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Abstract. Carleman's inequality for Hilbert-Schmidt operators and its generaliza-
tions for Schatten-von Neumann operator ideals (see [7]) are shown to be sharp in a
certain sense. Explicit classes of extremizing operators are found on which the generalized
Carleman inequalities turn to asymptotic equalities. Applications are made to a priori
estimation of the solutions of Fredholm and Volterra first- and second kind integral
equations and to perturbation and error analysis. Some further generalizations are
considered which extend the applications to singular integral equations, pseudo-
differential equations and analytic functions of operator argument.

1. Introduction. In [7] upper bounds for the resolvent norm of a bounded linear
operator T: H^H, //Hubert space, were obtained in terms of the so-called generaliz-
ed Carleman inequalities with minimal information about the spectrum.

In this note we prove that all results obtained in [7] are sharp in a certain sense.
Simultaneously we point out a remarkable class of extremizing operators (which we
call pre-orthogonal operators) on which the sharpness assertions are attained. Sharp
constants are found, too (see Section 3).

We also include some applications of our results (see Section 4). In particular, some
important applications are obtained for the classical problems of deriving a priori
estimates for the solutions of the Fredholm and Volterra operator equations. As a fur-
ther development of this idea we obtain a priori estimates for expressions of the type
(λl— Tι)~1fι—(λl— T2)~1f2, which in the considered Hilbert-space case improve some
corresponding earlier results in [24]. Of particular interest is the case where the compact
operators are integral ones. In this case it is known that the Schatten-von Neumann
quasinorms can be estimated very well by appropriate function quasinorms of the
integral operator's kernel in Lebesgue and Besov spaces. These results, which, in their
turn, may be regarded as generalizations of some classical results in the Hilbert-Schmidt
theory, are in their final form due to Birman, Solomjak and Karadzhov (see [2], [3],
[4], [12], [13], [14] and [15]). By combining these results with the main results in [7]
it is possible to obtain useful a priori estimates for the solutions of classes of integral
equations. In Section 4 we discuss briefly this possibility and present some examples of
such applications (cf. also [8] and [9]). Another important application in this section
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is the explicit a priori estimation of regularity properties of the Fredholm resolvent's
kernel in terms of regularity properties of the integral operator's kernel.

Section 5 is devoted to some possible generalizations of the main results in [7] and
to concluding remarks. In order not to interrupt the presentations of our main results
we use Section 2 to present all relevant preliminaries and a brief survey of the main
results in [7] and we collect all proofs in Section 6.

2. Preliminaries.

2.1. Preliminary notation and statements. Let L(H) denote the space of all
bounded linear operators T: H-+H with the usual uniform operator norm. The
approximation numbers sn(T), neN, are defined as

sn(T) = mf{\\T- Tn I L(H)\\: TneL(H), rank Tn<n} .

There are several other equivalent ways to describe the approximation numbers in the
Hubert space case (for the general Banach space case these different descriptions give
different approximation numbers in general, see [20]). Concerning general properties
of s-numbers (e.g. their relations to the spectra of T and other related operators) and
the operator ideals and inequalities we discuss below, we refer to [10], [17], [19], [20]
and [22].

By S^ = S^iH) we denote the closed subspace of L(H) consisting of all compact
operators, i.e.,

SO0 = SO0(H) = <TEL(H): lim sn = 0,\\T\ S J / O I I = \\T\L(H)\\ > .

In the sequel we let p denote a real number such that 0<p<co. The Schatten-von
Neumann operator ideal Sp = Sp(H) is the complete quasinormed operator ideal in *S00(//)
defined by

UP

See [23] and e.g. [11]; in particular SΊ and S2 are the classical Fredholm and
Hilbert-Schmidt operator ideals, respectively.

The spectrum of TeL(H) is denoted by σ(T) and C\σ(T) is the corresponding
resolvent set. In particular we remark that TeS^ has only a non-empty pointwise
spectrum which, for infinite-dimensional H may have only 0 as a density point. Therefore
the non-zero elements of σ(T) are also referred to later on as the eigenvalues of T while
0 may, or may not, be an eigenvalue. Moreover, we recall that, due to Fredholm's
alternative, the maximal invariant subspace corresponding to any non-zero eigenvalue
of TeS^ is finite-dimensional and orthogonal to the maximal invariant subspace
corresponding to any other eigenvalue of T.

We need the following relation between the eigenvalues and the ^-numbers of



CARLEMAN TYPE INEQUALITIES 3

operators:
LEMMA 2.1.1. Let λi9 ieN, denote the eigenvalues ofTeSp(H). If dim H=n, then

Lemma 2.1.1 is proved, e.g., in [19, p. 232]. We also need the following generaliz-
ed form of Carleman's inequality (see [6] or [11, pp. 1038, 1112-1114]):

THEOREM 2.1.2. Let TeSp = Sp(H) and let λk, k= 1, 2 , . . . , be an enumeration of

the eigenvalues ofT, each repeated according to its multiplicity. Then there exists positive

constants ap and bp depending only on /?, such that

1 / II7Ί S \\p \
| | d e t p ( / - T/λfiλl- T)-11 UH)\\ < - — exp a, " ' ' " +bp ,

I λ I \ I λ I /

where the generalized determinant detp(/— T/λ) is defined by

det,(/- T/λ)= fl (1 -λk/λ)cxp(φp(λjλ)); φp(t) = 0 if 0<p< 1, φp(t) = £ tJ/j
j l

if 1 <p< oo, n = [/?] z//?̂ Λ^ β«̂ / n=p— 1 if psN ([/?] denotes the integer part of p).

For TeSJH), λeC\σ(T), the operator T(λl-T)-1 =(λI-Ty1T will be called
the compact resolvent of Γ (in contrast to the term resolvent, which is reserved for the
operator (λl— Γ)"1). In the case where the compact resolvent of T is an integral oper-
ator, it is usually called the Fredholm resolvent of T.

REMARKS 2.1.3. (a) For the casep = 2 we have ap = bp= 1/2 and Theorem 2.1.2
coincides with the classical form of Carleman's inequality.

(b) In many sources the classical Carleman inequality is not correctly written (see
e.g. [11, pp. 1023 and 1038]); the factor \λ\ in front of the exponential factor must be
replaced by l/\λ\.

(c) The sharp constants ap and bp are not known in general. For the case of the
classical Carleman inequality, p = 2,we show in our Section 3 that the sharp constants
are a2 = 1/2 and b2 = 1/2.

(d) It is possible to replace n = np in Theorem 2.1.2 by any other integer m>n
but then the constants ap and bp must be replaced by constants apm and bpm, respective-
ly, which both increase with the increase of m.

(e) For the case 0 <p < 1 another definition of detp(/- T/λ) is used in [11], name-
ly det*(/-77/ί) = exp(tr(ln(/-Γ//l))), where tr denotes the generalized trace functional
and ln(/— T/λ) is the operator-valued logarithmic function defined by Dunford's
representation (see [11, p. 1101] and [10]). However, it is easy to verify that both of
det*(/- T/λ) and detp(/- T/λ) are entire functions of λ e C satisfying the assumptions
of Theorem 27.4.8 in [20] and by virtue of this theorem we can conclude that, in fact,
detp(I- T/λ) = det*(/- T/λ), for every λeC.

(f) Some other well-known statements are also needed in the sequel. However,
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in order to keep this section reasonably short we do not formulate all these facts

explicitly but in each such case we refer to some appropriate literature.

2.2. Generalized Carleman inequalities with minimal information about the

spectrum. In this subsection the main results from [7] are summerized. In the sequel

we let d(λ, σ(T)) denote the distance between λ and the spectrum of T and 0<p< oo.

THEOREM 2.2.1. Assume that H is infinite-dimensional, TeSp(H) and λeC is in

the resolvent set of T. Then

1
(2.2.1) p / - r ) |£(#)ll< exp c
V / ιι \ / \ / ι ι 7 / Ί / rπ\\ A 1 Jd{λ, σ(T)) V ' (d(λ, σ(Tψ

where cp = max{2ocpap, ap + βp}, ap, bp are the constants in Theorem 2.1.2, αp = max{l,

2*"1}, βp = 0 ifpφNandβp=l/p ifpeN.

In the case of finite-dimensional H we can estimate HΓ"1 \L(H)\\ directly in the

following way:

THEOREM 2.2.2. Assume that H is finite-dimensional and that Te L(H) is invertible.

Then

(2.2.2) \\T-'\L{H)\\< _ * exp
d(0,σ(T)) ^\ep (d(0,σ(TW

The next result considers the case where partial information is available about

σ(T), i.e., we suppose that all eigenvalues of T with absolute values not less than \λ\

are known, together with their multiplicities. Furthermore, we consider the finite-

dimensional subspace of H spanned over the invariant subspaces corresponding to

the above eigenvalues of T and take the orthogonal complement. We note that the

spectral radius r of the restriction of T on this orthogonal complement is strictly less

than \λ\. We also suppose that r is known. Evidently this is equivalent to knowing the

absolute value of one more eigenvalue of T, namely the biggest (or one of the biggest)

in absolute value which is less than | λ | (without necessarily knowing its multiplicity).

THEOREM 2.2.3. Assume that TeSp(H) and that λeC is in the resolvent set of T.

Let λj be all points in σ(T) with \λj\>\λ\ and let n^ Xpj= 1, 2 , . . . , k, be the corresponding

multiplicities and invariant subspaces, respectively. Moreover, let Ybe the orthocomplement

in H of the union of all Xj9 and let r be the spectral radius of T \ γ (0 < r < \λ\). Then

(2.2.3) ||(λ/-7r^#)ll^max(Y max 4 ^ ^
λ}\

1 / H7ΊS
exp c\λ\-r
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where cp, bp are the constants from Theorem 2.2.1, dp = ap-\-γp, ap is the constant in

Theorem 2.1.2, yp

 = Σ'k = ι V ί̂ m

P — Vp] if pφN and mp=p—\ ifpeN.

As a limiting case of Theorem 2.2.3 we get the following useful estimate for the

case where λ is outside of the spectral circle of T:

THEOREM 2.2.4. Assume that TeSp{H), 0 < p < oo, andlet\λ\>r(T), where r = r{T)

is the spectral radius of T. Then,

mΛΛ .in, TΛ-n^m,,/ l ( WT\SΛP

(2.2.4) \\(λI—T) \L{H)\\< exp cπ

where cp and bp are as in Theorem 2.2.3.

REMARK 2.2.5. The estimate (2.2.4) can be useful because so far little is known

about the behaviour of linear-operator resolvents in the ring included in the normal

circle and outside the spectral circle. Recall that the expansion of the resolvent in a

Neuman series is valid everywhere outside the spectral circle, but the well-known esti-

mate (1.1) in [7] based on this expansion is only available outside the bigger normal

circle.

3. Sharpness.

3.1. Definitions of the sharpness properties. In order to be able to formulate

our sharpness results in suitable forms we need the following definitions and notation:

(a) Theorems 2.1.2 and 2.2.1^4 are called exponentially sharp (ES), if, for/? e (0, oo),

λe C, ε->0 and, for every Hubert space H with infinite or sufficiently big finite dimension,

there exists an operator T=T(H,p, λ, ε), such that (i) TeSp{H), (ii) λeC\σ(T) and

(iii) \\(λl— T)'1 \L(H)\\ +ε is bounded from below by the same right-hand term as in

the direct (upper) estimate, with embedding constants a'p, b'p, c'p, depending only on p

and such that 0<a'p<ap, 0<b'p<bp and 0<cf

p<cp.

(b) For a particular choice of pe(0, oo), Theorems 2.1.2 and 2.2A-A are called

exponentially sharp with sharp constants (ESSC), if (i) they are ES for the particular

choice of p and (ii) the constants a'p, b'p and c'p can be chosen equal to ap, bp and cp,

respectively.

(c) Theorem 2.2.3 is called power-sharp (PS), if, for every H, p e (0, oo), there exists

an operator TeSp(H\ T=T(H,p), and λoeσ(T) with \λo\>r(T), such that, for some

ε > 0, the following statements hold:

(i) Iλ — λo\<ε, λφλo=>λeC\σ(T) and the maximum in the right-hand side of

(2.2.3) is attained on the term corresponding to λ0,

(ii) there exists a constant c o >0, c0 = co(i/, p, T, λθ9 ε) such that I P / - Γ ) " 1 !

L(H)\\ >co\λ~λ0Γ"° for every λ, \λ — λo\<ε, where n0 is the multiplicity of λ0.

3.2. Introductory remarks on sharpness. It is well-known that the available

proofs of the generalized Carleman inequalities with complete information about the
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spectrum (Theorem 2.1.2) do not give sharp constants ap and bp. In the proofs of our
main results in [7] we essentially use Theorem 2.1.2 in the case of quasinilpotent
operators. Therefore, it is clear that sharp constants in our main results in [7] can be
obtained only after that the sharp constants ap, bp in Theorem 2.1.2 are found. We
intend to do this in a separate paper even for more general Schatten-von Neumann
ideals than Sp (see Section 5 for more details). Here we only consider the case p = 2
(the classical Carleman inequality) for which the sharp constants a2, b2 and c2 are found
below to be equal to 1/2 (see Theorem 3.4.2). For the general case 0<p< oo we prove
that Theorem 2.1.2, Theorem 2.2.1 and Theorem 2.2.4 are ES (see Theorem 3.4.1) and
that Theorem 2.2.3 is ES or PS depending on the situation of λ with respect to σ(T)
(see Theorem 3.4.1 and Theorem 3.4.4). Finally, according to the fact that the proof
of Theorem 2.2.2 is independent of Theorem 2.1.2, we can prove that the constant
{epy1 in this theorem is sharp for every /?e(0, oo) (see Theorem 3.4.3). In all cases
concrete classes of compact operators are found for which the ES property holds. In
the cases where even ESSP holds, these classes are shown to be the sharp ones on which
ESSP is attained.

Before we present our sharpness statements we present the following heuristic
reason why the results in Subsection 2.2 and Theorem 2.1.2 ought to have the ES
property: Some of the assertions in [5] and [18] (cf. also [11, §§11.10-11.11]) show,
roughly speaking, that, if the growth of the right-hand side of the estimates is less than
exponential, then this implies additional properties of the invariant subspaces of T.
Therefore, the right-hand sides of the estimates using minimal information about the
spectral properties of T must necessarily have exponential behaviour with respect to
l/{d(λ, σ(T)). This argument can be applied to Theorem 2.1.2, too, since it essentially
coincides with Theorem 2.2.1 on quasinilpotent operators. These heuristic remarks
indicate that one candidate for an appropriate operator is the "unicellular" Volterra
integral operator (Tf)(x) = ̂ f(ζ)dξ, where H=L2[0, 1], with the usual Lebesgue
measure (see [5]). One shortcoming here is that TeSp only for/?e(l, oo). However, we
note that this difficulty can be overcome by considering the more general operators

(x-ξ)k-1f(ξ)dξ, keN.
o

By making some laborious but straightforward computations we find that these Volterra
operators Tk belongs to Sp(L2[0, 1]) for pe(l/k, oo], and that, for ΛeC\{0},

where Apk is proportional to ξ(pk) (Riemann's ^-function). Thus, the "unicellular"
operator T and its generalizations Tk have, indeed, exponential behaviour but it is still
not good enough to prove the ES property of our results.
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3.3. A remarkable subclass of compact operators. We will now define and study

the basic properties of the operators for which the ES and ESSC properties of our

results are attained. For a finite-rank operator T in L(H) we consider the subspace

Xτ = {h e H: Th = 0} 1. Obviously, dim Xτ = rank T= n < oo.

The operator TeL(H\ rank T=n< oo, is called pre-orthogonal (PO), if the matrix

T\Xτ (with respect to any fixed basis in Xτ) has n—\ vector-lines which are two-by-two

orthogonal with respect to < , }H. In particular, T is called pre-unitary (PU), if the

vector lengths lp j= 1, 2,. . . ,«— 1, of these vector-lines are all equal.

We note that, from the geometric point of view, T is PO, if and only if the n-

dimensional prism with the vector-lines of the matrix of T\Xτ as edges has (n— 1)-

dimensional rectangular support. Furthermore, Γis PU, if and only if this support is an

(n— l)-dimensional cube. Hence, Lemma 2.1.1 implies that, if T is PO, then the first

n s-numbers of T\Xτ are exactly Ij9j=\929...9n-l9 and /Λ = | det(7ΊX τ) |(Π"= ί ^j)"x

(the "height" of the prism).

A PO operator T is called dominant (DPO) if /,->lh,j= 1, 2 , . . . , « - 1 . (In the

particular case where T is PU we adopt the abbreviation DPU.)

We note that, from the geometric point of view, the n—\ biggest ^-numbers of

T\Xτ are all lengths of "edges", the smallest one, namely sn, is the "height" of the prism.

In the limit case when lh is also an edge, i.e., lhλlj,j=l,2,...,n—l,T\Xτ is an

orthogonal operator and T is a normal operator. Therefore, the limit case cannot be

useful for proving sharpness of the generalized Carleman inequalities.

LEMMA 3.3.1. For every λeC and neN, n>2, and every (n—\)-tuple (σ l 9

σ2, . . . , σn_ι), such that σ1>σ2>'' >σn-ι > U Γ ( Π " « i σj)~1> t n e r e exists a DPO op-

erator T of rank n, such that Sj(T\Xτ) = σj9j= 1, 2 , . . . , « - 1 , sn(T\Xτ) = \ λ \n{Y\%l σj)~'

and T\Xτ = λIXτ—Tu where T1: XT^>H is a subdiagonal nilpotent operator.

We note that if σι = σ2 = * = σπ_ 1 ? then T is even DPU. For such operators we

also have:

LEMMA 3.3.2. Assume that T is a DPU operator with a single-point spectrum

σ(T) = {λ0}, which is not normal. Then, Sj(T) = σ>\λo\,j=\929 ...,n-\; if λo = 0, then

sn(T) = λo = 0; ifλoϊ0, then \λQ\>sn{T) if n->αo, then sn(T)^0.

Next we extend the sharpness definitions to the general case where TeSp is not

necessarily a finite-rank operator.

DEFINITION 3.3.3. Let TeSp, 0<p< oo. T is called PO, PU, DPO, DPU, if it is

an Sp-limit of a sequence of finite-rank operators having the corresponding property.

3.4. Sharpness statements. Our sharpness statement with respect to the ES

property read as follows:

THEOREM 3.4.1. Theorems 2.1.2, 2.2.1, 2.2.3 and 2.2A are ES with embedding
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constants b'p = Q, ap = c'p = (pmax{l, 2P~1} exp(xo))" 1, where xo>l is the unique solution

of the equation x=l+ exp( — x), xe R.

We note that the sharp class of operators on which the ES property is realized
includes quasinilpotent operators T, such that λl— T are DPU operators.

Next we present our sharpness results with respect to the ESSC property.

THEOREM 3.4.2. For p = 2, Theorem 2.1.2 (the classical Carleman inequality) is

ESSC with the sharp constants a2 = b2= 1/2. If, in addition, T is a quasinilpotent operator,

then also Theorems 2.2.1, 2.2.3 and 2.2.4 are ESSC. The class of quasinilpotent operators

T on which ESSC is attained consists exactly of the ones such that λl— Tίs a DPO operator.

THEOREM 3.4.3. For all finite-dimensional H with sufficiently big dimension, and

for every pe(0, oo), Theorem 2.2.2 is ESSC with the sharp constant (ep)'1. The class of

operators on which ESSC is attained consists only of those which behave as DPU operators

on the maximal T-invariant subspace corresponding to some λ0 e σ(T) with d(0, σ(T)) = \λo\.

We also include the following statement concerning the PS property:

THEOREM 3.4.4. Theorem 2.2.3 is PS. The sharp class of operators on which PS is

attained are the ones which behaves as "unicellular" operators on the maximal T-invariant

subspace corresponding to a λ0 in the spectrum such that \λ — λ0 \ — d(λ, σ(T)).

The following remarks are important for our proofs later on but are also of inde-
pendent interest:

REMARK 3.4.5. If TeSp, 0<p<co, λoeσ(T) and Xo denotes the maximal
Γ-invariant subspace corresponding to λ0, then (cf. the proof of Theorem 2.2.1) λl— T
can be represented on Xo as (λ — λo)I—(T— λol), where T— λol is quasinilpotent. Thus,
in the part concerning Theorem 2.2.1 it is sufficient to prove Theorems 3.4.1 and 3.4.2
for quasinilpotent operators. Moreover, for such operators Theorems 2.1.2 and 2.2.1
essentially coincide and we arrive at the important conclusion that the generalized
Carleman inequalities with complete information about the spectrum are ES or ESSC
if and only if the ones with minimal information are sharp in a respective sense.

REMARK 3.4.6. The density of finite-rank operators in Sp, 0<p<co, implies that
it is sufficient to prove Theorems 3.4.1 and 3.4.2 for finite-dimensional operators H (see
[11, §11.9] for justifying this general approach to proofs of certain statements about
Sp). Furthermore, for a finite-dimensional space it is easy to prove that the parts of
Theorems 3.4.1 and 3.4.2 concerning Theorem 2.2.1 imply the corresponding parts
concerning Theorems 2.2.3 and 2.2.4.

PROOF OF THE LAST STATEMENT. For every ΛeC\{0}, we consider an operator
To with a single-point spectrum {λ0}, such that | A | > | Ao | and arg λ0 = arg λ. Lemma
3.3.1, applied to λ — λ0, implies that To can be chosen so that λl— T0 = (λ — λo)I—
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(To — λol) is a DPU operator with an a priori prescribed value of σ = Sj(λI— Γo), j =
1, 2, . . . , N— 1, σ > | / ί - 2 0 | . It will be proved below that the sharpness assertions of
the parts of Theorems 3.4.1 and 3.4.2 concerning Theorem 2.2.1 are attained on op-
erators of the type To. It remains to note that r(T0) = \λ0\ and d(λ, σ(T0)) = \λ — λo\ =
λ\ — r(T0) which completes the proof.

Summing up the observations in the Remarks 3.4.5 and 3.4.6 we find that, in
order to prove Theorems 3.4.1 and 3.4.2, it is sufficient to prove the sharpness of
Theorem 2.2.1 for the case where H is a finite-dimensional space and T is a nilpotent
operator.

4. Applications.
4.1. Introductory remarks on applications. Theorem 2.2.2 can be applied to

derive a priori estimates about the solutions of high-dimensional systems of algebraic
equations and first kind Fredholm and Volterra regular and singular integral equations
with special right-hand sides or degenerate kernels. Theorems 2.2.1, 2.2.3 and 2.2.4 have
applications to second-kind Fredholm and Volterra regular and singular integral
equations. In this paper we shall restrict ourselves to considering some model ap-
plications to the second-kind integral equations only. These applications are based
on the fundamental fact that if T is an integral operator with kernel K, then, for every
qe(0, oo], the ^-quasinorm of T can be estimated from above by an appropriate
function quasinorm of K. For the cases q = 2, q = oo these are the classical results and
the general case is essentially due to Birman, Solomjak and Karadzhov. The lemmas
below provide more details about these upper bounds.

The vector-valued and tensor-product Lebesgue spaces we consider in the sequel
are defined in the usual way, see e.g. [1] and [22], respectively. In the sequel of this
section we assume that (Ωp μ7) is a measure space, Hj = L2(Ωj, F, μ̂  ) is the respective
L2-space of F-valued functions, F=R or F=C, 7 = 0, 1; L2(Ω0 x Ωl9 F, μo®μι) is the
respective tensor-product L2-space; T: HQ-^H^ is defined by Γw(ω1) = j β K(ω0,
ωί)u(ωo)dμo(ωo\ω1eΩι. Moreover, we also assume that neN, XaR", Y^Rn are
bounded open sets; (X, F, dx), (Y, F, dy) are measure spaces of F-valued functions (F=
R or F=C) with respect to the standard Lebesgue measure; H0 = L2(X, F, dx),
Hγ=L2(Y, F, dy); T: H0-^H1 is defined by (Tu)(y) = $χK(x, y)u(x)dx,ye Y.

We need the following well-known classical result for Hilbert-Schmidt integral
operators (i.e. TeSq, q = 2).

LEMMA 4.1.1. Assume that Hj = L2(Ωp F, μ,), j=0, 1. Then (see also our preceding
convention) TeS2(H0, HJ if and only ifKeL2(Ω0 xΩί9F, μo®μ1) and \\T\ S2\\ = \\K\ L2\\.

The next lemma is a complement of Lemma 4.1.1 holding for q e (0, 2) and q e (2, oo)
and the more restrictive setting of the preceding convention.

LEMMA 4.1.2 (see [15], [16]). (a) Let 2<q<oo. Then,
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\\T\ Sq\\ <c(po,Pl)\\K\Lq(Y, Lpoq(X, F, dx\

x \\K\ Lq(X, Lpιq(Y, F, dy), ^ ( ^

where 0 <p0, Pl < 2, p0 +Pί > 2 and (l/q - 1/2)2 = (l/p0 -
(b) LetO<q<2. Then

- 1/2).

\\T\Sq\\<cq(X)μ(X)^-ll2\\K\Ba

q(X,L2(X®Y,F,dx®dy))\\ , - = 1 - 1
n q 2

Moreover, cq(X) depends on the shape of X, but not on its diameter and, for fixed X,
cq(X)^>\ as g->2; μ(X) denotes the Lebesgue measure.

Here, as usual, Lpq, 0<p, q<oo, denotes the usual Lorentz spaces (see e.g. [1]) and

B"q(X, L2{X® Y, F, dx®dy)) = {feL2{X® Y, F, dx® dy): \\f\Ba

q\\ < oo} ,

where

\\f\B"q\\ = \\f\L2(X®Y,F,dx®dy)\\

A / Γ00 / \q dt\llq

+ Σ ' " α SUP \\AT(x,h)f\L2(X®Y,F,dx®dy)\\) — , 0<α<m,
«=i VJo V 0<h^ ) t )

Πx, h)f= W , * 2 , . . . , Xi_l9 Xi + kh, xi+l9...9 xH9 y ) , if

1 ? x2, , x t - i , , . . . , xn)φX, i= 1, 2 , . . . , « ,

4.2. A priori estimation of resolvent operator norms. The first application is to
derive a priori estimates for the solutions of linear Fredholm and Volterra integral
equations when insufficient or minimal information about the spectrum of the integral
operator is available. These estimates are given in terms of regularity properties of the
integral operator kernel and are obtained by a straightforward application of Lemmas
4.1.1 and 4.1.2 to the results in Section 2. Here we only present the following model
example of this type of estimates:

COROLLARY 4.2.1. Assume that H= L2(Ω, F, μ) and Te L(H) is an integral operator
with kernel K. Assume that λeC\σ(T).

(i ) If KEL2 = L2(Ω x Ω, F, μ ® μ), then

\\{λI-T)-'\L{H)\\ expfc2fc2 \
\ 2 (d(λ,σ(T)))2
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(ii) If Ω = XcRn, dμ = dx and if there exist p0, px: 0<p0, px<2, A>+/?i>2 and

q is the one and only root of the equation (1/^r—1/2)2 = (l/p0 — 1/2X1/P! — 1/2), which is

in (2, oo), then

where c(po,pι) is the constant in Lemma 4.1.2(a) and

\\K\po,Pι, q\\ = \\K\ Lq(X, LpJX, F, dx),

x \\K\ Lq(X, LPiq(X, F, dx),

(iii) IfΩ = XcR",dμ = dx, μ(X) < oo, α > 0, then

where q is defined by cc/n =\/q—\/2, Bq(X, L2) and cq{X) are defined as in Lemma 4.1.2(b).

Another similar type of estimates is to find an upper bound for the Schatten-von
Neumann (quasi-)norm of the compact resolvent of a compact operator T. There fol-
lows a model example.

COROLLARY 4.2.2. Assume that H is a Hubert space, TeSq{H\ 0<q<oo and
λe C\σ(T). Let Rλ be the kernel of Rλ = T(λl- T)~\ Then

. \\T\St

d(Kσ(T))

Corollary 4.2.2, makes it possible to establish a remarkable relationship between
regularity properties of an integral Hilbert-Schmidt operator and its Fredholm resolvent.
More precisely, the following is true:

COROLLARY 4.2.3. Assume that H=L2(Ω, F, μ), TGL(H) is an integral operator
with kernel K: KG L2 = L2(Ω x Ω, F, μ ® μ). Assume that λ e C\σ(T). If Rλ is the kernel
of Rλ, then RλGL2 and

II*J*,II*
d(λ,σ(T))

4.3. Perturbation analysis and error analysis. The second application (which is
implied by the first one) is to make error analysis of the approximate solutions of
second-kind integral equations. Before making a more detailed consideration we remark
that the error estimates commonly met in numerical analysis of concrete problems
usually are given in terms of regularity properties of the integral equation's solution.
Our main results make it possible to derive estimates directly in terms of regularity
properties of the problem's data, i.e., the integral-operator kernel, right-hand side
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function and scalar parameters. The first type of estimates yield upper error bounds of
the type O(ha) while the second one yields Cha (/z = the length of the step of the
approximation method). In other words, the first type of estimates determines only the
order α of approximation while the second type yields both α and the constant C in
terms of regularity properties of the problem's data. This fact is very useful and has
direct applications to advanced computer-aided design (CAD) and expert systems
involving the so-called "scientific computation with automatic result verification". Now
we consider the equation (λl— T0)u0 =/ 0 , and estimate the error when replacing u0 by
the solution uγ of (λl- T1)u1=fu where UjeB, fjeB9j=09 1, B = Lp(X, F, dx\ Xc^R\
l<p<oo, Tj are the integral operators: B-+ B, with (Tju)(ξ)=\χKj(x,ξ)u(x)dx, ξe
^,7 = 0, 1; /is the identity on B; λeC\(\Jj=oσ(^/)) We are now looking for an upper
bound of

||ε|i?| |, where ε = (λ/-Γ 1 Γ 1 / 1 -(A/-Γ o Γ 1 /o •

A general upper bound of the first kind (in terms of regularity properties of u0 and wx)
has been obtained in [24]. This estimate has been applied in error analysis of many
concrete numerical methods. We will derive a new error bound of the same type which
coincides with the one in [24] for p= 1, oo and improves it for 1 <p<oo.

PROPOSITION 4.3.1. Let 1</?<OO, λφO and

p. = (ess sup ί \Rj(x, ξ)\dξ)ί/P( ess sup [ \Rj(x9ξ)\dx\ ^ ,

where Rj is the resolvent kernel of T} (the kernel of the integral operator T(λl— Γ)"1),

-UP

zl=(esssup \Kι(x,ξ)~K0(x,ξ)\dξ) ( ess sup ί |^(χ, ξ)-K0(x9 ξ)\dx)
\ xeX Jx / \ $eX JX /

δ=\\fi-fo\B\\.If

(4.3.1) Δ<\λ\ and min{po,p1}< (i.e., 1 -pΔ >0),
Δ

then

(4.3.2) | |ε|£|| + δ Δ .
\—pΔ 1—pΔ

We remark that most of the concrete numerical methods for solving integral
equations are equivalent to approximating To by a finite-rank integral operator Tί with
a degenerate kernel. Proposition 4.3.1 provides an error estimate, which is given in
terms of regularity properties of the solution, in view of the definition of p. This limits
the efficiency of the estimate to a considerable extent. Thus, if {Tn} is a sequence of
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integral operators with Tn-+T in L(H) as «->oo, and {/„} is a sequence of functions

from B with lim,,^^ \\fn — f \ B\\ = 0, then (4.3.1) implies that there exists an N such that,

for every n > N, (4.3.2) holds and, thus, ||εn | B\\ = O(δn + Δn + SnAn). However, no efficient

estimation of N or the O-constant can be derived.

By using our results from Section 4.2 we will now for p = 2 derive an estimate of

the second type.

PROPOSITION 4.3.2. Let p — 2 and let φ, A and δ be defined as in Proposition 4.3.1.

Let 0<qj<co,j=0, 1, let T be an integral operator with kernel K and consider T,- = || Kj || qj,

7 = 0, 1. \\K\\q90<q<co, denotes the function quasίnorm appearing on the right-hand side

of the corresponding bound for || T\Sq\\ in Lemmas 4.1.1 or 4.1.2 and cq and bq are as in

Theorem 2.2.1. Then

\\ε\B\\<pδ + pop1φA+2pop1δA ,

where

b ) = min{pό, Pi}

Compared with Proposition 4.3.1, we claim that Proposition 4.3.2 has two major

advantages, namely

(a) there are no restrictions of the type (4.3.1);

(b) for any choice of To and Tu | |ε| B\\ <cγδ + c2Δ +c3δA, where cu c2 and c3

depend on λ and the data To and Tί but not on the resolvents.

This dependence on the data is available in an explicit way under minimal information

about the operator spectra.

Furthermore, it can be shown that Proposition 4.3.2 is sharp in a certain sense

related to the ES and ESSC properties defined in Section 3. For more results relevant

to Propositions 4.3.1 and 4.3.2, as well as for related sharpness results, we refer to [8]

and [9]. We conclude this section by stating the following perturbation estimate (which

can be useful in error analysis, too):

COROLLARY 4.3.3. Assume that H=L2(Ω, F, μ), TjeL(H) is an integral operator

with kernel KjEL2 = L2(Ω x Ω, F, μ® μ), j = 0, 1. Assume that λeC^σiToJuσiT^) and

denote by Rjλ the kernel ofRlλ=Tj(λI- Tj)~\ j=0, 1. Then

+

d(λ,σ(T0))2 d{λ,o{Txψ

5. Generalizations and concluding remarks.

5.1. Non-separable Hubert spaces. In [7] it was mentioned that the results

from Section 2 hold true also if the Hubert spaces under consideration are non-

separable. As far as the sharpness results in Section 3 are concerned, the fact that
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separability of the Hubert spaces involved is not essential, is obvious. For the reader's
convinience we only mention here the following peculiarity of the non-separable case
compared with the separable one: if H is non-separable and TeSJ^H), then the
countability of σ(T) and the fact that the maximal Γ-invariant subspace corresponding
to any λeσ(T), λφO, is finite-dimensional, implies that 0 is necessarily an eigenvalue
of Γ and its corresponding Γ-invariant subspace is non-separable.

5.2. Generalized weighted Schatten-von Neumann ideals. Let Hj,j=0, 1, be
Hubert spaces, 0</?<oo and 0<α<oo. Then (see e.g. [14] and [21])

with the usual supremum interpretation for the case p=oo. We note that SPtΛ are
quasi-Banach ideals in L(H0, HJ which coincide with Sp in the special case α=l//?,
0</?<oo. Moreover, Spa occur as intermediate spaces between S^-spaces with respect
to Lions-Peetre's real interpolation method (see [21] for more precise information and
historical remarks concerning this statement). We are just working with a paper where
we intend to prove generalized Carleman inequalities with complete information about
the spectrum in terms of Spa and with sharp constants ap and bp. Clearly this will give
the sharp constants in Theorem 2.1.2, too. By using these sharp results we intend to
prove generalized Carleman inequalities with minimal information about the spectrum
in terms of Spa with sharp constants bp, cp and dp, thereby extending our results in
subsection 2.2. We also intend to extend our applications by proving an appropriate
generalization of Proposition 4.3.2 and proving in detail its sharpness (cf. also [8] and

It should be noted that Lemmas 4.1.1 and 4.1.2 are proved in [14], [15] and [16]
in the more general case with Spα, 0</?<oo, 0<α<oo, when H0 = L2(X, F, p),
H1=L2(Y, F,τ), where I c Γ is a bounded or unbounded domain with the cone
property, Y is arbitrary, p and τ are σ-finite measures, (Tu)(y) = \χK(x, y)u(x)p(dx) and
F=R or C.

In [14] and [15] there are also improvements of the general results in the particular
cases when p and/or τ are absolutely continuous p(dx) = \a(x)\2dx, aeLpo(X, F, dx)
and/or τ(dy) = \b(y)\2dy, beLpι(Y, F, dy), 0<po,p1 <oo, and/or Γ is a convolution
operator (K(x, y) = K(x—y)).

5.3. Different domain and codomain of T. Instead of considering the case
H0 = H1=H as here we can have different Hubert spaces Ho and Hv Such a
generalization of Theorem 2.2.2 makes sense for arbitrary finite-dimensional Ho and
Hx. In order to generalize the other results in Subsection 2.2 in this way there is the
natural restriction HQCIH^ (in the sense of set inclusion). Then / is the canonical
imbedding of Ho into Hx. In the applications this can be very useful for extending from
compact integral operators over to singular integral operators and, more generally, to
pseudodifferential operators. This is possible because an operator may act as a
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pseudodifferential one between a certain couple of Hubert spaces and as a compact one
with respect to another couple. In applications, if the first couple consists of Lebesgue
spaces, then the second one should contain a Sobolev or a Besov space, maybe with a
negative smoothness index (see e.g. [25]).

5.4. Analytic functions of a compact operator. Besides the operator resolvent
(λl— Γ)" 1, by using Dunford's representation (see, e.g., [10, Ch. 7]), we can extend our
results to an arbitrary f(T), which is analytic in a neighbourhood of σ(T) with a
sufficiently regular boundary. This approach implies several interesting generalizations
of which we only present the following simple model example:

PROPOSITION 5.4.1. Assume that 0 <p < oo, Te Sp, f is analytic in a neighbourhood
U of σ(T), the boundary dU consists of a finite number of rectίfiable Jordan curves with
a positive orientation in the usual sense of the theory of functions of a complex variable.
Assume that f^eH^dU), where H1(dU) = {g: g is analytic in U and \du \ g(z) \dz< oo}.
Then

d(dU,σ(T)) FV P d(δU,σ(T))p

where cp, bp are as in Theorem 2.2.1 and for compact sets AczC, B<^C we define, as usual,
d(A,B) = min{\a-b\:aeA,beB}.

5.5. A generalization of Theorem 2.2.3. A useful generalization of Theorem
2.2.3 with respect to applications is to loosen the assumption that λj should be all points
in σ(T) with |A7 |>|/1| by taking instead all points λj in σ(T) with |A 7 |>T |/1 | , where
τ: 0 < τ < 1. Then, with minor modifications in the proof we arrive at the conclusion
that (2.2.3) still holds true with γp = γp(t) = τ~PYj^ιτ

k/k and r = τσ(T).
5.6. Negative results. It is important to note that the generalized (or classical)

Carleman inequality of both types considered (with complete and with minimal
information about the spectrum) can be expected to provide sharpness of the estimate
neither uniformly with respect to the choice of Γ, nor uniformly in λeC\σ(T). In
order to prove this assertion in the part concerning Γ, we take T to be a normal operator;
then ap = bp = cp = 0. The part concerning λ follows e.g., for p = 2, by comparing the
classical Carleman inequality for a quasinilpotent operator T (where we know, by
Theorem 3.4.2, that a2

 = b2 = \/2 are the sharp constants) to the standard upper estimate
and observe that, as λ-+oo, the latter is better.

5.7. Detailed partial information about the spectrum. Let T be compact,
λoeσ(T), and noeNbe the multiplicity of λ0 (in other words, complete information is
available about λ0). Let Xo be the maximal invariant subspace corresponding to λ0

(άimX0 = n0). Assume further that a Jordan canonical form of T\Xo is known. Let vh

i= 1, 2, . . ., μ0, be the ranks of the different Jordan cells appearing in the canonical
form. Here μoeN, l<μo<no, Xf=1vi = w0. We say that detailed information about
λ0 is available if μ0 and vh i= 1, 2,..., μ0, are known. Similarly, the notion of detailed
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partial information about σ(T) is a similar modification of the one of partial informa-

tion about σ(T) (cf. [7]). We note that n0 is often called the "algebraic" multiplicity,

while v( are sometimes referred to as its "geometric" multiplicities. Obviously the two

notions coincide if and only if T\Xo is a "unicellular" operator, i.e., μo= 1.

If the notion of "partial information" about σ(T) is replaced by the one of "detailed

partial information" about σ(T) for the corresponding part of the spectrum in the

conditions of Theorem 2.2.3 (or its generalization in Subsection 5.5), then (2.2.3) still

holds true in the improved form whenever each term of the kind \λ\nj~1/\λ — λj\
nj is

replaced by max i = 1 2 ^ .( | λ Γy"Vl λ - ^ Γ Ό , where Σftίί vtj = np 1 <μj<Πj. If Γis not

an "unicellular" operator on every maximal Γ-invariant subspace, then the above is

obviously an essential improvement. This fact can most easily be seen if, for some y,

nj> 1 and T\x. is a normal operator, i.e., μ~nj,vi=\,i=\,2, ..., μy Furthermore, in

a similar way we find that the sharpness assertion in Theorem 3.4.4 holds true in a

stronger form, in the sense that, in the definition of PS, the sentence " . . .there exists

an operator TeSp(H\ T=T(H,p), and λoeσ(T) with \λo\>r(T), such that there
exists ε>0, such t h a t . . . " is replaced by the stronger " . . . and for every TeSp(H) and

every λ0eσ{T) with \λo\>r(Γ), there exists ε > 0 , such that.

6. Proofs.

PROOF OF LEMMA 3.3.1. Let ej9 y = l , 2, . . . , n be an orthonormal basis in H,

dimH=n>2. First we let Λ/0. Consider gv = λen_v, v = 2, 3 , . . . , n—\, gi=λen-1+ccen,

oceC. Obviously gv, v = l , 2 , . . . , « — 1 , are linearly independent. By performing a

Gram-Schmidt orthogonalization procedure we now obtain the vectors αμ, μ = l ,

2, . . . , n - 1 , such that (ϊ)aμιlaμ2 for μxφμ2\ (ϋ) \aμ\ = σμ, μ= 1, 2, . . . , / ι - l ; (iii) aμ =

^ μ + Σ " = μ+i α/nA» α μ v e C , / ί = l , 2 Λ - 1 . Next we define T as the unique operator

whose matrix in the basis ev, v= 1,2, . . . ,«, has aμ, μ= 1, 2, . . . , n— 1 and λen as

vector-lines. Now let λ = 0. Then we can define T for example in the following way:

Σ " l J σvexp(i0v)<ev, > v + i ? f° r a n Y choice of 0 v e ( - π , π], v= 1, 2 , . . . , n- 1. It remains

to prove the assertion for sn(T) but it follows at once by observing that det{T) = λn and

applying Lemma 2.1.1. The proof is complete.

PROOF OF LEMMA 3.3.2. Let dim H=n. Since T is not normal, we have

\λo\ = r(T)«\\T\L(H)\\=sι(T) = σ = sv(T), v = 1, 2, . . . , « - 1 . Then, in view of the fact

that det(Γ) = /lJ, Lemma 2.1.1 implies that sn(T) = λo = 0 or \λo\>sn(T)>0. Moreover,

for the case λoφ0 we use Lemma 2.1.1 again and find that sn(T) = {\λo\lσ)n~ί\λo\^0

since | λ01 < σ and the proof is complete.

PROOF OF THEOREM 3.4.1. According to our discussion in Subsection 3.4 we may,

without loss of generality, assume that 2<dim//=7V<oo and that Γis nilpotent. Fix

λeC and let T=TNk be a nilpotent operator obtained by using Lemma 3.3.1 with

σ. = (l -χo/(k+ l)Γ ( f c + 1 ) μ I, j= 1, 2, . . . , N-1, keN. Note that if TN is the same type

of operator with σ, = exp(.x0), j= 1, 2, . . . , N— 1, then TNk-+TN as fc->oo, in
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0 < / ? < o o , sv(TN k)—>sv(TN), v = 1, 2, . . . , TV, λ;-»oo; (λI—TNk)~1-*{λI—TN)~1 as k-+co,

in L(//); σ(ΓiVk) = σ(ΓN) = {/ί}. In the same way as in the proof of Theorem 2.2.2 we
obtain, for t = σ1/{k~1\

(6.1) ιιμ/ -7^)- 11 £(//)!!

In (6.1) there is equality because due to the relation sv(λl— Γ) = σ, v= 1, 2,..., TV— 1,
and the special choice of t, the inequality between the geometric and the power
means turn into an equality. Next we use well-known properties of ^-numbers (see
[11], [19] and [20]) to obtain that σ = sv(λI-TNtk)>sv(TNtk)-\λ\, v = 1, 2,..., N- 1.
Therefore, by using the elementary (form of the quasitriangle-) inequality ap + bp>
mindl'-ηia + bγ, a9b,p>0, we find that σ*>min{l, 21-p}sv{TNίk)

p-\λ\p. Hence,
(6.1) implies that

(6.2)

Thus, according to the definitions of TNk and x0, we obtain

\\(λl- TuΓ11 L(H)\\ > lim ^ f J k = — - exp ( - 1 + x0-exp(-x0))
k-oo U i \ />

(6.3) x expf m i n ί l , 2 1 " P }(TV-1)" x exp( — x0)
 N p — ^ — )

\ P UIP /

Moreover, by Lemma 3.3.2, sN(TN)-+0 as N-+co and we find that (6.2) and (6.3) imply
the statement in the theorem.

PROOF OF THEOREM 3.4.2. In view of our comments in Subsection 3.4, it is sufficient
to consider the case dim H=n< oo and study in sufficient detail the proof of Theorem
2.1.2 (see [11, Ch. 11, Theorem 6. 15]) for the particular case with a nilpotent operator
T. We adopt the notation in [11] and note that for the particular case with a nilpotent
operator essential simplifications of the proof in [11] can be done. More precisely, the
integer parameter TV can now be taken equal to zero. Then, it is not necessary to study
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the auxiliary equality (i); since TN=T (ii) turns into a trivial equality; the identity (iv)

continues to hold true when N=0. Moreover, tracing the proof and origin of (iii) back

to [11, Ch. 11, Th. 6.12 and Lemma 6.13] we find that (iii) is based upon Hadamard's

inequality and it turns into an equality for a nilpotent operator T if and only if T has

the additional property that λl—T is PO. Next we note that, if in Lemma 3.3.1 the

condition about dominance of the PO operator T is omitted, then the conclusion in

the lemma holds on to be true without any restrictions whatsoever on σu σ 2 , . . . , σN_ l 5

except the natural one σ, >0, j= 1, 2 , . . . , n— 1. According to the observations above

we find that the final inequality

/-—) \UH)
n

/ n |

in the proof in [11] turns into an equality exactly on those nilpotent operators Γ, for

which λl— T is PO. The proof in the case concerning Theorem 2.1.2 now follows by

letting n increase to infinity. The proof of the part concerning Theorems 2.2.1, 2.2.3

and 2.2.4 follows by using the fact (see [7]) that if T is a quasinilpotent operator, then

cp = ap, pe(0, oo). The proof is complete.

PROOF OF THEOREM 3.4.3. We adopt the notation in the proof of Theorem 2.2

(see [7]). Note that dimH=N<cc. Obviously it is sufficient to consider the case

of an operator with a single-point spectrum {λ}. Let k e N be as in the proof of Theo-

rem 2.2. In the proof of this theorem there is only one inequality and it is the one

between the geometric and the power mean. It can be seen that this inequality

turns into an equality on an operator T= TNk if and only if TNk is DPU with

Sj(TNtk) = σ = ((k+l)/k)ik+1)/p\λ\, 7 = 1 , 2 , . . . ,7V-1. The DPU operator TN with

Sj(TN) = exp(\/p)\ λI, j= 1,2,..., N- 1, as fc->oo, is clearly the limit of TNk in Sp(H\

0<p<π; σ(TNΛ) = σ(TN) = {λ}; sv(TN,k)^sv(TN), v= 1, 2, . . ., N; T^Tj1 in L(H).
Now, as in the proof of Theorem 2.2 we obtain

|| T~N

 11 UH)\\ = J
λ\ ' V ep\λ\"

and the proof is completed by using Lemma 3.3.2 and arguing in the same way as in

the proof of Theorem 3.4.1.

PROOF OF THEOREM 3.4.4. Let TeSp(H) be such that there exists λoeσ(T) with

I λ0 I >r(Γ), let εί9 0<ε1 < \λ01 -r(T) be such that, if | λ-λ0 \ <εl9 λφλ0, then λe C\σ(T)

and the maximum on the right-hand side of (2.2.3) is attained on the term corresponding

to λ0. Finally, let Xo be the maximal Γ-invariant subspace corresponding to λ0 and let

Γbehave on Xo as a "unicellular" operator, i.e., it has a Jordan canonical representation

which contains one Jordan cell only with rank n0 = dim Xo — (the multiplicity of λ0).

Then (λl-T)'1 has a pole of order n0 at Ao. Therefore, {λ — λof^λl—T)'1 has a

removable singularity there and converges in L(H) as λ^λ0 to an operator which is
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invertible on Xo and, thus, is not identical to zero on H. Due to the continuity of
|| \L(H)\\ and of (λ-λo)

no(λl- T)~ι in L{H) with respect to λ in a neighbourhood of
λ0, we obtain

lim Uλ-λoΠλl-TΓ'lLW^O
λ-λ0

and there exists ε o >0 and co = co(εo), such that \\(λl-Γ)"1 \L(H)\\ >co\λ-λo\
n°, for

every λ: | λ — λ0 | <ε 0. We choose ε = min{ε0, ε j and the proof follows.

PROOF OF COROLLARY 4.2.1. A straightforward combination of Lemmas 4.1.1
and 4.1.2(a) and (b) with the bound obtained in Theorem 2.2.1.

PROOF OF COROLLARY 4.2.2. Invoking the well-known property of s-numbers that
sJίTiTzHsJίTM^miηW, neN, for TJEL(H),J=\, 2 (see e.g. [11] or [20]), we find
sn(Rλ) < sn( T) \\{λl- T) ~11 L(H) \\9ΠEN, and the proof follows by applying Theorem 2.2.1.

PROOF OF COROLLARY 4.2.3. The proof follows by using Corollary 4.2.2 and
applying Lemma 4.1.1 to the operators Γand Rλ.

PROOF OF PROPOSITION 4.3.1. According to the well-known Riesz convexity
theorem (see e.g. [1, §1.1] or [10, §6.10]), we have that | |7\-:Γ0 |L(5)| |<i4. Denote

T+ = T1 if /?o<Pi , T+ = T0 if po>p1

/ - =/o if ll/o I B\\ < | |Λ I ^ | | , /_ =/i if | |/01 B\\ > \\fx \ B\\

Λ =/i if ll/o 11*11 < ll/i I *ll , /+ =/o if \\fo\B\\ > IIΛ I 5 | | .

Note that \\T+-T_\L(B)\\ = \\T1-T0\L(B)\\=A and | |/+ -/_ \B\\ = \\fx-fQ \B\\ =δ.
In view of the identity (λI-T_)~1=λ~1(I+T_(λI-T_y1) and by using the Riesz
convexity theorem once more, we obtain that

(6.4)

Moreover, it is easily seen that

(6.5) | |β | ^

If we denote the right-hand side in (6.5) by μ, then

|μ-| |(^-Γ_ΓM^5)| |δ- | |(λ/-Γ 1Γ 1-(λ/

<\\{λI-T+)-'-{λI-T_)-'\L{B)\\δ
(6.6)

+ ||μ/-r1)-
1-μ/-r0)-

1|^)llll/
= 2\\(λI-T+)-1-(λI-T_r1\L(B)\\δ .
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Next, by using (4.3.1) and (6.4) to apply a well-known perturbation estimate (see [10,

§7.6]), we find that

- l - l P2^

~ \—pA

The proof follows by combining (6.5), (6.6) and (6.7).

PROOF OF PROPOSITION 4.3.2. Theorem 2.2.1 and Lemmas 4.1.1 and 4.1.2 yield

\\{λl- Tj)'11 L(B)\\ <Pj,j=0, 1. Let T+9 Γ_, / + and /_ be as in the proof of Proposition

4.3.1. We use (6.5) and (6.6) again but with new estimations of the resolvent norms.

Obviously, (6.4) holds true with the new value of p. Hubert's identity

yields

which, together with (6.4)-(6.6), completes the proof.

PROOF OF COROLLARY 4.3.3. The identities Rjλ = λ{λl-Tjy
1-I, j=0, 1, and

Hubert's identity (6.8) yield

(6.9) R^-Ro

Next we use (6.9) and the well-known property of ^-numbers that

neN

for VkeL(H), k= 1, 2, 3 (see e.g. [11], [20] and the proof of Corollary 4.2.2) to obtain

that

(6.10) ^ ( ^ ! , A - ^ O , A ) < I ^ IIK^- ̂ i ) " Ί Z.ίT/)!!^^ - r o) | |(27- ^o)-11 Z.(//)|| , neN.

Summing up the squares in (6.10) for ne N yields

whence the proof follows by using Theorem 2.2.1 and applying Lemma 4.1.1 to
Ri,λ~Ro,λ an<3 T1-To (see Corollary 4.2.3).

PROOF OF PROPOSITION 5.4.1. First we note that, according to the assumptions,

/ admits a Dunford representation along δU. By using this fact, by applying the integral

triangle inequality for vector-valued functions, the Holder inequality and the identity

1 / \\T\SP\\P \ 1 / II Γ |
max exp cΌ - \-bΏ ] = exp cΏ

βeeu d(μ, σ(T)) FV P d(μ, σ{T)Y PJ d(dU, σ(T)) F \ P d(dU, σ(

we obtain
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f{μ){μI-T)-'dμ\L{H)
2π J a t 7

\f(μ)\ \\(μl~Γ)"1

\\f{T)\L(H)\\ =

" 2π

and the proof is complete.
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