semigroups of the constant sheaf M, on Y determined
by M.

(ii) n: #¥—>0y is a semigroup homomorphism (0, is a semigroup under
multiplication).

Furthermore, they assume that (&, n) has the following properties:

(i) For se &, n(s) is invertible if and only if s is.

(iv) For each ye Y, there is some o €4 such that & ,=c"n M.

The main result of [1, Chapter I, §2] is that for all Y, there is a natural bijection

Hom, (Y, X)~{all pairs (&, n) on Y satisfying (i)-(iv) above} .

This description of the functor represented by X is clearly related to the usual way of
constructing X by patching together the affine schemes X, =Spec(k[a" n M]).

In contrast, our description of Hom, (Y, X) is more closely tied to the geometric
quotient X~(A47"—Z)/G. An advantage of our approach is how it generalizes the
usual description of maps between projective spaces (see Theorem 3.1). The Ash-
Mumford-Rapoport-Tai approach, on the other hand, has the virtue that it applies
to all toric varieties, not just smooth ones. (The problem with our description in the
nonsmooth case is that the sheaf Oy (D,) need not be a line bundle, though it is reflexive.)
It would be interesting to see the analog of Theorem 1.1 for the case of simplicial toric
varieties.

I am grateful to Martin Guest and Stein Arild Stremme for bringing this problem
to my attention. The research for this paper was supported by NSF grant DMS-9301161.
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