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EXISTENCE OF ALMOST PERIODIC SOLUTIONS OF
SOME FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH INFINITE DELAY IN A BANACH SPACE
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Abstract. For functional differential equations with infinite delay in a Banach
space, the existence of almost periodic solutions is studied under some stability
assumptions.

1. Introduction. In this paper we are concerned with a system of functional differ-
ential equations with infinite delay

(E) ^- = Au(ή + F(t9ut)
dt

on a phase space 08 = &&{(— oo, 0] X) which possesses a fading memory property, where
X is a Banach space and ut is an element belonging to ^((— oo,0];X) defined by
ut{s) = u(t + s) for s e (— oo, 0]. For functional differential equations on a uniform fading
memory space & with X=Rn, Hino [5] obtained a result on the existence of almost
periodic solutions by assuming the existence of a bounded solution which is ^-totally
stable or ^-uniformly asymptotically stable. The J'-stability means that the solution
remains small if the initial function is small with respect to the semi-norm | \m. However,
as pointed out in [2], some integrodifferential equations can be set up as functional
differential equations on a fading memory space (not uniform) and BC-stability is more
practical, where BC-stability means that the solution remains small if the initial function
is small with respect to the BC-norm, that is, sup_ 0 0 < θ< 0 | φ(θ)\. For these reasons,
Murakami and Yoshizawa [10] have discussed the existence of an almost periodic
solution for functional differential equations on a fading memory space with X=Rn in
the context of BC-stability.

Recently, Hino and Murakami [7] have established a result on the existence of an
almost periodic solution when (E) is the nonhomogeneous linear system. The pur-
pose of this paper is to treat a nonlinear equation (E) on a fading memory space
Jf(( — oo, 0] X) with a general Banach space A"and to establish a result on the existence
of almost periodic solutions by assuming the existence of a bounded solution which is
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BC-totally stable or BC-uniformly asymptotically stable. Hence our main results
(Theorems 1 and 2) of this paper would be considered as some extensions of Hino [5,
Theorem 4] and Murakami and Yoshizawa [10, Corollary 1] to the case where X is a
general Banach space, and of Hino and Murakami [7, Theorem 1] to a nonlinear
equation (E).

2. Fading memory spaces. Let I b e a Banach space with norm | \x. For any
interval /<=/?: = (—oo, oo), we denote by BC(/; X) the space of all bounded and
continuous functions mapping J into X. Clearly BC(7; X) is a Banach space with the
norm | \BC(j;x) defined by |φ|Bc(j;χ) = suP{l Φif)\x: teJ}. If J=R~ : = (— oo,0], then
we simply write BC(/; X) and | \BC(j;x) a s BC and | |BC, respectively. For any function
u: ( — oo, α)ι—•Xand t<a, we define a function ut: R~ ι->Xby ut(s) = u(t + s) for seR~.
, Let $ = $(R ~ X) be a real linear space of functions mapping R ~ into X with a complete
seminorm | |Λ . The space & is assumed to have the following properties:

(Al) There exist a positive constant TV and locally bounded functions K( ) and
M( ')on R+ : = [0, oo) with the property that if u: (— oo, a) \-> Xis continuous on [σ, a)
with uσe08 for some σ<α, then for all te[σ, α),

( i ) i^εΛ,
(ii) ut is continuous in t (w.r.t. | | Λ ),
(iii) TVIwWIx^lw.^^^-σίsup^^Jw^^ + M O - σ ) ! ^ ^
(A2) If {φk} is a sequence in ^ n B C converging to a function φ uniformly on

any compact interval inR~ and sup f c |ψ
k |B C<oo, then φe&l and |0 f c — 0|^^Oas k^oo.

It is known (cf. [8, Proposition 7.1.1]) that the space J* contains BC and that
there is a constant />0 such that

(1) \Φ\®<1\Φ\BC,

Set @o = {φe@:φ(0) = 0}, and define an operator S0(t):Λ0\-^Λ0 by

\Φ(t + s) if / + ̂ < 0 ,

I 0 if t + s>0

for each />0. By virtue of (Al), one can see that the family {So(/)}f>o ^s a strongly
continuous semigroup of bounded linear operators on J^o. The space & is called a fading
memory space, if it satisfies the property

(A3) lim|S0(OΦU = 0, φe<%0,
Ϊ-+00

in addition to (Al) and (A2). It is known (cf. [8, Proposition 7.1.5]) that the functions
K( ) and M( ) in (Al) can be chosen as K(ί) = l and M(t) = (\+(l/N))\\S0(t)\\; here
and hereafter, || || denotes the operator norm of bounded linear operators. Note that
(A3) implies supj>0 ||S0(OII < oo by the Banach-Steinhaus theorem. Therefore, whenever
^ is a fading memory space, we may assume that the functions K( ) and M( ) in
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(Al) are constants K{ ) = K and M( )==M.
We provide a typical example of fading memory spaces. Let g: R~ (-• [1, oo) be any

continuous nonincreasing function such that g(0)=l and g(s)^>oo as $-• — oo. We set

C°: = C°(X) = \φ: R~ h->X is continuous with lim 100) |x/0(» = 0\ .

Then the space C° equipped with the norm

is a separable Banach space and satisfies (A1)-(A3).
Let C(R+ X) be the set of continuous functions defined on R+ with values in X.

A subset 2F of C(R + X) is said to be uniformly equicontinuous on Z?+, if sup {| x(t + δ) —
x(0lχ: ί e ^ + , X G J ^ I ^ O as δ-^0+. For any set & in C(Λ+ X) and any set 5 in ^ , we
set

W(S9 &) = {x( ): R^X\xoεS, x\R

and

) = {xt

LEMMA 1. Let ^ be a fading memory space. If S is a compact subset in 0b and if
3F is a uniformly equicontinuous set in C(R+, X) such that the set R(tF) is relatively
compact in X, then the set V(S, IF) is relatively compact in 0b.

PROOF. We shall prove that any sequence {*£}, tk>0, x£e V(S, &)9 contains a
convergent subsequence. Taking a subsequence if necessary, we may assume that
tk^>t0 < oo and XQ : = φk^>φ in S as λ:->oo, because S is compact. Let

where

xk(s), s>0
k(0), 5<0,

ψk = xo-xk(0)χ

and

χ(0)=l, θ<0.

Then φk^φ: = φ-φ(O)χ in 0b as A:->oo. Clearly ξk:=yk

k lies in BC, and the sequence
{ζk} is equicontinuous on ( - oo, 0]. Moreover, for each θ<0 the set {£k(0): k = 1, 2,...}
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is relatively compact in X, because it is contained in the set R{tF) which is relatively
compact in X. By applying the Ascoli-Arzela theorem and (A2), we may assume that
{ξk} is a convergent sequence in 0b. On the other hand, since sup^o ||S0(OII <oo, we
have l^oC^)^* —SΌCOΆU^sup^o ||SΌ(OIIl«Ak —ΆU~^0 as A;->oo. If to<cc, then
So(tk)φ^So(to)φ as fc->oo, while if t0 = oo, then S0(tk)φ^O as &->oo by (A3). As a
result, {S0(tk)ψk} is a convergent sequence in 0b. Therefore, the sequence {xfk} has the
desired property.

3. Asymptotically almost periodic functions and definitions of stabilities. Through-

out the remainder of the paper, we assume that $ is a fading memory space which is
separable.

Now we shall consider the following functional differential equation

du
(2) —- = Au(t) + F(t,ut),

at

where A is the infinitesimal generator of a compact semigroup {T(i)}t>0 of bounded
linear operators on X and F(t, φ) e C{R x 0b X); here and hereafter, we denote by
C(R x0b\X) the set of continuous functions defined on R x 0b with values in X.

We always impose the following conditions on (2):
(HI) F(t, φ) is almost periodic in t uniformly for φe0b, where F(t9 φ) is said to

be almost periodic in / uniformly for φe0b, if for any ε>0 and any compact set Win
0b, there exists a positive number /(ε, W) such that any interval of length /(ε, W) contains
a τ for which

\F(t + τ,φ)-F(t9φ)\x<s

for all ί e ^ a n d a l l φeW\
(H2) For any H> 0, there is an L(H) > 0 such that | F(t9 φ) \x < L(H) for all / e R+

and φ E 0b such that | φ \m < H;
(H3) Equation (2) has a (bounded) solution u(t) defined on R+ such that u0 e BC

and \ut\g8<C1 for all teR+.
By virtue of (HI) and (H2), it follows that for any (σ, φ)eRx0b, there exists a

function veC((— oo, ί j ; X) such that vσ = φ and the following relation holds:

v{t) = T(t - σ)φ(0) + T(t - s)F(s, vs)ds , σ < t < tx ,

(cf. [3, Theorem 1]). The function υ is called the (mild) solution of (2) defined on [σ, tx)
through (σ, φ) and denoted by x( , σ, <£, F). In the above, tγ can be taken as tx = oo if
supί<ίlIKOIx<°o (cf. [3, Corollary 2]).

For the solution u{t) of (2) whose existence is assumed in (H3), we have the follow-
ing lemma.
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LEMMA 2. OuR+ : = {u(t)\O<t} is compact in X, u(t) is uniformly continuous on

R+ and XUfR+: = {ut 10<i] is compact in 31.

PROOF. First we prove that the set OuR+ is compact in X. To do so, we consid-

er the sets Oη={u(t)\t>η} and Oη = {u(t)\θ<t<η} for each η>0. Then α(<9UvR+) =

max{α(O^), oc(Oη)}, where α( ) is Kuratowski's measure of noncompactness of sets in

X. For the details of the properties of α( ), see [9, Section 1.4]. Let 0 < v<min{l, η).

If t>η, then

u(t)=T(t)u(0)+ ίtT(t-s)F(s,us)ds
Jo

= Γ(v)Γr(/-v)w(0) + I T(t-v-s)F(s, us)ds\+ \ T(t-s)F(s9 us)ds

= T(v)u(t-v)+ Γ T(t-s)F(s, us)ds .
Jί-v

Note that sup f> 0 |F(ί, ut)\x = :L(Cί)<cc. Since the set T(v){u(t-v)\t>η} is relatively

compact in X because of the compactness of the semigroup {T(t)}t>0, it follows that

where C 2 = sup 0 < τ < 1 | |Γ(τ)||. Letting v->0 in the above, we get α(O^) = 0 for all η>0.

Moreover, since the set Oη is compact in X, we have oc(Oη) = 0. Consequently, %(OuR+) = 0,

which shows that the set OuR+ is compact in X.

To establish the uniform continuity of w, let 0<s<t<s+1. Then

\u(t)-u(s)\x<\ T(t-s)u(s)-u(s)\x ['T{t-τ)F(τ,uτ)dτ
J S X

<sup{\T(t-s)z-z\x:zeOUtR+} + C

Since the set OuR+ is compact in X, T(τ)z is uniformly continuous in τ e [0, 1] uniformly

for zeOuR+. This leads to sup{\u(t)-u(s)\x: 0<s<t<s+1}->0 as \t—s\->09 which

proves the uniform continuity of u on R+.

The compactness of XUfR+ follows immediately from the above facts and Lemma 1.

A sequence {Fk} in C(R x&\X)'\s said to converge to G Bohr-uniformly o

if Fk converges to G uniformly on RxWfor any compact set Win 0$ as A -KX). It is

known (cf., e.g. [13, Theorems 2.2 and 2.3]) that F(t, φ) is almost periodic in t uniformly

for φe& if and only if for any sequence {tk} in R, the sequence {F{t + tk, φ)} contains

a Bohr-uniformly convergent subsequence.

We denote by H(F) the set of all functions G(t, φ) such that {F(t + tk, φ)} converges

to G(ί, φ) Bohr-uniformly for some sequence {tk}. In particular, Ω(F) is the subset of

H(F) for {tk} which tends to oo as k-+co. Clearly G(ί, φ) is almost periodic in / uniformly

for φ e @ if G e H(F). We shall denote by Ω(u, F) the set of all (ι>, g) e H(u, F) for which
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there exists a sequence {tk}, tk^co as k-+oo, such that F(t + tk, φ)->G(t,φ)eH(F)

Bohr-uniformly and u(t + tj->v(ή uniformly on any compact set in R. From the

following lemma we see that Ω(u, F) is nonempty and that υ(t) is a solution of

(3) ^ = Av(t) + G(t9vt),
at

whenever (v, G)eΩ(u, F).

LEMMA 3. For any sequence {t'n}9 t'n-*oo as 72->oo, there exists a subsequence {tn}

of {tή} and functions v(t) and G(t, φ) such that

F(t + tn9φ)->G(t,φ)

Bohr-uniformly on Rx& as «->oo, and that

n)->v(t)

uniformly on any compact interval in R as n—>co. In this case, (v, G) is in Ω(u, F) and

v(t) is a bounded solution of (3) defined on R.

PROOF. By virtue of (HI) and (H2), it follows that there exists a subsequence {tn}

of {̂ } and a continuous function G(t,φ) such that F(t + tn, φ)^>G(t9φ) as «->oo,

uniformly on RxS for any compact set Sa&. Set un(ή = u(t + tn) for teR. Applying

the Ascoli-Arzela theorem and the diagonalization procedure one can choose a sub-

sequence of {u\t)} which is uniformly convergent on any compact interval in R, by

Lemma 2. Without loss of generality, we may assume that un(t)-*v(t) uniformly on any

compact set in R as «->oo, for some function v: R\->X. This completes the proof of

the former part of the lemma.

By using (A2), we can see that ut+tn^vt in & uniformly on any compact set in R

as A2->oo. Hence F(t + tn, ut+tr)-+G(U vt) uniformly on any compact set in R as n->co.

Letting «->oo in the relation

u(t + tn)=T(t)u(tn)+ T(t-s)F(s + tn, us+tn)ds , t + tn>0 ,
Jo

we have

v(t)= T(t)υ(0)+ f T(t-s)G(s, vs)ds , teR,

which shows that v(t) is a solution of (3) defined on R.

Let g: [α, oo) ι—• X be a continuous function. g(t) is said to be asymptotically almost

periodic if it is a sum of a continuous almost periodic function p{i) and a continuous

function q{t) defined on a<t<oo which tends to 0 as t-^oo, that is,

g(t)=p(t) + q(i).
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It is known (cf., e.g. [13, pp. 20-30]) that when X=Rn, g(t) is asymptotically almost

periodic if and only if it satisfies the following property:

(L) for any sequence {t'n} such that t'n-+oo as «->oo there exists a subsequence {tn}

of {t'n} for which g(t + tn) converges uniformly o n α < / < o o .

Indeed, using Bochner's criterion (cf., e.g. [1, Section 1.2]) for almost periodic

functions, we can see that the argument employed in [13, pp. 20-30] works even when

Jfis any separable Banach space, under the additional assumption that the set {g(ή \t>a]

is relatively compact in X. It is easy to see that the additional assumption is satisfied

whenever g(t) is asymptotically almost periodic or it satisfies Property (L). Therefore,

the above equivalence holds true when X is a general separable Banach space, too.

PROPOSITION 1. If u(t) is an asymptotically almost periodic solution, then (2) has

an almost periodic solution.

PROOF. Let u{t) =p{i) + q(t) be a decomposition, where p{t) is almost periodic and

#(/)-• 0 as ί->oo. There exists a sequence {τn}, τπ-»oo as «-κx), such that F(t + τn, φ)

converges to F(t, φ) Bohr-uniformly on R x 3$ as «-• oo and that u(t + τn) ->/?(/) uniformly

o n ^ + and uniformly on any compact set in R as H-KXD. By Lemma 3, p(t) is a solution

of (2). Hence p(t) is an almost periodic solution of (2).

Now we shall give some definitions of stabilities.

DEFINITION 1. The bounded solution u(t) of (2) is said to be BC-totally stable

(BC-TS) if for any ε > 0 there exists a δ(ε) > 0 with the property that σeR+, φe BC with

K - Φ I B C < < 5 0 ) and AeBC([σ, oo); X) with sup t e [ ( T j 0 0 ) | A(0lχ<<5(ε) imply | u(t)-x(t,σ,

φ, F+h) \χ<ε for t>σ, where x( , σ, φ, F+h) denotes the solution of

dv
-— = Av(t) + F(t, vt) + h(t), t>σ ,
at

through (σ, φ).

DEFINITION 2. The bounded solution u{i) of (2) is said to be BC-uniformly

asymptotically stable (BC-UAS) if for any ε > 0 there exists a <5(ε)>0 such that σeR+

and φeBC with \uσ — φ\BC<δ(ε) imply \u(t) — x(t,σ, φ,F)\x<ε for t>σ; in addition,

there exists a δo>0 with the property that for any ε > 0 there exists a ί o(ε)>0 such that

σe R+ and φ e BC with | uσ — φ |B C<<50 imply | u{t) — x(ί, σ, φ, F) \x<ε for t> σ + to(ε).

In the above, we can define $-total stability (^-TS) if we replace "φ e BC with

I uσ-φ | B c < ( 5(ε)" by "φe^t with | uσ — φ |<»<<5(ε)". Moreover, we can define ^-uniform

asymptotic stability (J^-UAS) in a similar way. From the relation (1) it follows that

BC-TS and BC-UAS respectively follow from J^-TS and J'-UAS.

4. Almost periodic solutions. In this section, we shall discuss the existence of an

almost periodic solution of an almost periodic system (2).
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THEOREM 1. If the solution u{t) of (2) is BC-TS, then it is asymptotically almost

periodic in t. Consequently, (2) has an almost periodic solution.

PROOF. For any sequence {τ'k} such that τ ^ o o as Ar->oo, there is a subsequence

{τk} of {τk} and a (v, G)eΩ(u, F) such that u(t + τk) converges to v(ή uniformly on any

compact interval in R and F(t + τk, φ) converges to G(t, φ) Bohr-uniformly on Rx&.

We shall show that u{t + τk) is convergent uniformly o n ^ + .

Suppose that u(t + τk) is not convergent uniformly on R+. Then, for some ε>0

there exist sequences {/,.}, {kj} and {raj such that

kj -> oo , mj -> oo as j -> oo ,

(4) \u(τkΛtj)-u(τmΛtj)\x = ε

and

(5) \<τkj^ή-u{τmj + ή\x<ε on [0, ί,).

Put vj(t) = u(τkj +1) and wj(t) = u(τm. +1). Since the sequences {vj(t)} and {wJ'(i)} converge

to v(t) uniformly on any compact interval in R, we may assume that

(6) Σ

where \vJ

o-wJ

o\ι = sup_ι^θ^o\vj(θ)-wj(θ)\x. For each yeN and re/? + , we define a
function i? J > : R h-• Z by

where N denotes the set of all positive integers.

First, we shall show that

ί<-r,

(7) sup{|ι^'r — v^a'.jeN} -+0 as r->co.

If this is not the case, then there exist an ε 0

> ^ a n d sequences {jk}czN and {rk},

rk-+ oo as k^>oo, such that | vJ

o

k'rk- vJ

o

k \Λ>ε0 for k = 1, 2 , . . . . Put ψk = vJ

o

k'rk- vJ

o

k. Clearly,

{^k} is a sequence in BC which converges to the zero function uniformly on any compact

set in R~ and supfc|ι/Λ|BC<oo. Then Axiom (A2) yields that \ψk\®-+0 as &->oo, a

contradiction.

Observe that vj'r(t)^>υ(t) as y->oo, uniformly for (t,r)eJx R+ for any compact

interval / i n R. Hence the set {vJ

0, vtf'.jeN, reR+} is relatively compact in J*, because

the set XUfR+ is compact in @ by Lemma 2 and vJ

oεXUJι+. Moreover, the set

{vj(ή, vj'r(t):jeN, reR + , teR+} is contained in the compact set OuR+. From these

observations and Lemma 1 it follows that the set W: = {vj9 vj'r:jeN, reR+, teR+} is

relatively compact in 0b. Consequently,
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(8) sup{|F(/ + τfc, φ)-G(t9 φ)\x\ tεR, φeW}->0 as k -> oo .

Define a continuous function qj'r on R+ by

τkj9 v/)-F(t + τmj, (v")t), 0<t<tj
q UHtj), tj<t.

Since

\(υ^t-υi\Λ^M\υlr-υl\Λ (teR+,jeN)

by Axiom (Al), it follows from (7) that

(9) sup{| G(ί, υ{)-G(U (vhr\) \x:teR+,jeN}^0 as r -> oo .

Hence, by (8) and (9) we can choose j 0 =jo(s) e N and r = r(ε) e N in such a way that

sup{| q"{t) \x: j>j0, teR+}<δ(ε/2)/2 ,

where δ( ) is the one for BC-TS of the solution u(t) of (2). Moreover, for this r, select
an integer j>j0 such that j>2r(l + δ(ε/2))/δ(ε/2). Then 2~r\ wJ

0-vJ

0 | r/[l +1 wJ

0-vJ

0 |Γ] <

P(<, vJo)<2-rδ(ε/2)/[\ +δ(ε/2)] by (6), which implies that

|wέ-ιά<<5(β/2) or \υl>r-wi\BC<δ(ε/2).

Since the function i?J'>r is a solution of

- ^ = Ax(t) + F(/•+ τm., xt) + ̂  r(

for /e[0, ^ ], and since wJ(/) is a BC-TS solution of

-*-

with the same (5( ) as the one for u(ή, from the fact that sup,> 0 | qj'r(t) \ < δ(ε/2) it follows
that \(vj'r)(ή-wj(ή\x<ε/2 on [0, /,-]. In particular, we have \(vu)(tj)-wj(tj)\x<ε or
\vj(tj) — wj(tj)\x<ε, which contradicts (4).

The existence of an almost periodic solution follows immediately from Proposi-
tion 1.

We say that the solution u{i) is unique for the initial value problem if uσ = φ implies
u(t) = x(t,σ, φ,F). Furthermore, we say that (2) is regular if for any GeΩ(F), each
solution of (3) is unique for the initial value problem.

THEOREM 2. Assume that system (2) is regular. If the solution u(t) is BC-UAS,
then it is asymptotically almost periodic in t. Consequently, (2) has an almost periodic
solution.
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PROOF. We shall show that u(i) is BC-TS. Then the conclusion follows immediately
from Theorem 1.

Let (δ( ), (50, to( )) be the triple for BC-UAS of u(ή, where we may assume
δo<δ(l). We first establish that

, (v,G)eΩ(u,F) and \φ-vσ\BC<δ(η/2)

imply | x(t, σ, φ, G) — v(t) \x<η for t>σ .

Select a sequence {tn} with ίπ->oo as AZ-KX) such that u(t + tn)-+v(t) uniformly on any
compact set in R and F(t + tn, </>)-• G(ί, φ) Bohr-uniformly on R x &, and consider any
solution x( , σ + tn, φ — vσ + uσ+tn, F). For any neN, set xn(t) = x(t + tn, σ + /π, φ — υσ +
uσ+tn,F), teR. Since the solution u(ή of (2) is BC-UAS, from the fact that \xn

σ-
uσ+tn IBC = I Φ ~ vσ IBC < ̂ O?/2) i1: follows that

(11) I x\t) - u(t + Q \x < η/2 for all t > σ and n e N.

Observe that the set {xn(σ): neN} is relatively compact in X. By virtue of this fact and
(11), repeating almost the same argument as in the proof of Lemma 2 we can see that
the set {x\t)\ t>σ,neN} is relatively compact in X and that the sequence {xn} is
uniformly equicontinuous on [σ, oo). Thus we may assume that xn(i)->y(t) as «->oo,
uniformly on any compact set in [σ, oo) for some function y(t): [σ, oo)ι—•Jf. Since
x\σ) — φ(Q) — v(σ) + u(σ + tn), we obtain y(σ) = φ(0). Hence, if we extend the function y
by setting yσ = φ, then yeC(R, X) and I*"—>>f |#-*0 uniformly on any compact set in
[σ, oo) as n->co. Letting «->oo in the relation

x»(ή=T(t-σ){φ(O)-v(σ) + u(σ + tn)} + Γ 7\ί-

we obtain

y(t)= T(t-σ)φ(O)+ [' Ί\t-s)G(s9 ys)ds ,

J
which means that y(ή = x(t, σ, 0, G) for ί>σ by the regularity assumption. Then (10)
follows from (11) by letting «->oo.

Repeating the same argument as in the proof of (11), we see that sup{|x"(0 —
u(t + tn)\x:t>σ,neN}<\ and sup{|x\t)-u(t4-/„)\x: t>σ + to(ε/2), neN}<ε/2 when-
ever σeR+, (v, G)eΩ(u, F) and | φ — vσ\BC<δ0 (<δ(l)). Therefore, by the same reason
as that for (10), we obtain that

σeR+, (v,G)eΩ(u,F) and | ^ - ^ σ | B c < ^ o

imply | x(ί, σ, φ, G) - v(t) \x<ε for / > σ + / 00/ 2).

Now, we suppose that the solution u(t) is not BC-TS. Then there exist an ε, 0<ε<δo,
sequences { τ J c i T , {rπ}, rπ>0, {ψjcBC, {AJ, /*„eBC([τπ, oo); JT), and solutions
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{x( , τn9 φH9 F+hn)} such that, for all neN,

(13) \Φn-uJBC<— and sup | * „ ( / ) ! , < —
n t>τn n

and

(14) \zn(τn + rn)-u(τn + rn)\x = ε and \zn(ή-u(t)\x<ε for ίe(-oo, τπ + rπ),

where z"(ί) : = *(*,!„, φn,F+hn). We first consider the case where {rπ} is unbounded.

Without loss of generality, we may assume that u(t + τn + rn — t0)->v(t) uniformly on any

compact set in R and F(t + τn + rn — t0, φ)->G(t, φ) Bohr-uniformly o n i ? χ j for some

(v, G) e Ω(u, F) and that zn(t + τn + rn — t0)-+z(t) uniformly on any compact set in

(—oo, ί 0] for some function z, where to = to(ε/2). Repeating almost the same argument

as in the proof of the claim (10), we see by (13) that z satisfies (3) on [0, ί 0 ] . Let «-»oo

in (14) to obtain \z(t) — v(t)\x<ε on (— oo, /0] and \z(to) — v(to)\x = ε. This is a

contradiction, because | z 0 —t; 0 | B C <ε<<5 0 implies \z(to) — v(to)\x<ε by (12). Therefore

the sequence {rn} must be bounded. Thus we may assume that {rn} converges to some

r, 0 < r < o o . Moreover, we may assume that {zn(τn + ή} converges to a function ξ

uniformly on any compact set in (— oo, r] as n -• oo. Consider the case where the sequence

{τπ} is unbounded; hence we may assume that {u(t + τn)} converges to a function w

uniformly on any compact set in R, and F(t + τn, φ)-*H(t9 φ) Bohr-uniformly on R x 0&

for some (w, H)eΩ(u, F). Then ξ(t) satisfies

ξ(t) = 7X05(0) + 7X/ - s)H(s, ξs)ds
Jo

on [0, r], and moreover we have | ξo-wo \BC = 0 and | ξ(r) — w(r) \x = ε by letting «->oo

in (13) and (14). This is a contradiction, because we must have ξ = w on [0, r] by the

regularity assumption. Thus the sequence {τw} must be bounded, too. Hence we may

assume that Iimπ_ 0 0τπ = τ for some τ<oo. Then ξ(t — τ) satisfies (2) on [τ, τ + r], and

moreover we have \ζo~
uτ\Bc = ^ a n d \ζ(r)~u(τ + r)\x = ε by (13) and (14). This again

contradicts the fact that the solution u(t) of (1) is BC-UAS.

The ^-stability implies the BC-stability. Therefore, the following results are direct

consequences of Theorems 1 and 2.

COROLLARY 1. If the solution u(ή of (2) is J^-TS, then it is asymptotically almost

periodic in t. Consequently, (2) has an almost periodic solution.

COROLLARY 2. Assume that system (2) is regular. If the solution u(t) of (2) is

^-UAS, then it is asymptotically almost periodic in t. Consequently, (2) has an almost

periodic solution.

As an example, we consider the following integrodiίferential equation with diffusion



144 Y. HINO, S. MURAKAMI AND T. YOSHIZAWA

^ 3 ((15) -^-(ί, jc)=_^.(ί, χ ) - w

3 ( ί , χ) + k(t, s, x)w(s, x)ds + h(t, x),

0 < x < π .

k(t, s, x)w(s,

In [4, p. 85], the equation (15) with k = Q and h = 0 was treated under the Dirichlet
boundary condition, and the uniform asymptotic stability of the zero solution was
derived. In what follows, we shall treat the equation (15) under the Neumann boundary
condition

(16) ^ ( ί , 0 ) = |"-(ί,π) = 0, />0,
ox ox

and give a sufficient condition under which (15) possesses a bounded solution which is
BC-TS.

We assume that the functions h(t, x) and k(t, s, x) are continuous functions satisfy-
ing 2<h(t,x)<Ί and 0<A;(ί, 5, x)<K(t-s) for some continuous function K(τ) with
J* K(τ)dτ< 1/4. Note that one can choose a continuous nonincreasing function
0 : i T h-[l, ex)) so that 0(0)= 1, \\m^_^g(s) = oo and J£K(τ)g(-τ)dτ<oo (cf. [2]).
We now consider the Banach space X— C([0, π] R), and define a linear operator 4̂ in
Zby

= ^-(x), 0 < x < π ,

for

Then the operator A generates a compact semigroup T(t) on X, and (15)—(16) is
represented as the functional differential equation (2) on X with

Γ°
f[t9 φ)(x) = h(t, x)-φ 3(0, JC) + k{t, t + 5, x)φ(s, x)ds

for φeC°(X). We refer to a (mild) solution of (2) as a (mild) solution of (15)-(16).

LEMMA 4. Let φ(θ, x) = 3/2 for all (0, x)eR~ x [0, π]. Then the solution u(t, x) of

(15)—(16) through (0, φ) satisfies the inequality

1 <u(U *)<2 on [0, oo) x [0, π] .

PROOF. It is clear that there exists a (unique) local solution w(ί, x) e C([0, a) x
[0, π]) of (15)-(16) through (0, φ) for some α >0. We shall prove that
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(17) 1 < u(t, x) < 2 on [0, a) x [0, π] .

Then a=co and the conclusion of the lemma must hold. We will prove (17) by con-

tradiction. Assume that (17) is false. Then there exists a tγ e(0, a) such that 1 <u(t, x)<2

on [0, /J x [0, π] and w(/1,x1) = 2 or w(ί 1,x 1)=l for some x^CO, π]. Consider a

function/?(ί, x) e C([0, /J x [0, π]) defined by p(t, x) = {'_ ^ k(t, s, x)w(s, x)ds + h(t, x), and

choose a sequence {pn(t, x)} e C^CO, /x] x [0, π]) such that 2<pn(t, x) <7.5 on

[0, /J x [0, π] and that pn(t, x)^>p(t, x) uniformly on [0, t{\ x [0, π] as n^oo. There

exists a (classical) solution vn(t, x) of the initial-boundary value problem

Si? 3ι?
•— (ί,0) = -—(ί,π) = 0,
ox ox

y(0,x) = 3/2, 0 < x < π .

Clearly, υH(t9 x) -• w(ί, x) uniformly on [0, ίx] x [0, π]. We now assert that

(18) \fU)<υn{Ux)<ljΊΓ6 on [0,/J x [0, π] .

If this assertion holds true, letting «->oo in (18) we obtain l]T3<u(t,x)<Ί!fTύ on

[0, t{\ x [0, π], which contradicts u(tu Xχ) = 1 or M(/1? X1) = 2. Consider the case where

(18) does not hold true. Then there exists a (/2, ̂ 2)G [0, ^ ] x [0, π] such that vn(t2, x2) =

l/tβ (or vn(t2, x2) = yΓ9) and that ̂ L 9 < υn(t9 x) < ψΊ> on [0, t2) x [0, π]. If x2 e (0, π),

then d2vn/dx2<0 and dvn/dt>0 (or d\/dx2>0 and dvn/dt<0) at (ί2, JC2); consequently

7.5>/7Π=-δ 2ι; / 1/^ 2 + ̂ Π / ^ + ι;M

3>ι;Π

3 = 7.6 (or 2£pH=-d2vJdx2 + dΌjdt + ΌΪ£ΌJ! =

1.9) at (^2^2)' a contradiction. Thus we must get \[YS<vn(t,x)<\[ϊ^6 for all

(ί, x) e [0, ί2] x (0, π) and x2 = 0 or x2 = π; say x2 = π. Hence, by the strong maximum

principle (cf., e.g. [12, Theorem 3.7]) we get (dvjdx)(t2, π)>0 (or (dvjdx)(t2, π)<0),

a contradiction, because of (dvjdx)(t2, π) = 0. Therefore, we must have the assertion

(18).

PROPOSITION 2. Let u(t, x) be the solution o/(15)-(16) ensured in Lemma 4. Then

u(t, x) is BC-totally stable. Hence, if h(t9 x) and k(t, t + s,x) are almost periodic in t

uniformly for (s, x)eR~ x [0, π], then w(ί, x) is asymptotically almost periodic in t

uniformly for xe [0, π].

PROOF. In order to show that w(ί, x) is BC-TS, it is sufficient to show that

(19) |w(ί,x) —ι?(ί,x)|<e, t>σ, x e [ 0 , π ] ,

whenever υ(t, x) is a solution of
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dv , x d2v , x „ P
k(t, s, x)v(s, x

J - QO

dt dxΔ

t>σ, 0 < x < π ,

du , ΛX dv , •
— (t,0) = — (ί,π) = 0, f > σ ,
dx dx

where r(ί, x)e C([σ, oo) x [0, π]) with sup,>σ>0<JC<π| r(ί, x) | <ε/2 and supθ<σ>0<x<πl u(θ9

x) — v(β, x) I <ε. Set w(£, x) = w(ί, x) — v(t, x). Then w(ί, x) is a (mild) solution of

dw , v 5 2 W , x . o . . - x / x 2/ xx

J - OO

t, s, x)w(s, x)ds — r(t, x), />σ , 0 < x < π ,

, ^ dw , x Λ

(ί,0) = -—(t,π) = O, t>σ.δx δx

Assume that (19) is not true. Then there exists a (t3, x 3)e(σ, oo) x [0, π] such that

I w(ί, x) I <ε on [σ, ί3) x [0, π] and | w(t3, x3) | =ε, say w(t3, x3) = ε. Consider a function

K(ί, x) defined by K(ί, x) = w(ί, x) - ε for (ί, x) e [σ, ί3] x [0, π]. Clearly, V{t9 x) is a (mild)

solution of

dV d2V
(t, x) = (ί, x) - ( F + ε)(w2(ί, x) + t/(ί, x)t;(ί, x) + u (ί, x))

dt dx2

J -
k(t, s9 x)w(s, x)ds — r(t, x), σ < ί < ί 3 , 0 < x < π ,

dx dx

If V(t, x) is smooth, then

d2V

(t,0) = —(t,π) = 0, σ<t<t3.

(ί, x) — — (ί, x) - (w 2(ί, x) + w(ί, x)£?(ί, x) + v 2(ί, x)) K(ί, x)
x" dt

= ε(u 2(ί, x) + w(ί, x)^(ί, x) +1; 2(ί, x)) - k(t9 s, x)w(s9 x)ds + r(ί, x)
J - oo

k(t, s, x)ds - e/2
J - o o

>3ε/4-ε/4-ε/2 = 0

on (σ, /3] x [0, π]. Then, repeating the same argument as in the proof of Lemma 4, we
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get a contradiction by applying the strong maximum principle. When F(ί, x) is not

smooth, we get a contradiction again by approximating K(ί, x) by some smooth functions

as in the proof of Lemma 4. Thus we must have (19).
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