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Abstract. The explicit Howe duality correspondence is partially solved in the case
of irreducible type 2 dual reductive pairs defined over a non-Archimedean local field.

Introduction. Let (GL,, GL,) be an irreducible type 2 dual reductive pair defined
over a non-Archimedean local field F. The Weil representation w,, ,, of GL,(F) x GL,,(F)
on the Schwartz-Bruhat space & (M, ,(F)) is given by

nmh, 9)f (x)=|deth|"™?|detg|"* f(h™'xg)  (he GL,(F), geGL,(F)).

Then a problem on the (explicit) Howe correspondence for (GL,, GL,,) is stated as
follows. For a given irreducible admissible representation ¢ of GL,(F), determine an
irreducible admissible representation ¢’ of GL,,(F) such that Homg; (r) x 6L, (@nm> T @
a’)#0. The purpose of this paper is to study this problem in the case where m=n+1
and ¢ is generic.

Our starting point is a global theta series lifting of a cusp form on the adele group
GL,(A). For a cusp form ¢ on GL,(A4) and a Schwartz-Bruhat function f € % (M, ,(A4)),
we define a theta series lifting ¢}, where s is a complex parameter with Re(s)«0. This
¢} is an automorphic form on GL,,(4). In Section 1, we calculate a Whittaker function
W‘pj of ¢} and prove that Ww; is identically zero if m#n, n+ 1. In the case where m=n
or m=n+ 1, the function Wq,s' is represented by a convolution of the Whittaker function
W, of ¢ and a certain function @,(f) related to f. More precisely, we have a formula
of the form

W(p}(g) = J W(p(h)l det h li¢m(wn,m(g)ﬁ(h)dh s (m =n,n + 1) .
Un(4) \GLn(4)

On the basis of this formula, we can define a local theta series lifting of a local Whittaker
function. This is the reason why we study the Howe correspondence in the case where
m=n+1 and o is generic. The case m=n will be investigated in another paper [17].
We state the results of this paper. Let o be an irreducible generic representation
of GL,(F). By using a local analogue of the formula mentioned above, one can construct
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a local theta series lifting ¢ of ¢. This ¢ is an admissible representation of GL,, ,(F)
realized in the space of Whittaker functions and satisfies the following:

(0.1) Homgy ryxcr,. ) @nn+1, 0" ®G)#0, where ¢ denotes the contragradi-
ent representation of o.

To describe the properties of 6, we denote by o, the normalized induced rep-
resentation Ind§"+4oe® 1 of GL,, ((F), where Q,,(F) denotes the standard upper
triangular parabolic subgroup of GL,, ,(F) with Levi factor GL,(F) x GL,(F). In this
introduction, we assume o, to be irreducible for simplicity. (If o, is not irreducible, we
must modify the definition of ¢, as will be mentioned in Section 2.) Then we show the
following:

(0.2) o, is a unique irreducible subrepresentation of . Furthermore, the quotient
representation ¢/o; has no nonzero vectors fixed by the closed subgroup

)

where GL,(0) is the maximal compact subgroup of GL,(F) consisting of integral
matrices.

ke GL,,((O)} ,

(0.3) ¢is of Whittaker type in the sense of Jacquet, Piatetski-Shapiro and Shalika
[8, 2.1)].

By (0.3), one can define the gamma factor y(s, & x 7, ) (cf. [8, (3.1)]) for each
irreducible generic representation t of GL,, (F). Then (0.2) implies that

’))(S, & X7T, ll’)=y(s’ 61 XT, l//)

for all irreducible generic representations t of GL,(F). In light of these results, one can
expect that =0, for any generic o. If o is a generic spherical representation, we really
have 6=o0;.

Prasad [14, (4.6.5)] stated a conjectural form of an irreducible admissible
representation ¢’ of GL,, ,(F) corresponding to ¢ by the Howe duality. Since o, #0’,
this conjectural form ¢’ is not consistent with the Howe correspondence if ¢ is a generic
spherical representation.

NotaTiON. For an associative ring R with the identity element, we denote by R”™
the group of all invertible elements of R and by M, ,(R) the set of all n x m matrices
with entries in R. If n=m, we write M,(R) for M, ,(R). For Ae M, ,(R), ‘A stands for
its transpose. For 4 e M,(R), det A stands for its determinant. The identity matrix in
M, (R) is denoted by 1,.

When a base field F is given, we set G,=GL(n, F). If m<n, we will regard G,, as
a subgroup of G, by the embedding
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g O
(g .
¢ (0 1n_m>
We define algebraic subgroups of G, as

B, the set of upper triangular matrices ,
U, the unipotent radical of B, ,

T, the set of diagonal matrices ,

Z, the center of G, ,

P={(0) oe6i e ).
0,=Z,P,.

The Weyl group of G, will be identified with the symmetric group S, of degree n.
If G is a locally compact abelian group, then #(G) denotes the space of Schwartz-
Bruhat functions on G.

1. The global theta lifting. In this section, let k£ be a global field and A4 the adele
ring of k. For a k-subgroup G of G,=GL(n, k), G(A) denotes the corresponding adele
group. We fix a nontrivial additive character ¥ of £ \ A4 and define the character y, of
U,(4) by

Yn)=v(uy+upz+ -+, 1) (u=(u;;)e Uy (A)) .
The Weil representation (w,, ,, (M, .(A4))) of G,(A) x G,,(A) is defined as follows: for
feS M, (A)), he G(A) and ge G, (A),
Db, 9)f () =] deth|;™2|detg [52/(h~ ' xg) .

Let u be a character of Z, \ Z,(4). For f e ¥ (M, ,(A)) and se C, we define a modified
theta series (s, u, f) as

0(s, u, /)= p@ldetz ™ Y f(z7'x)dz

Zn\Zn(A) xeil;,(r)n(k)

From [4, Lemmas 11.5 and 11.6], it follows that the integral on the right-hand side is
absolutely convergent for Re(s) < —m/2 and the function (h, g)— 0(s, u, w, .(h, 9)f) is
slowly increasing on (G, \ G,(4)) x(G,, \G(A4)). Let ¢ be a cusp form on G,(A4)
satisfying ¢(zg) = u(z)@(g) for any ze Z,(A). Then we define a modified theta lifting ¢}
of ¢ by

»i(9)= e(h)|dethly Y. w,u(h g)f(x)dh

xe My, m(k)
Gn\Gn(4) P
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f p(h)| det h[36(s, p, @, m(h, g) f)dh .
Zn(A)Gn \GnlA)

Since @(h) is rapidly decreasing on Z,(4)G, \\ G,(A4), this integral is absolutely conver-
gent for Re(s) < —m/2, and hence ¢} defines an automorphic form on G,(4). The
purpose of this section is to calculate a Whittaker function of ¢}. Namely we compute
the integral

Wo(9)= Ym() ™ @3(ug)du .

U \Um(4)

We set
W, (h)= V()™ @(uh)du .
Un \Un(4)
If m>n, we define the function @,,(f) on G,(A4) by
®,,(/)h)= V() ™ 0 (b, ) f (0 m)dut
Unm(4)

where we put ¢, ,=(1,, 0) e M, (k).

PROPOSITION 1. Let ¢ be a cusp form on G,(A), feS(M,,(A) and seC with
Re(s) < —m/2.

(1) Ifm<n—1orn+2<m, then Ww} is identically zero.

(2) If m=n, then

Un(4) \Gn(4)

provided that the integral on the right-hand side is absolutely convergent.
(3) Ifm=n+1, then

Wos(9)= f W (W) det h|3®, + 1(pn+1(9) ) (H)dh .
Un(d) \Gn(4)

Here the integral on the right-hand side always converges absolutely.

PrOOF. For a matrix xe M, ,(k), let x; denote the j-th column vector of x. We
write (X, X,, ..., X,,) for x. We define the subset Y; of M, (k) as

Y0={XEMn,m(k)_{0}]xl 20}

Y;={xeM, (k)| rank(x,, ..., x;)=rank(xy, ..., X}, X;+1) =/},
for 1 <j<min(n, m—1). If m<n, we also set

Y, ={xeM,,(k)|rank(x,, ..., x,)=m} .
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Then M, ,(k)— {0} is a disjoint union of ¥;, 0<j<min(n, m), and each Y; is left G,- and
right U,-invariant. Let Y; be a complete set of representatives for Y;/U,. If
0<j<min(n, m— 1), then we can take Y;so thateach xe Y; has x;, ; =0. In the following,
for xe M, ,(k), Z(x, U,,) stands for the stabilizer of x in U,,. Then Wq,?(g) equals

J p(h)|dethl; J Un@)™ Y @, ug)f(x)dudh
Gn \Gn(4)

Um \Um(A) xeil;v(')"(k)

min(n,m)

= f @(h)|deth J Un@™ X Y (h, ug)f(xy)dudh
Gn \Gn(4)

Uy \ Upm(4) Jj=0 xeYjyeZ(x,Um) \Um

min(n,m)
= Z I,

J
j=0

where we set

II'= f p(h)|dethly Y ( f W om(u)du ')
Gn \Gn(4) €5 \ J 2(x,Upm) \Z(xUn(A)

¥ ,(w) " Lo(h, ug) f(x)dudh .

X Jv
Z(x,Um(4)) \Um(4)

By our choice of representatives, y, is nontrivial on Z(x, U,(A4)) if xeY; and
0<j<min(n, m—2). This implies /T'=0 for 0 <j<min(n, m—2). Therefore we have

o +I7 if m<n
W‘p;(g): [I,',','_l if m=n+1
0 if m>n+2.

We consider the case m<n. We regard U,, as a subgroup of G,. Let M, be the
stabilizer of the matrix ‘¢, ,='(1,, 0)e M, (k) in G,, i.e.

M"m:{< g Z)

Since Y,,=G, ey, Iy €quals

QEGn—m’ ueMm,n—m(k)} .

f ¢(h)|dethlij U@~ Y @ m(rh, ug) f(ep )dudh
Gn \\Gn(4)

U \Um(4) YeEMEN G,

= J @(h)|det hl J V() " @, (u” b, g) f (e, ,)dudh
M\ Gnl4)

Um \Um(4)

f < f @(hoh)| det hoh deh())
M™(4) \Gn(d) \ J MM \ M (4)
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X f V() Oy (1™ h, 9) f (e, n)dudh .
Um \Um(4)

If m<n, the cuspidality condition of ¢ implies I} =0. If m=n, by formal computation,
we have

4 =J < J Vo)~ 1<p(uh)du>| deth [y, .(h, 9)f(1,)dh
Gnld) \ J Uy \Un)

= J W ()| det h[3®,(w, (9)f)(m)dh .
Un(4) \Gn(4)

Next, let M~! denote the stabilizer ‘,_;,='(l,-1,0)eM,, (k) in G, Then
we have

Ym—l={y_l(t£m—1.n7 Xm)"))EM:."_l \Gnﬂ rank(tem—l,m xm)=m_ 1} .

Therefore, I7_, equals

f @(h)| deth |§J Ym(u) ™!
Gn \Gnld) Unn \U(d)

+ Z Z wn,m(yh, ug)f((tsm— 1,ns xm))dudh

yeM"‘"“\Gn XmeMy, 1(k)
rank(‘em - 1,n,Xm) =m—1

= f < f @(hoh)| det hoh |f4dho>j Y(w) ™
M7= 1) \Go(4) \ J M= 1\ M= 1) U \Upn(4)

X ) Op (P, 49) (€ 1 s X))duicth .

Xme Mn,1(k)
rank(*em - 1,n,Xm) =m—1

The cuspidality of ¢ implies I'_, =0 for all m<n. This completes the proof of the

statements (1) and (2).
We consider the case m=n+ 1. By calculation similar to that above, we have

m-1= j W ()| det h[3®, + 1(@,,0+1(9)f)H)dh .
Un(4) \Gn(4)

We prove that the integral on the right-hand side converges absolutely. It is sufficient
to show that the integral

J W(p(t), det t ,sA (D" + l(f)(t)én(t) B ldt
Tn(4)

converges absolutely, where d, denotes the modular character of B,(4). By definition,
for t=diag(a,, ..., a,) e T,(A),
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— —(n+1)/2 P -1
¢n+1(f)(t)—|dett| ¢ ’ f (P(u12+ +unn+1)
Un+1\Un+1(4)
-1 -1 -1 -1
ay - Gy Uy o G Upy Gy Uiy
0 a;l e ay'up, a3 MUgey,
Xf . N . . . du12 T +dunn+1 .
-1 -1
0 0 o Ay Ay, Uppty

This integral is regarded as a partial Fourier transform of f. Hence there exists a
function @€ ¥ (4" @ A™) such that

@, (NS D, 7).

Furthermore W () is majorized by a gauge function ¢ on G,(A) (cf. [6, Proposition
2.3.6, Lemma 8.3.3 and (12.1)]), i.e.

W, ()<,  (teT(A4)).

Then it is easy to see that the integral
J &)l det 1[5 @(t, t~1)d,(1) 1t
Tn(4)
is convergent. This completes the proof.

2. The local theta lifting. From now on, we fix a local non-Archimedean field
F. In this section, we define a local theta lifting from the set of generic representations
of G,=GL(n, F) to the set of smooth representations of G,,, by using an integral
analogous to that in Proposition 1 (3).

First we define some notation and recall certain notions. Let ¢ denote the ring of
integers of F, w a prime element of F and g the order of O/w(. The absolute valuation
of F is denoted by | * |, which is normalized as |@w|r=¢!. We fix, once and for all, a
nontrivial additive character  of F with the conductor . We denote by K, the maximal
compact subgroup GL(n, O) of G, and by #°, the convolution algebra consisting of all
locally constant and compactly supported functions on G,. The character , of U, is
defined to be

¢n(u)=W(u12+“23+ U +un—1n)

for u=(u;;) e U,

Let W(y,) be the space of all locally constant functions W on G, satisfying
W(ug) =y, (u)W(g) for any ue U, and g€ G,, i.e. W(y,)=Ind§¢,. Then ge G, acts on
W(y,) by right translation: p(g) W(g,) = W(gog). An admissible representation ¢ of G,
is said to be of Whittaker type if ¢ is finitely generated and dim Homg (o, W(y,))=1.
If o is of Whittaker type, we denote by W(a, ¥,) the image of the unique (up to constant)
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nonzero G,-morphism from ¢ to W(y,). Note that the representation (p, W(o, y,)) need
not be isomorphic to . If ¢ is of Whittaker type and irreducible, then ¢ is said to be
generic.

A classification of irreducible generic representations of G, is known by Bernstein
and Zelevinsky [18]. In the following, for a given smooth representation n of G, and
a complex number z, we denote by n[z] the twist of = by | - |?, i.e. n[z](g) =] det g [*n(g).
Let Q be a standard upper triangular parabolic subgroup of G, with Levi factor

G, %G, x *+ xG,, n+ " +m=n. Let n', 1<i<k, be an irreducible tempered
representation of G, and r;>r,> -+ >r, real numbers. We set
2.1 Ind§"(n'[r 1@ 7*[r,]® - - @7 [r]).

Bernstein and Zelevinsky proved that if ¢ is an irreducible generic representation of
G,, then ¢ must be equivalent to a representation of the form (2.1), where the parabolic
subgroup Q, the tempered representations ', ..., n* and the real numbers r, > - -+ >r,
are uniquely determined by o (see also [9]). We note that, by a theorem of Jacquet
[11], the irreducible tempered representation n' of G, must be equivalent to a
representation of the form

Ind§r(n"' @n"?Q® - -+ @n"FY),
where R; denotes a standard upper triangular parabolic subgroup of G, with Levi factor
G X Guy X + o X Gy M+ o+ +ny,=n; an 1 and irreducible square integrable

representation of G, for each 1 <j<p;.
Let ¢ be an irreducible generic representation of the form (2.1). We define the

representation o, of G, as follows. Assume that r; >r,> -+ >r;20>r; ;> -+ >
r.. Let Q' be a standard upper triangular parabolic subgroup of G, ,; with Levi factor
G, x ~ XG, xG xG,, , x -+ xG,. Then we set

(22) o;=Ind'@'[r]® - @n'[r]®]1 ®mtr11® - ®@n rd).
This ¢, has the following properties (cf. [9, Proposition 3.2] and [18, Theorem 4.2]).

LeEmMA 1. (1) o, has a unique irreducible quotient representation.

(2) The representation (p, W(c,, W, +1)) is isomorphic to o, itself even if o, is not
irreducible.

(3) oy is reducible if and only if there exists at least one n*[r;] such that n*/[r;]=
St [+ (n;;+1)/2], where St,  denotes the Steinberg representation of G,,, (cf. [4, Theorem
7.117).

It is known by [2, Theorem 2.9] that the induced representation Ind§'*'o® 1
given in the Introduction has the same composition factors as that of ¢,. However, if
Indgr*'o®1 is not irreducible, it does not always satisfy the properties (1) and (2)
above, and, furthermore, we cannot apply [8, Proposition (9.4)] to this representation.
([8, Proposition (9.4)] will be used in Section 3, (3.3) below.) This is the reason why
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we define o, not by Ind§;*! 6 ®1 but by (2.2).
The local Weil representation (w, ,,, (M, .(F))) of G, x G, is defined as follows:
for fe (M, ,(F)), heG,and geG,,
O m(hy, 9)f(x)=|deth|z™?|detg |32 f(h™'xg) .

We write simply o for w,,,, and 0, for w,,. For fe¥#(M,,.(F)), we define the
function &(f) on G, by

D(f)(h)= Yur 1) (b, u) f(e,)du
Un+1

where we put ¢,=(1,,0)e M, ., ,(F). For each We W(y,), we set

Viw,n(9) = Whe(w(@)f)Wdh  (geG,.1).

U" \Gn

Since @(f) has compact support in G, modulo U,, the integral on the right-hand side
reduces to a finite sum. Furthermore, as a function in g€ G, ;, V(w, ) is contained in
W, ). Therefore we have a correspondence

W) x S (M, ps1(F) > Wi y)
which satisfies the relation
(2.3) PV omw. )=V w.on-1.90 (heG,, geGpyy) .
Let o be an irreducible generic representation of G,. We set
Vo Vns)= V. y| WEW (0. ), [ €S (Mypir(F))} -

Then the theta lift 6 of ¢ is defined to be a smooth subrepresentation (p, ¥(a, ¥, +1))
of W({,+,)- It is known by [13, Chapter 3, Section III, Corollary 3] that & is of finite
length. Thus, by [1, Theorem 4.1], & is admissible and finitely generated.

Let &,e #, be the characteristic function of K,. We define the action of &, on

W(¥,+1) by

p(én)Wl(g)=f W1<g<(’§ ?))dk (W, e W(lns 1), g€Guss) -

The main result of this paper is stated as follows.

THEOREM 1. Let o be an irreducible generic representation of G,. Then the inter-
section p(E )V (o, W) Np(E )W (01, W, 1) contains a nonzero element. Furthermore, if
0, is irreducible, we have

PV, Y, 1)=pE)W(01, Ypiy) -

This theorem will be proved in Section 5. We note that p(&,)W(o, ¥, + ;) has infinite
dimension.
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REMARK. When z is a complex number with Re(z)«0, the representation o[z],
is just the irreducible representation Indg" ' 1® o[z]. Here Q' denotes the standard
upper triangular parabolic subgroup with Levi factor GL, x GL,. Then, Jacquet,
Piatetski-Shapiro and Shalika [8, Proposition (6.1)] essentially proved that, for any
irreducible generic representation o,

24 Wolzli, ¥us1) = V(olz], Ynss)

if Re(z)«0. This fact is derived as follows. Let '(M,, ,,, (F)) be the subset consisting

of functions fe%(M,,.(F)) with supp f < ¢,G,,,. The subspace S (M, ,.,(F)) is
(G, x G, ()-invariant. For each fe %' (M, ,.,(F)) and We W(a, {,), the integral

(2.5) ¢w,r(g; m)=|detm|; j w(h, 9)f (e, )W(mh)|deth|zdh  (9€G,.1, meG,)
Gn

is convergent, and as a function in g€ G,+,, ¢, ) is an element of Indg»*'(c[z] ® 1)

(cf. loc. cit. p. 430), where Q" denotes the standard lower parabolic subgroup with Levi

factor GL, x GL,. We note that the representation Indg»*'(s[z] ® 1) is isomorphic to

o[z];. Since o[ z], is irreducible, the correspondence (W, ) ¢y, 5 is a surjection from

W(o,y,) x ' (M, ,+(F)) onto Indgr**(6[z]®1). Furthermore, for ¢=¢y, ;. the

integral
I, x 1, x\\ !
vine],_oeal(5 oo (3 1)
¢ e P\ 01 o 1

is absolutely convergent by the assumption Re(z)«0. Then the space {W;,| ¢e
Indgr'(a[z] ® 1)} gives a Whittaker model of o[ z],. By replacing ¢y ,, by its expression
(2.5) and changing order of integrations, we obtain W=V .-, s- Therefore we have
(2.4).

3. Some results of Jacquet, Piatetski-Shapiro and Shalika. First, we recall class
1 Whittaker functions of G, by Shintani [16]. For an n-tuple k=(k,, ..., k,)€Z" of
rational integers, we denote by #, the diagonal matrix in 7, whose i-th diagonal entry
is @* for 1 <i<n. We set

A, ={keZ"|ky=k,> -+ >k,}.

Let C[X,, X{' X,, X5, ...,X,,X;'] be the Laurent polynomial ring in in-
determinates X, ..., X, and 4, the subalgebra consisting of the elements in
ClX, X714, X,, X5, ..., X,, X, '] which are invariant by permutations of in-
determinates. We define the function W( - ; Xy, ..., X,; ¥, ') on G, with values in 4,
as follows: for ue U, t,eT, and ke K,,
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Wutk; Xqy ..., X300 Y)

n

) I (Xi—Xx)~ 'Y sent [[ Xk if ked,

1<i<j<n teSn i=1

_ -1
i)™ if kéA,

where 6, denotes the modular character of B,, i.e. §,(t,)=[]7_, |@|§*! 2% Then, for
each n-tuple z=(z, ..., z,) € (C*)" of complex numbers, the class 1 Whittaker function
W, on G, is given by a specialization of W(-; X,,..., X,; ¥, 1Y) at (z,, ..., z,), i.e.
W, (hy=W(h;z,...,z,;¢, ). We denote by W_ (¥, ') the submodule of W(y, ')
generated by W, i.e. W, (Y, \)=p(H#, )W,.

For ze(C*)", we define an unramified character y, of B, by

Xt u)=zk1z% - Zhn | (keZ" t'eT,nK,,ucU,).

Let Indg" . be the representation of G, induced from y,. Then Ind§» y, is of Whittaker
type (cf. [3]). We take a t€S, so that ©(z) =(z,y), Zeay - - - » Zew) Satisfies |z, <
| Ze2)| < -+ - <|zyml. It is known by the argument in the proof of [12, Theorem 2.2]
that the space W(Ind§" x..) ¥, ') coincides with W,(y, ). We denote the repre-
sentation (p, W,(, !)) by n,. Since =, is isomorphic to a quotient representation of
Ind§” 1., it is also of Whittaker type.

Next, we recall results of Jacquet, Piatetski-Shapiro and Shalika, which will play
an essential role in our proof of Theorem 1. We set

0---1
w,,=<f 1 f)eG,,, 1,="0,...,0,)eM, ,(F).
1.0

If he G,, we denote by /' the inverse transpose of &, i.e. /*="'h" . Let ¢ be an admissible
representation of G, which is of Whittaker type. We define the representation ¢' of G,
by o'(h)=0o(h') for he G,. For We W(o, y,), we also define the function W on G, by

W(h) = W(w,h") .

Then the set of W with We W(a, ,) coincides with the space W(a', §, }).

For the moment, we fix an irreducible generic representation o of G, and the
representation o, of G,,; defined in Section 2. Let © be another irreducible generic
representation of G,. We denote by w, the central character of n. Furthermore, the
local factor and the epsilon factor of © given by Godement and Jacquet [4, Theorem
3.3] is denoted by L(s, ©) and &(s, 7, ¥), respectively. For We W(a, ¥,), W e W(x, Y, )
and p e (M, ,(F)), we set

Y, W, W' 9)= W)W (he(hn,)| det hlzdh .
Un \\Gn
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In a similar fashion, for W, e W(o,, ¥+ 1), W' e W(r, y,; ), we set

h 0

W'(h)|dethl5~"dh .
0 1)) (W)l deth 3

'P(Ss VVI’ W/) = Wl ((
Un\Gn
Then Jacquet, Piatetski-Shapiro and Shalika [8, Theorems (2.7), (3.1) and Proposition
(9.4)] proved the following. Each of the integrals ¥Y(s, W, W’; ¢) and ¥(s, W, W’) is
absolutely convergent for Re(s)>0 and they are rational functions of ¢ ~*. The integrals
Y(s, W, W’; ) span a fractional ideal C[g¢°, ¢~ *]L(s, o x n) of the ring C[q*, ¢™*]. The
factor L(s, o x n) has the form

3.1 L(s,axm)=P,, (g 5!, P,,.eC[X], P, .(0)=1.
Furthermore, there is a factor &(s, o x @, ) of the form cg~™ such that

Y(l—s, W, W' ¢ _ Y(s, W, W',
(3.2) (-5 D o (1) tes o x 7, ) LS W W @)
L(l—s,0'x ") L(s, 0 x7)

where ¢ denotes the Fourier transform of ¢, that is,

P(x)= V(xy)p(y)dy -

My, 1(F)

Similarly, the integrals ¥(s, W, W) span a fractional ideal C[q*, ¢~ *]L(s, 0, x @). Here
the factor L(s, o, x m) has the form

(3.3) L(s, 0, xm)=L(s, 6 x t)L(s, ) .
There is a functional equation
Y(1—s, W, W’ (s, Wy, W’
ca TSI Cryats, o, s, mp) e P
L(1—s, 0} x7") L(s, 0, xm)

We set

WS, 0y X7, Y)=¢(s, 0 X 70, Y)e(s, m, W%Z
s Y1

4. The gamma factor of 6 x 7. We fix two irreducible generic representations o
and = of G,. The purpose of this section is to calculate the integral

0
W(s, V, W)= V((g ))W'(gndetgm-“dg
Un \Gn 01

for Ve V(o,¥,.,) and W' e W(rn, Y, 1). Since we do not yet know whether ¢ is of
Whittaker type, we cannot apply the results of Jacquet, Piatetski-Shapiro and Shalika.
However we can compute this integral directly in the same way as in [8, (6.3)]. In the
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following, we explain briefly this method. See [8, (6.3)] for details.
We may assume ¥ to be the form V="V ; o,, Where We W(a, ¥,), f1 ¥ (M ,(F))
and f,e (M, ((F)). We set

2,(f1)(h, 9) =j ¥~ w1 (h, g).f 1(Wdu .
Un

From easy calculation, it follows that

g 0 A
4.1) ¢<w<< 0 1 ))(fl ®f2)>(h): |deth |52 f,(hn) @1 (f1)(h, g) -
Weregard ¥(s, V, W')asaformal Laurent seriesin X'=¢g 5. Thus we write ¥(s, V, W’) as
4.2) Y vV, WX,

This Laurent series has only finitely many nonzero negative terms. Each coefficient
Y. (V, W) is given by

0
v, (V, W)= J V<< f) ) )) W'(g)| detg |y V2dg ,
Un \G™

where G™ denotes the set of ge G, with |detg|r=¢~ ™. By (4.1), ¥,(V, W’) equals

J {J W(h)®,(f)(h, 9)fo(hn,)| deth |}/ zdh} W'(g)ldetg |z '*dg
U \Gm LJ U, \Gn
=J {J W(h) fi(h™g) f,('hn,)| det b |}/? '"’2dh} W'(g)|detg |y>~'%dg
NG LJG,

= j W'(g) J W(gh™") fi(W) f3(h"'gn,)| det h [}~ dhdg .
Un \GT Gn
This double integral is abolutely convergent. By changing g to gh, we obtain
(4.3) j W(g)fz(‘gnn)j Amlgh)W'(gh) f1(h)| det h|}*~*dhdg
Un\Gn Gn

where y,, denotes the characteristic function of G,'. We take an open compact subgroup
Q of G, such that 'Q=Q and f,(wh)=f,(h) for we Q. Let W(x, ¥, })? be the subspace
of W(m,y, ') consisting of all elements fixed by Q and {Wi,..., W,} a basis of
W(n, Y, ')?. Then there exist matrix coefficients ¢,, ..., ¢, of 7 such that

(4.4) JW’(gwh)dw= Y. Wi@e;h).

1<j<p

Thus we have
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f X'"(g”)W'@”)fl(hNdethf;’““dh=_fl Wi(g) f Kn(gh)d; () £,(R)| det k|2~ V2
Gn i=

Furthermore, we have

(4.5) ImgW =" Y Xl @A),

m+m’'=m

where m’ and m” are bounded from below. Consequently, by (4.2), (4.3), (4.4) and
(4.5), we obtain

p -
4.6) VGV piom W)= 2 Y, W Wi fo) | filh);(h) | deth [yt~ 2dp
i=1 Gn

Here we note that the integral
Z(fro5+n/2=1/2,¢;)= J f(W)g;(h)| deth 2= 22
Gn

is a zeta-integral defined by Godement and Jacquet [4] and there is a functional equa-
tion
Z(fi, 1=s+n/2—1/2,¢}) Z(f1, s+n2—1/2, ¢;)

L(1—s, 7" =#lsm ¥) L(s, m) ,

@.7)

where ¢; is a matrix coefficient of n* given by ¢j(h)=¢;(h"). Similarly, by using [8,
Proposition 6.2], we obtain

(4.8)
(=5, Viw,r,05 W)= Z V(1 —s, W, Wj; [o=DZ(f;, 1=s+n/2—1/2,¢)) .

Therefore, by (4.6), (4.7), (4.8) and (3.2), we have

Y(1—s, V, W) B " V(s V, W)
(49) L(1—s,6'x7")L(1—s, ") = ou(=1els, o7, Yels. m, §) L(s, 0 x m)L(s, )

as a formal Laurent series. However, (4.9) itself implies that both sides are polynomials
in (X, X~ 1) (cf. [8, (4.4)]). Thus (4.9) may be regarded as an identity of analytic functions.
As a consequence, we obtain the following result.

PROPOSITION 2. For each VeW(o,Y,.,) and W eW(n,, "), the integral
Y(s, V, W) is absolutely convergent for Re(s)>0 and L(s,o, xn) *¥(s, V, W’) is an
element of C[q°, q”*]. Moreover, there is an equation

Y(1—s, V, W)=w(—1D"(s, o, x7, Y)¥(s, V, W) .

If 7 is a spherical representation 7., then we can prove the assertion of Proposition
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2 in another way. Namely, we can calculate the integral ¥(s, V, W,) more directly. Since
the integral ¥(s, V, W) will be used in Section 5, we explain this calculation in the rest
of this section. We may assume again that V' is of the form Vi , g, We set

J(s, f1, W)= ®,(f1)(h, 9W.(9)| detg [z~ !2dg .

Un \\Gn

By (4.1), we have formally
(4.10) ¥, Vw0500 W)= W(h)J(s, f1, W) [o(hn,)| deth | 2dh .
Un \Gn

Let /€ #(M,(F)) be the characteristic function of M,(0). Then w,(1,, &,) is a projection
from % (M ,(F)) to the subspace ¥ (M (F))°**~X» consisting of functions invariant by
w,(1,, K,). By Howe [5, Theorem 10.2], the space & (M, (F))°**»k» coincides with the
space w,(#,, 1,)fL. Thus, corresponding to f;, there exists ¢, € #, such that

(4.11) o1l E)fi=w1(@1, 1)1 -
Then we have
JGs, f1, W) =JGs, f1, pEIW ) =J(s, 01(@1, L)Y, W) =p(@)J(s, 17, Wo) -
We compute the integral J(s, f{, W,)(h). The next lemma follows from simple calcula-
tion.

LEmMMA 2. Let k=(ky,...,k,)eZ" and p=(py,...,p)EZ". If pi=k =p,>
ky> -+ =p,=>k,, then we have

@,(fD)(ths tp) = det 1 |z 126,(1) | det 1, [/26,(1,) "1 .
Otherwise, ®,(f7) (1, 1,) IS zero.

LEMMA 3. Theintegral J(s, fL, W.) absolutely converges if Re(s) is sufficiently large,
and we have
n -1
JGs, 17, Wz)(h)=<n ¢ —q_szi)> |deth |32 (h) .
i=1
PrOOF. By Lemma 2 and an explicit formula for W, J(s, f2, W,)(t,) equals
ZA (pl(flo)(tk, tp) Wz(tp)l det tp I;‘_ 1/25n(tp)_ !
pPEAy
=|dett |5 123,(t)"" > |det 1, [ Wo(1,)0,(2,) ™1
kio1> Pk <i<n)

-1
=|detzk|;‘/26n(tk)l/2< [l (Z"_Z")>

1<i<j<n
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X Z sgnt H 23y { 2 (q—szr(i))p'} .

T€Sn ki-12pi>ki

Here we put ko= + oo for convenience. The sum of (¢~ °z,)"* over +oo>p, >k,
absolutely converges if Re(s) > max; _; ,(log,| z;|). Then, by calculation of determinants,
we obtain

1 n
Z sgnt 1—[ Zeq) { Z (g~ Zr(;))p'} (n (1— q_szi)> Z sgnt 1:[1 Z:"(i_)i(q_szr(i))ki'

€S, ki-12pi=ki €S,
Thus implies the assertion.

For ¢, € #, satisfying (4.11), we define ¢} € /#, by
4.12) ei(h)=|deth|; @, (h) .

By Lemma 3 and (4.10), we have a relation

n -1
(4.13) Y, Vw,ri0500 Wz)=< I1 (l—q“zi)> ¥(s, W, p(@DW.; [2) -

i=1

Next, we compute the integral

. ~ g' 0 v -5
Y(1—s, Viw, r1®62 w,)= V(W,f1®f2)<wn+ 1< )) W.(w,g")|detg |11=/2 dg .
Un\Gn 01

By changing g to w,g'w,, this integral equals

j V(W,f,®12)<wn+ 1 < >< )) w. (9)| detg [F 1/2d9
Upn \\Gn
- J { f W(h)<z>< (( ))(fl ® /) )(h)dh} W.(g)| det g [ 2dg
Un \Gn U, \Gn
- f W(h){ f d>(w<< 0 1>>(f1 @f;)) (WW.(g)| detg 3 lfzdg}dh .
Un\Gn Un \Gn g 0

ForueU,, ;, we denote by u; the n x n matrix obtained by eliminating the first column
vector and the (n+ 1)-st row vector from u. Then

oel(§ oo

1
_ 4|0 -
=|deth|z "2 f,| h™! . Vo 1) 0y (hy 9) f1(uy)du .

Un+1

0
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We take ¢ie#, to be the same as (4.12) for given f, e P (M (F)). It follows from
calculation similar to that in the proof of Lemma 3 that

J { Yor 1) oy (h, g)fl(ul)du} W.(g)| detg s 1/2dg
Un \Gn Un+1

n 1-s
—q4 4 s— W
=<]~__[1 l_ql—sz.>|dethll: llzp((pl) z(h),

and hence

Y(l—s, V(W,h@fz)’ w,)

- Z; - s—

=<I—[———q1_s )J Whp(e)W (W) fo| k=1 | | ||deth|3 *dh.
i=1 1—q 7%z Un \Gn .

0

By the change of variable 4+ w,A'w,, we obtain

1-s

> P S D AL ¥ T
(4-14) Y(1—s, V(W,f1®fz)’ Wz)‘_‘(_l_—[l m)w(l”‘& W, p(eDW_; f2) .

Therefore, by (4.13), (4.14) and (3.2), we have

(415) lIl(l ) V(W,f1®fz)’ WZ) =8(S, oxm,, l//) IP(S’ V(W,f1®f2)’ Wz) ]
L(1—s,01xm}) L(s,0,xm,)
5. Proof of Theorem 1. Let ¢ be an irreducible generic representation of G,. We
set U=W(o, Y1)+ W(o1, Y,11). By (3.4) and Proposition 2, each Ve U satisfies the
functional equations

(5.1) P(1—s, V, W)=w(—1)"(s, 0, x 7, Y)¥(s, V, W),
for all irreducible generic representations n of G, and W’e W(rm, y 1).

LEMMA 4. Let R be the restriction map V—V|p. .| from U to Indf* . . Then
R is injective.

PrOOF. We denote by U the space of functions ¥ with Ve U and define the
P, . -morphism R: U—Indg+ 1, ", by the restriction V- V|, . . If VeKer R, then we
have Y(s, V, W')=0, and hence, by (5.1), ¥(1—s, V, W’')=0 for all irreducible generic
representations n of G, and W’ e W(=n, , !). Then, by [10, Lemma (3.2)] (cf. [7, Lemma
(3.5)]), we have FeKer R. Similarly, if PeKer R, then VeKer R. Therefore, Ve Ker R
is equivalent to ¥eKer R. Let VeKer R and p'="p '€ P!, .- Since W=p(p)Vand
Ker R is P, -invariant, we have p(p")V e Ker R, and hence p(p')V e Ker R. As a result,
Ker R is P, -invariant. Since the action of the center Z,,, on U is through the scalar
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multiplication by the central character of o, Ker R is both @, - and Q,, -invariant.
Consequently, Ker R is G, . y-invariant. Thus we have V(g) = p(g)V(1,) =0 for Ve Ker R.
|

Next we consider the integral ¥(s, V, W) for Ve p(£,)U. By (3.4) and (4.15), there
is an equation

Y(1—s, V, W, (s, V, W,
(52) ___(_S_L)zg(s’ o XTm,, Qp)i____)“

L(1—s,0) xm}) L(s, 0, xm,)

foreach Ve p(¢,)U and ze (C™)". We replace the parameter (z4, . .., z,) by indeterminates
X, ..., X,. Namely, we consider the “integral”

0
III(X’ V,Xl,-..,Xn)= V((g ))W(g,Xl,...,X,,;lﬁ,._l)ldetglsp_llzdg,
U,,\G,, 0 1

where we put X=¢~° This Y(X, V, X, ..., X,) is regarded as an element in the ring
A,[[X, X~ ']] of formal Laurent series with coefficients in 4,. Then (5.2) and the
argument in the proof of [7, Theorem 4.1] implies that each Ve p(&,)U satisfies the
equation

(53) Yl(q_IA,_—19 175 Xl_l’ RS Xn_l) H Pa"(q_lX_lA/i_l)(l —q_IX_lXi_l)
i=1

= f[ XX, MPX, V, X, ..., X)) fl P (XX)(1-XX;).
i=1 i=1

Here polynomials P,(X) and ¢,(X, {) are given by
L(s,0)=P,(q7")"", s 0,9)=elq9%¥).

From (5.3) and the fact that (X, V, X, ..., X,) has a finite number of nonzero terms
with negative exponents in X (cf. [7, Section 3]), it follows that Y(X, V, X, ..., X,) is
contained in the polynomial ring 4,[ X, X~ !] and there exists an element Z(V, X, ...,
X,) e 4, such that

(5.4) BV, XX, ..., XX)=Y(X,V, X,, ..., X)) || PAXX)(1—XX,).
i=1

LEMMA 5. Let Vep(E)U. If B(V, X4, ..., X,)=0, then we have V=0.

Proor. If E(V, X,,...,X,)=0, then Y(X,V, X,,...,X,)=0. By [7, Lemma
(3.5)], we have R(V)=0. Therefore, by Lemma 4, we have V'=0. [ ]

Proor oF THEOREM 1. We denote by I(6) (resp. I(c,)) the subset of 4, consisting
of 2(V, Xy, ..., X,) with Vep(&)WV(a, ¥, ) (resp. Vep(E,)W(o,, ¥, 1)). Then, by the
same argument as in the proof of [7, Theorem (4.1)], both I(6) and I(o,) are ideals of
4, and there exist elements V', € p(&,)V(o, ¥, +,) and W, e p(é,)W(o, ¥, ,) such that
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E(Vla X19 DR Xn)=E(W1a X19 ceey Xn)= l—[ Pd(Xl)(l _Xl) .
i=1

By Lemma 5, we have V=W,. Thus p(¢,)V (o, ¥,.,) and p(¢)W (o4, ¥,+1) have
a nonzero intersection. Furthermore, if g, is irreducible, then we have

16)=1I0,)=4,

(cf. [7, Theorem (4.1)]). This implies p(&,) W (o, ¥, 4 1)=p(&)W(a, ¥, +,). We complete
the proof of Theorem 1.

We note that if o, is reducible, then the assertion analogous to [7, Proposition
(2.1)] for o, is false. Thus we cannot conclude that I(o,) =4, in this case.

PROPOSITION 3. Let o be an irreducible generic representation of G,. Then & never
has a supercuspidal subquotient representation.

PrROOF. Suppose ¢ has an irreducible supercuspidal subquotient &,. Then, by [1,
Proposition 3.30], &, is realized as a subrepresentation of 6. The representation space
V(e, V,+,). of &, in V(o, ¥, ) is a Whittaker model of &,. We set

1G)={E(V, X, ..., X)| Vep(E)V(0, Yur1)e} -

Then, by the proof of [7, Theorem (4.1)], we have I(G,)=A4,, and hence /(c,) < I(G,).
This implies p(#, . )p(E )W (o1, ¥, 4 1)=V(G, V,+1).. Therefore, &, is realized as a
subquotient of ¢,. This is a contradiction. ]

PROPOSITION 4. Let o be an irreducible generic representation of G,. If o, is
irreducible, then 6 is an admissible representation of Whittaker type and o, is a unique
irreducible subrepresentation of 6.

ProoF. We note that any irreducible generic representation of G, ., has a nonzero
vector fixed by p(&,). If V' is an irreducible submodule of ¥(o, ¥, ,), then we have
pEIW(0 1, Wni1)2p(E)V' #0, and hence W(o 4, Y,.,)=V'. We prove that the dimen-
sion of Homg_, (W(o,¥,+1), W(¥,+,)) equals 1. Let L, be the natural injection of
V(o, Yp+1) to W(Y,.,) and LeHomg , (V(o, ¥, 1), W(¥,+1)) an arbitrary nonzero
element. If Ker L is nonzero, then W(o, ¥,,)=KerL and Vo, ¥, )/W(0o1, Vut1)
contains a nonzero generic irreducible subquotient. Therefore, V(a, Y, 1)/W(o1, Y4 1)
has a nonzero vector fixed by p(&,). This contradicts p(&,)(V(o, ¥, + )/ W(o1, ¥+ 1)) =0.
Thus L must be injective. Then there exists a constant ¢ such that Ly, .., =
cLo oy 1y Since W(ay, ¥, ) cKer(L—cL,), we obtain L—cLy=0. [ ]

It is expected that 6 =0 for any irreducible generic representation ¢. In fact, this
is the case if o is an irreducible generic spherical representation. Namely, we have the
following:

PROPOSITION 5. Let z=(zy,...,2,)e(C™)" and (z, 1)=(z4, ..., z,, D e(C)" L If
the spherical representation m, is irreducible, then #t,=m, ;).
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ProoOF. Since W, (y, )= W_(y,), we may substitute y, ! by ¥, in the definitions
of W, and n,. Let f%e #(M,,(F)) be the characteristic function of M, ,, ,(0). Then,
from (2.4) and the fact that w(&,)# (M, ,+(F))=w(#,, ) f° (cf. [5, Theorem 10.2]),
it follows that V(x,, ¥, ;) is generated by Viw . o By calculation similar to that in the
proof of Lemma 3, we obtain Vi _ (o= W, ). Therefore, V(n,, ¥, ) coincides with

W(z,l)(¢n+ 1)' -
REFERENCES

[1] I. N. BERNSTEIN AND A. V. ZELEVINSKY, Representations of the group GL(n, F) where F is a
non-Archimedean local field, Russian Math. Surveys 31 (1976), 1-68.

[2] I. N. BERNSTEIN AND A. V. ZELEVINSKY, Induced representations of reductive p-adic groups 1., Ann.
Sci. Ec. Norm. Sup. 10 (1977), 441-472.

[3] W. CASSELMAN AND J. SHALIKA, The unramified principal series of p-adic groups II, Compositio Math.
41 (1980), 207-231.

[4] R. GODEMENT AND H. JACQUET, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260,
Springer-Verlag, Berlin, Heidelberg, New York, 1972.

[5] R.HoOWE, #-series and invariant theory, Proc. Symp. Pure Math. Amer. Math. Soc., 33, Part I (1979),
275-285.

[6] H.JACQUET, I. I. PIATETSKI-SHAPIRO AND J. SHALIKA, Automorphic forms on GL(3) I, II, Ann. Math.
109 (1979), 169-212, 213-258.

[7] H. JAcQuUET, I. I. PIATETSKI-SHAPIRO AND J. SHALIKA, Conducteur des représentations du groupe
linéaire, Math. Ann. 256 (1981), 199-214.

[ 8] H. JACQUET, 1. I. PIATETSKI-SHAPIRO AND J. SHALIKA, Rankin-Selberg convolutions, Amer. J. Math.
105 (1983), 367-464.

[9] H. JAcQUET AND J. SHALIKA, The Whittaker models of induced representations, Pacific J. Math. 109
(1983), 107-120.

[10] H. JACQUET AND J. SHALIKA, A lemma of highly ramified e-factors, Math. Ann. 271 (1985), 319-332.

[11] H. JACQUET, Generic representations, in Non-commutative harmonic analysis, Lecture Notes in Math.
587, Springer-Verlag, Berlin Heidelberg, New York, 1976, pp. 91-100.

[12] J.-S. L1, Some results on the unramified principal series of p-adic groups, Math. Ann. 292 (1992),

747-761.
[13] C. MEGLIN, M.-F. VIGNERAS AND J.-L. WALDSPURGER, Correspondances de Howe sur un corps

p-adique, Lecture Notes in Math. 1291, Springer-Verlag, Berlin, Heidelberg, New York, London,
Paris, Tokyo, 1987.

[14] D. Prasap, Weil representation, Howe duality, and the theta correspondence, CRM Proc. and Lecture
Notes 1, Centre de Recherches Math. (1993), 105-127.

[15] S. RaLLis, Langlands’ functoriality and the Weil representation, Amer. J. Math. 104 (1982), 469-515.

[16] T. SHINTANI, On an explicit formula for class-1 Whittaker functions on GL, over p-adic fields, Proc.
Japan Acad. 52 Ser. A. No. 4 (1976), 180-182.

[17] T. WATANABE, The global theta correspondence of (GL,, GL,), preprint.

[18] A. ZeLevinski, Induced representations of p-adic reductive groups II, Ann. Sci. Ec. Norm. Sup. 13
(1980), 165-210.

DEPARTMENT OF MATHEMATICS
OsAKA UNIVERSITY
ToyoNaka, OsAKA 560

JAPAN





