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Abstract. This paper describes the data needed to specify a map from a scheme
to an arbitrary smooth toric variety. The description is in terms of a collection of line
bundles and sections on the scheme which satisfy certain compatibility and nondegeneracy
conditions. There is also a natural torus action on these collections. As an application,
we show how homogeneous polynomials can be used to describe all maps from a pro-
jective space (or more generally a toric variety) to a smooth complete toric variety.

A map Y^Pΐ is determined by a line bundle L on Y together with n+ 1 sections
which do not vanish simultaneously. In fact, Pn

k is the variety representing the functor

(1) Γf—• {(L, w0, . . . , un): Mίeif°(7, L) do not vanish simultaneously}/~ ,

where ~ is the obvious equivalence relation. The goal of this paper is to generalize this
description to the case of an arbitrary smooth toric variety.

We will work with schemes over a field k, and we will fix a smooth ^-dimensional
toric variety X determined by a fan A in NR = Rn. As usual, M denotes the dual lattice
of N and Δ(X) denotes the set of 1-dimensional cones of A. We will use £ p to mean
ΣpeΔ(iy a n <^ similarly for (g)p. Each pE A(\) determines a divisor DpaXand a generator
npepnN. Finally, let Amax denote the set of maximal cones in A (i.e., those which are
not proper faces of cones in A). Basic references for toric varieties are [3], [5] and [7].

1. A -collections and functors. If a fan A determines a smooth toric variety X,
then we can generalize the data in (1) as follows:

DEFINITION 1.1. Given a scheme Y over k, a A-collection on Y consists of line
bundles Lp and sections upeH°(Y, Lp), indexed by peA(\), and isomorphisms
cm\ (g)pLf<m'np>~Θγ, indexed by meM, such that:

(i) (Compatibility) cm®cm> = cm+m> for all m, rή eM.
(ii) (Nondegeneracy) For each y e Y, there is σ e Amax with up(y) φ0 for all p ψ σ.

A A -collection on Y is written (Lp, up, cm). The compatibility condition on the
isomorphisms cm implies that Σp[Lp~](g)np = 0 in Pic(Γ)®zΛf. ^ϊowever, the triviality of
this sum is not sufficient: data of the A -collection includes an explicit choice of
trivialization (the cm's), which is not unique. The examples given below will show why
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this is needed. As for the nondegeneracy condition, note that upeH°(Y, Lp) gives
up\ 0y->Lp, which induces w*: L~ι^Θγ. Then nondegeneracy is equivalent to the
surjectivity of the map

Finally, when dealing with a toric variety X determined by Δ, we will sometimes speak
of ^-collections rather than Δ-collections.

We get a canonical Δ -collection on the toric variety X as follows. For each p, the
divisor Dp gives a line bundle Θx{Dp) since X is smooth. Furthermore, the natural
inclusion Θx a Θx(Dp) corresponds to a global section ιpeH°(Xβx(Dp)). Finally, given
meM, the character χm is a rational function on X such that div(χm) = ]Γ <m, np}Dp.
Thus we get an isomorphism of sheaves

where the second isomorphism is induced by χm.

LEMMA 1.1. (Θx(Dp), ιp, cχm) is a Δ-collection on X.

PROOF. Compatibility is trivial since χm+m =χmχm for m,m'eM. To prove
nondegeneracy, take xeX. Since X=\JσeAm^Xσ, where Xσ is the affine toric variety
determined by σ, we have xeXσ for some σeΔmax. Then X—Xσ =

 s£_k φσDp shows that
ιp(x)φ0 for all pφσ, and nondegeneracy follows. •

The Δ-collection {(9x{Dp), ιp, cχrn) will be called the universal Δ-collection. This

terminology will be justified below.

DEFINITION 1.2. An equivalence (Lp,up,cm)~(Lp,up,c'm) of Δ -collections on Y
consists of isomorphisms yp: Lp~L'p which carry up to u'p and cm to c'm.

To better understand these definitions, let us look at some examples:

EXAMPLE 1.1. Let X=A%, where the nps are the standard basis {eu ..., en} of N.
Let {e1,..., en} be the dual basis of M. Now suppose we have an A ̂ -collection (Lh uh cm)
on Y (we write L{ instead of Le. for 1 <ί<ή). Then cei is an isomorphism ceί: Li~GY.
This maps ut to VieH°(Y, Θγ), and one can check that setting yi = ceί in Definition 1.2
gives an equivalence (Lh uh cm)~(Θγ, vh 1). Furthermore, (Θγ, vh \)~(ΘY, v'h 1) if and
only if v—v'i for all /. Since the nondegeneracy condition is vacuous in this case, we
see that equivalence classes of A ̂ -collections on Y correspond exactly to ̂ -tuples in
H°(Y,ΘY). As is well-known, such ^-tuples are classified by morphisms Y-+A\.

EXAMPLE 1.2. Let X=P\, where the nps are eί9 . . . , en and eo= —Σ?=oe»
let (Lh uh cm) be a P2"c°lle c ti°n o n Y (where 0<ί<ή). Here, cei is an isomorphism
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cei\ L^LQ1 ~ΘY. This induces J^.L^LQ which takes ut to vieH°{Y,L0). One can
check that the γt's give an equivalence (Li9 uh cm) ~ (Lo, υi9 1). Thus we get the line bundle
Lo and n + 1 sections. Since the fan for P£ has n + 1 maximal cones (depending on which
of e0,..., en is omitted), the nondegeneracy condition says that the vt never vanish
simultaneously. Thus equivalence classes of P£-collections on Y correspond exactly to
the equivalence classes in (1) and hence are classified by morphisms Y^P^.

EXAMPLE 1.3. Let X=Gn

m. In this case, there are no nps, and for meM,
(x)pL®<m'"p> reduces to GY9 so that a G^-collection on Y consists of cm: ΘΎ~ΘY. The
notions of equivalence and nondegeneracy are vacuous in this case, so that equivalence
classes of (^-collections on Y correspond to homomorphisms M-*H°(Y, Of). Such
homomorphisms are classified by morphisms Γ-»Homz(M, Gm) = G^.

Returning to the general case, it is easy to see that the pull-back of a A -collection
is again a zl-collection. Thus we get a functor CΔ: λ>Schemes°->Sets defined by

CΔ(Y) = {?λ\ ^-collections (Lp9 up9 cj on Y}/~ .

Furthermore, the universal A -collection (Θx(Dp), ιp, cχm) gives a natural transformation

by sending/: Y->X to the pull-back of (0x(Dp\ ιp9 cχm) by /. The main result of this
paper is the following theorem:

THEOREM 1.1. If X is a smooth tone variety, then the above map Homk(Ύ,X)->
CA(Y) is a bijectionfor all k-schemes Y. Thus the tone variety X represents the functor CΔ.

PROOF. First assume that the nps span NR. In this case, we know by [2] that X
is a geometric quotient (Af{1) — Z)/G, where A*{1) = SpQc(k\_xpJ), Z is defined by the
vanishing of Y\pφσxp for σe J m a x , and G = Homz(Pic(X), Gm).

We will construct an inverse map CA(Y)-^ΐίomk(Y, X). Let (Lp,up,cm) be a
A -collection on Y, and let Ua Y be an open subset such that the Lp are trivial on U.
If we choose isomorphisms γp: Lp (u^(9υ, then we get an equivalence (Lp \V,up\ U9 cm ( v ) ~
(Θv, vp, c'm), where vpeH°(U, Θv) and c'm \Θυ~Θυ can be regarded as a homomorphism
c'\ M^>H°(U,Θ$).

Since the nps span NR and X is smooth, we have an exact sequence

(2) 0 > M ~^-> ZA(1) > Pic(Z) > 0 ,

where α is defined by mH((m,n p )) . Since Pic(X) is torsion free, the above map
c'\ M->H°(U,Θ$) extends to c': ZJ(1)->//°(ί/, 0£), which means that there are
λpeH°(U, Θ$) such that <4 = Π P ^ m ' n p > f o r a 1 1 m^M- T n e n t n e isomorphisms
λp \Θυ~Θv give an equivalence (Θv, vp9 c'J^iΘu, wp9 1), where wp = λpυp.

Now define/^: U-^>A£(ί) by fu(x) = (wp(x)). The nondegeneracy condition implies
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that ?v(x)φZ, so that composing with the quotient mapπ: AΔ{1) — Z^X gives

fu = π°?u: U-+X. In the argument below, let W = AA(1)-Z.

We need to see how the choices made in the above construction affect the map/^.

A different set of choices would lead to a zl-collection (Θv, w'p, X)~(Θυ, wp, 1). This

equivalence is given by λpeH°(U, Θv) such that w'p = λpv^p and ΠP^pm '"P > = 1 f°Γ a ^

meM (because the λps must preserve the trivializations 1: (x)(P^m'np>^^ ί7). It follows

from (2) that we get a homomorphism g: Pic(X)-^H°(U, Θ$) such that g(\_Dp~\) = λp

for all p. If we evaluate this at a closed point xeU, we get an element gxeG =

Homz(Pic(X), Gm). Then the points (wp(x)) and (wf

p(x)) = (λp(x)wp(x)) are related by

gx and hence give the same point in X.

This shows that/^: U->X depends only on the equivalence class of (Lp, up, cm).

From here, it follows easily that thefv patch together to give a morphism/: Y->X.

It remains to show that this map is the inverse of the map Homfc(F, X)-*CA(Y)

obtained by pulling back the universal A -collection (&x(Dp), ιp, cχn). First suppose that

(Lp, wp, cm) on Ydetermines/: Y^>X. We need to show that

(3) (Lp9up9cJ^f*(Θx(Dp)9ιp9cχm).

An easy argument shows that the natural map CΔ(JO^ΓLeΛ ^Λ(^J i s injective whenever

{Ua}aeA is an open cover of Y. Thus it suffices to prove (3) on an open set Ua Y where

each Lp is trivial on U. On such a U, we know that (Lp^v, up\υ, cmlu)^'(Θu, wp, 1) and

/ = π ° / , where?(x) = (wp(x)). We first observe that

(4) π*(Θx{Dp\ιp,cχm)~(Θ^*PA),

where π: ^->Zis as above. To prove (4), note that π*(Θx(Dp)) = Θy(div(xp)), so that

multiplication by xp gives an isomorphism 0^(div(xp))^tfV Hence 0^c0^(div(x p ))^

(9ou is multiplication by xp, and since χ m °π = Πpx^m '"p >, (4) follows immediately. Then,

returning to / = π ° /, we conclude from (4) that

(5) f*(Oχ(Dp)9 ιp9 cχm)~f*{Gm9 xp9 1) = ( ^ , wp9 1 ) ,

since/(x) = (wp(x)), and (3) follows.

Finally, suppose we h a v e / : Y^X. This gives f*(Gx(Dp\ ιp, cχrn), which in turn

determines/': Y-*X. We need to show t h a t / ' = / . First suppose that/factors/= π ° /

for some m a p / : F->^. Then/can be written/(x) = (wp(x)), where wpeH°(Y,Θγ).

From (5) and the construction off, it follows immediately t h a t / ' = / . In the general

case, note that G acts freely on °U since X is smooth (this is easy to prove), so that

π: ^->Xis smooth. Then standard results about smoothness imply t h a t / : Y^Xlifts

locally to °U in the etale topology. Since Homk( —, X) is a sheaf in the etale topology

on Y, we obtain / ' = / , and the theorem is proved in the case when the nps span NR.

We next study what happens when the nps do not span NR. Let Nx=Nn SpanR(«p).

The fan A can be regarded as a fan A1 in Nί9 which gives a smooth toric variety X1

of dimension d=mnk(N1). The inclusion Λ^ c N induces an inclusion XX<^X, and the



FUNCTOR OF A SMOOTH TORIC VARIETY 255

projection N->N/N1 induces a surjection X-+T1=Homz(N{, Gm)~<7^~d, where N^ =
Homz(N/Nί9 Z)<=M is the annihilator of N1.

Since N/Nί is torsion free, we can write N=NxφN2 for some complement N2^N.
Then A is the product fan Δx x {0}, which implies that Xis (noncanonically) the product
X1xkT1. If Mx is the dual of Nu then the projection N-+Nx determines an inclusion
α: Mγ-+M such that M=α(M1)0Λ^|.

Now suppose that (Lp, up, cm) is a J-collection on Y, Then, for every meN{, we
have <ra, np}=0 for all p. Thus cm is an isomorphism cm: ΘY~ΘY, which gives a
homomorphism Ni^>H°(Y, Of). Since this map depends only on the equivalence class
of (Lp, wp, cm), we have a natural transformation

^ ( Γ ) >Homz(tf|, //°(F, 0?)).

Further, if we define c ^ = cα(mi) for mίeMu then (Lp, wp, c^) is a 41-collection on Y,
and it follows easily that we have a natural transformation

CΔ{Y) >CΔi{Y).

Combining these maps, we obtain

(6) CΔ(Y) > CΔl(Y) x Homz(7V^, H°(Y, Θfi)

Since M=α(M)©iV|, it is straightforward to show that the map (6) is a bijection.
Now consider the following diagram:

Homk( Y,X) • CA(Y)

Homk(Γ, Xt) x Homfc(F, T±) > CΛl(Y) x Homz(7Vf, H°(Y, Φf)).

The vertical maps come from (6) and X~Xγ x Tu and note that both are bijections.
The map on the bottom is the product of the bijections Homfc(F, X^)~CΔι(Y)
(since the «p's span {Nx)^ and Homfc(F, Γ1)^Homz(7Vf, H°(Y, Off) (since 7\ =
Homz(7Vf, CJ) .

It follows that the map on top will be a bijection (and the theorem will be proved)
provided the diagram commutes. By general nonsense, we only have to prove com-
mutivity for 1̂  e Homk(Z, X). Going down and over, \x maps to (π1[(ΘXl(Dp), ιp, cχmι), φ),
where π x : X->X1 is the projection and φ: Nj^>H°(X, Gf) is defined by mi—>χm for
meN\. Going the other way, we need to study what happens to (Θx(Dp), ιp, cχm) under
the map

CΔ{X) > CΛι(X) x Homz(JVf, H°(X, Θx)).

Let us start with the second factor. Here, note that for meN\, cχm\ ΘX^ΘX is multi-
plication by χm. Hence the induced map Nl-+H°(X, Θx) is exactly the above map φ.
As for the first factor, we get (Θx(Dp), ιp, c'mi), where c'mi = cχΛ{mo for mίeM1. How-
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ever, since π1: X^X1 is a toric map taking npeN to npeNl9 it follows easily that
π*®xι(Dp) — ®x(Dp) in a way that preserves the section ιp (this follows, for example,
by looking at line bundles as determined by support functions and studying how πx

affects support functions). For mίeMί9 we have χmi o π 1 = χα(mi), and it follows
immediately that π%(ΘXι(Dp), ιp9 cχrni)^{Θx{Dp), ιp, c'mi). This proves commutivity, and
the theorem follows. Π

REMARK .1.1. When the nps span NR9 we get an alternate description of the
universal A -collection as follows. By [2], ap = \_Dp~\ e Pic(X) gives a sheaf Θx(ap) on X,
which is a line bundle since X is smooth. Furthermore, [2] gives a canonical isomor-
phism Sap~H°(X, &x(ocp)). Since deg(xp) = αp in Pic(X), we have xpeSap, so that we
can write xpeH°(X, Θx(ocp)). Finally, if meM, then Σp<m, np)ap = 0 in Pic(Jf), which
gives a canonical isomorphism

Then (0χ(αp), xp, cm) is equivalerlt to the universal Δ-collection (Θx(Dp), ιp, cχW). This
follows easily using the isomorphisms Θx(ocp)~ Θx{Dp) constructed in [2, §3].

REMARK 1.2. Using the representability criterion given in Proposition 4.5.4 from
[4], one can prove directly that CΔ is representable, without knowing the toric variety
X. To see how this works, let σeAmax, and define the functor Cσ

Δ by

Cσ

Δ(Y) = {(Lp, up, cm)eCΛ(Y): up is an isomorphism for all pψσ} .

Using the isomorphisms u~ι: Lp~Θγ for pφσ, one gets an equivalence (Lp, up, cm)~
(Lp,up,c'm) where L'p = Θγ and u'p=\ whenever pφσ. From here, the techniques of
Examples 1.1 and 1.3 and Theorem 1.1 can be adapted to show that Cσ

Δ is represented
by A{ x kG

n^ά, where d is the dimension of σ. According to Proposition 4.5.4 of [4],
CΔ is then representable provided we can show the following:

( i ) The natural transformation CΔ->CΔ is representable by an open immersion.
(ii) The functor CΔ is a sheaf when restricted to open subsets of Y.
(iii) CΔ is the union (as defined in part (iii) of Proposition 4.5.4 of [4]) of the CΔ.

The proof of (ii) is completely straightforward, and (iii) follows easily from the
nondegeneracy condition. For (i), we need to show that given a A -collection (Lp, up, cm)
on Z, the functor Y\-+ {geHomfc(F, Z): g*(Lp, wp, cm)eCΔ(Y)} is representable by an
open subset Zσ c Z. This is easy: Zσ is the biggest open subset of Z, where up is an
isomorphism for all pφσ. We leave the details to the reader.

By proving that CΔ is representable, we get an alternate construction of the smooth
toric variety X. This might be useful for studying toric varieties over more general bases
(for example, over the integers or over finite fields).

REMARK 1.3. Recently, other authors have used concepts similar to A -collections
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to describe maps from varieties to toric varieties over the complex numbers. For
example, Oda and Sankaran (unpublished) can describe maps from a normal variety
Y to a toric variety X such that the image of Y in X has nonempty intersection with
the torus T cz X. Every such map is determined by a group homomorphism ε: M->
C(Y)X and Weil divisors Ep (one for each peA(l)) such that

div(ε(m)) = Σ <™,nP>EP
peJ(l)

for all m e M (compatibility) and that

whenever there is no σeA which contains pί9...,ps (nondegeneracy). This data is
uniquely determined by/, and conversely, given such data, we get a map/: Y-*X such
that/(F) n Γis nonempty. This description has the advantage that it applies to all toric
varieties X, not just smooth ones. On the other hand, it only works when Y is normal,
and it doesn't describe all possible maps. However, this is sufficient for many ap-
plications, including those given in [6].

Another description of maps to toric varieties, due to Jaczewski in [7], uses the
notion of a vast divisor on a complete variety Y. One starts with a divisor with normal
crossings B = JjpBp. Let M{B) = {YjpapBp: lΣP

aPBpi=° i n H2(Y,Z)}, and let N(B)
be its dual. For each p, the map ΣP

apBp~*ap determines npeN(B). For B to be vast,
there needs to be a smooth complete fan A in N(B) with the np as generators of the
1-dimensional cones. There is also a nondegeneracy condition (about the complements
of certains unions of the Bp being an open cover of Y) and a compatibility condition
(that among linear combinations of the Bp, homological equivalence implies linear
equivalence). Then Theorem 4.5 of [7] shows that this data determines a map from Y
to the smooth toric variety X determined by A. This theory is only stated for complete
varieties and seems to require some knowledge about homological equivalence on Y.

2. The torus action. We next describe the torus action on X in terms of
zl-collections. Since T=Homz(M, Gm) is the torus of X, we get an action of Γon CΔ(Y)
as follows: a homomorphism φ: M->(7m in T acts on a zl-collection (Lp, wp, cm) via

φ (Lp9 up, cJ = (Lp, up, φ(m)cm).

We still have a A -collection since φ{m)cm®φ(m')cm> = φ(m + m')cm+m>, and this operation
also preserves equivalence classes. Hence Γacts on CΔ{Y).

This relates to the natural action of Γon Homfc(F, X) (coming from the action of
T on X) as follows:

PROPOSITION 2.1. The natural bijecίionHomk(Y, X)^>CΔ(Y) from Theorem 1.1
is a T-equίvariant map.
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PROOF. By functorality, it suffices to verify equivariance for the case Y=X and

for l ^ e H o m ^ J , X). This means finding an equivalence

φ*(Θx(Dp)9 ιp9 cχm)~(Θx(Dp)9 ιp9 φ(m)cχm)

for all φeT. However, φ~1(Dp) = Dp, so that φ*Θx(Dp) = Θx(Dp). Furthermore, if

we represent the global sections of Θx(Dp) as {fek(X): div(/) + Z)p>0}, then

φ*: H°(X9 Θx(Dp))^>H°(X, Θx(Dp)) is the map sending map f to f°φ. Since ιpe

H°(X, Θx(Dp)) corresponds to the constant function 1, we see that φ*(ιp)=zip.

Finally, to see what happens to cχm under φ, recall that χm: T-^Gm is a homo-

morphism and that φe T acts on T by translation. Since χm(φ) = φ(m), it follows that

χm°φ = φ(m)χm as functions on T. Thus the rational functions on X given by χm°φ

and χm differ by the constant φ(m). Hence they have the same divisor £p<ra, np)Dp,

though the trivializations ΘX(Σ (m,np)Dp)~Θx they induce differ by the constant

φ(m). This shows that φ*(cχm) = φ(m)cχm, which completes the proof. •

REMARK 2.1. When the nps span NR9 there is another way to view the action of

T on CΔ(Y). If we apply H o m z ( - , Gm) to the exact sequence (2), we get the exact

sequence

(7) 1 >G • G%1) • T • 1

where G = Homz(Pic(Ar), Gm). Then ( / P ) G G ^ ( 1 ) acts on A -collections via (Lp, wp, cm)ι—•

(Lp, ίpwp, cm). Since equivalence classes are preserved, G^(1) acts on CA(Y).

To relate this to the action of T, note that the isomorphisms Lp~Lp given by

multiplication by t~x induce an equivalence

(Lp, tpup, cJ~\Lp9 up9
p9 up9 Π

But my-^Wptf1^^ is the element of Γ=Hom z (M, Gm) which is the image of (tp) under

the map G£ ( 1 )->Γin (7). Hence the action of G^(1) induces the Γ-action on CΔ(Y).

3. Maps between toric varieties. As an application of Theorem 1.1, we will

describe all maps from P% to a smooth toric variety X where the «p's span NR. In this

case, recall that A'is the geometric quotient (A£(l) — Z)/G.

THEOREM 3.1. Let X be a smooth toric variety such that the np's span NR, and

suppose we have homogeneous polynomials Ppek\_t0, . . . , / m ] , indexed by peA(l), such

that:

(a) IfPp has degree dp, then ΣP

dPnP = 0 in N-

(b) (Pp(t0, . . . , tm))φZ in At{1) whenever (t0, ...,tm)^0 in A^\

If we define ?(t0, . . . , tm) = (Pp(t0, ? O)eΛfc ( 1 ), then there is a morphism f: P^-^X

such that the diagram
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f γ
i-k • X

commutes, where the vertical maps are the quotient maps. Furthermore:

(i) Two sets of polynomials {Pp} and {P'p} determine the same morphismf: P™-^>X

if and only if there is # e G = Hom z (Picp0, Gm) such that P'p^Q^Pp~^)Ppfor all p.

(ii) All morphisms f: P™-+X arise in this way.

PROOF. Given the Pp 's satisfying (a) and (b), note that for every m e M we have

Y dp(jn, «p> = 0, which gives a canonical isomorphism of sheaves

Then (®P™(dp), Pp, cj;an) is clearly a A -collection, so that we get a m a p / : P™-+X. Using

the arguments from Theorem 1.1, one can show that if π : A ™ + x — {0} -• P% is the quotient

map, then π*(Θp™(dp), Pp, c™n)~(ΘA™+i_{0}, Pp, 1). From here, the commutivity of the

diagram follows easily.

Now suppose that two sets of polynomials {Pp} and {P'p} give the same map /.

Then, by Theorem 1.1, we know that (Θκ(dp), Pp, cc™)~{Θκ(dp\ P'p, c™n). This means

that there are constants λpek* such that Pp = λpPp and Π p ^p m ' Π p > = l for all meM

because c™n is preserved. As in the proof of Theorem 1.1, this implies that there is

geG such that g([DpJ) = λp for all p, and (i) is proved.

Finally, to prove (ii), l e t/ : P™^>Xbt a morphism. By Theorem 1.1, we know that

/ i s determined by some J-collection (Lp, wp, cm). Since each Lp~Θprn(dp) for some dp,

we get an equivalence (Lp, wp, cm)~(Θκ{dp\ Fp, c'm). Then (c'J'1 <>c™n: Θκ~Θprn, and

thus, as in the second paragraph of the proof of Theorem 1.1, we can find λpek* such

that c™n = Y\pλ
<

p

m'np>c'm for all m (this uses our assumption that the nps span NR). If

we set Pp = λpFp, then (Gκ{dβ% i > c'^^(Θκ{dp\ Pp, cc

m™), which shows that / is

determined by the Pp 's. It is easy to see that conditions (a) and (b) are satisfied, and

the theorem is proved. •

REMARK 3.1. When X=Pl, the nps are e0, ..., en as in Example 1.2. One can

check that Σ " = o ^ = 0 ^ a n c * o n t y ^ dQ= — -=dH9 and then Theorem 3.1 gives the

usual description of maps between P™ and P£.

REMARK 3.2. Theorem 3.1 applies to all smooth complete toric varieties since the

nps obviously span NR in this case.

REMARK 3.3. When the nps do not span NR, then, as in the proof of Theorem

1.1, we can write X~ Xx x k Tu where 7\ ^ G^~d. In this case, a map P™-+ X is determined
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by maps P™-+X1 and P™-+Gr!n~
d. The first of these maps can be described by Theorem

3.1, and the second is obviously constant. Thus we can describe maps from P™ to an
arbitrary smooth toric variety X.

REMARK 3.4. When Xis a complete simplicial toric variety over C, Morrison and
Plesser [8, §3.7] indicate that Theorem 3.1 is still true, and they also describe a toric
compactification of the space of all maps Pι^X of fixed degree.

REMARK 3.5. Over C, Theorem 3.1 has been used by Guest to study the topology
of the space of rational curves on Jf (see [6, §5]). When Zis not smooth, Guest instead
uses a certain configuration space to study maps P1->X (see [6, Proposition 3.1]).

Finally, we will discuss a more general version of Theorem 3.1, where P™ is replaced
by an arbitrary complete toric variety Y. If Yis determined by the fan Aγ, then by [2],
Γhas a homogeneous coordinate ring Sγ = k[yτ], where τezly(l). The ring Sγ is graded
by the Chow group An_ί(Y), and we denote the graded pieces by Sζ for aeAn_1(Y).
Note also that Pic(Y)czAn_ί(Y). By [2], we can also express Yas a categorical quotient
of A£γil)-Zγ. Then we get the following result:

THEOREM 3.2. Let X be a smooth toric variety such that the np's span NR, and let
Y be a complete toric variety with coordinate ring Sγ. Suppose we have homogeneous
polynomials PpeSγ, indexed by peΔ(X), such that:

(a) IfPpeSγ

βp, then βpePic(Y) andΣpβP®*P = 0 in Pic(Y)®N.
(b) (Pp(tτ))φZ in Ai(1) whenever (tτ)φZγ in Aiγil).

If we define f(tτ) = (Pp(tτ)) eA£{1\ then there is a morphismf: F—• X such that the diagram

Y - ^ X

commutes, where the vertical maps are the quotient maps. Furthermore:
(i) Two sets of polynomials {Pp} and {P'p} determine the same morphismf \ Y^X

if and only if there is geG = Homz(Pic(X), Gm) such that P'p = g(iDp])Ppfor all p.
(ii) All morphisms f ' : Y^>X arise in this way.

PROOF. We will only sketch the proof, leaving the details to the reader. The key
idea is that by [2], αePic(Γ) gives a line bundle Θγ(a) such that we have canonical
isomorphisms Θγ(oc)®Θγ(β)-*Θγ(oc + β) for α, βePic(F). Furthermore, from [2] there
is a natural isomorphism H°(Y, Θγ(cή)~Sl. Then it is easy to see that the Pps give a
zl-collection (Θγ(ocp), Pp, c^an), and from here the rest of the proof is identical to what
we did in Theorem 3.1. •
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4. Concluding remarks. Another description of the functor represented by a toric
variety X is due to Ash, Mumford, Rapoport and Tai (see [1, Chapter I, §2]). They
consider pairs (5^, π) such that:

( i ) y is a sheaf of sub-semigroups of the constant sheaf MΎ on Y determined
by M.

(ii) π:<$f-+Θγ is a semigroup homomorphism {Θγ is a semigroup under
multiplication).
Furthermore, they assume that (£f, π) has the following properties:

(iii) For se£f, π(s) is invertible if and only if s is.
(iv) For each yeY, there is some σeΔ such that £fy = σv nM.

The main result of [1, Chapter I, §2] is that for all F, there is a natural bijection

Homfc(7, X)~{all pairs (Sf, π) on Y satisfying (i)—(iv) above} .

This description of the functor represented by X is clearly related to the usual way of
constructing X by patching together the affine schemes Zσ = Spec(A:[σv nM]).

In contrast, our description of Homfc(F, X) is more closely tied to the geometric
quotient X~(A£{ί) — Z)/G. An advantage of our approach is how it generalizes the
usual description of maps between projective spaces (see Theorem 3.1). The Ash-
Mumford-Rapoport-Tai approach, on the other hand, has the virtue that it applies
to all toric varieties, not just smooth ones. (The problem with our description in the
nonsmooth case is that the sheaf Θx(Dp) need not be a line bundle, though it is reflexive.)
It would be interesting to see the analog of Theorem 1.1 for the case of simplicial toric
varieties.

I am grateful to Martin Guest and Stein Arild Stromme for bringing this problem
to my attention. The research for this paper was supported by NSF grant DMS-9301161.
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