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Abstract. We show that an integrable function on the real line with a nonnegative
Fourier transform is square-integrable near the origin if and only if the transform belongs
to the amalgam space comprised of functions that are locally integrable and globally
square-integrable. We use this to give another proof that there are integrable functions
on the real line that have nonnegative Fourier transforms and are square-integrable near
the origin, but are not square-integrable on the whole real line. Our methods work on
all locally compact abelian groups that are not compact. They also apply to other
questions related to the one discussed above.

1. Introduction. It is known that if a function on the interval [ — π, π) belongs
to L1, has nonnegative Fourier coefficients, and is square-integrable in some neigh-
bourhood of 0, then the function is square-integrable on all of [ —π, π). In his book
on entire functions, Boas [6] proved a special case of this, and credited it to N. Wiener,
but it is not clear (cf. [21]) that the proof given by Boas is the same as Wiener's. A
proof different from the one in Boas was presented by Shapiro [21] and Rains [19];
that method extended to all compact abelian groups. Further extensions to other norms
of other classes of groups are in [1], [17], [5], and [15].

On the real line, a simple analogue of Wiener's theorem would be the statement
that if a function in ^(R) has a nonnegative Fourier transform and is square-integrable
near 0, then the function must be square-integrable on the whole line. It was recently
shown by Kawazoe, Onoe, and Tachizawa [16] that this simple analogue is false; this
is also the case (cf. [14]) on some noncompact Lie groups. Our goal here is to use basic
facts about amalgams (cf. [12]) of LP and lq norms to show exactly what does follow
when a function on the real line is square-integrable near 0 and has a nonnegative
Fourier transform; our methods extend easily to all locally compact abelian groups. In
particular, these methods show that the simple analogue of Wiener's theorem is true if
and only if the group is compact, and they provide a sharp substitute when the group
is not compact.

We state our main results for the real line in this section, prove them in that context
in the next section, and discuss their extensions to all locally compact abelian groups
in the final section. For each integer n, denote the interval [n—1/2, n+ 1/2) by /„, and
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denote the indicator function of /„ by l/n. Given a measurable function / o n the real
line, and two indices p and q in the extended real interval [1, oo], form the norms
ll/ l j j , and let | | / | | M be the /"-norm of the sequence (ll/ ljj,)*-.*,. The amalgam
(Lp, lq) is the space of (equivalence classes of) measurable functions / for which
| |/ | |p > q<oo. See the surveys [12] and [8] for more information about these spaces.

THEOREM 1.1. The following conditions are equivalent for any function in LX(R) with

a nonnegative transform.

(a) The function is square-integrable in some neighbourhood ofO.

(b) The transform of the function belongs to (L 1,1 2).

(c) The function belongs to (L2, /°°).

The condition (c) asserts that there is a constant C for which the function, / say,
satisfies

ί
n+l/2

\f\2<C for all n.
n-l/2

Of course, this implies the condition (a) without any other assumptions about/. It will
be shown in Section 2 that (a) implies (b) when the transform is nonnegative; that
argument is essentially the one used in [19] and [21] to prove Wiener's theorem.

The space (L1,12) stands out among amalgams. It is the largest solid space of
functions on the real line with the property that all its members have (distributional)
Fourier transforms that are functions (cf. [22]). It is the Kόthe dual of the space of
Fourier transforms of continuous functions with compact support (cf. [7]). It is an
endpoint for the Hausdorff-Young theorem for amalgams (cf. [13]), which in particular
states that if the Fourier transform of a function belongs to (L1,12), then the function
belongs to (L2, /°°), that is, the condition (b) implies the condition (c) without any other
assumptions about the function.

We use the symbols R and 70 to denote dual copies of the real line R and the
interval [—1/2, 1/2). In comparing Theorem 1.1 with the simple, but false, analogue of
Wiener's theorem, we note that the space L^/Q) is strictly larger than L2(/o), so that
the amalgam (L1,12)(R) that occurs in Theorem 1.1 is strictly larger than (L2, 12)(R).
The latter amalgam coincides with L2(R), which is also the space of transforms of
functions that are square-integrable on R. This suggests a strategy for disproving the
simple analogue of Wiener's theorem.

THEOREM 1.2. The amalgam (L 1 ,/ 2 )^) contains nonnegative functions that are
transforms of integrable functions, but that do not belong to L2(R).

COROLLARY 1.3. There are functions in LX{K) that have nonnegative transforms
and that belong to (L2, /°°)0R), but that do not belong to L2(R).

We will give explicit examples of functions with these properties. We will not need
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the theory of amalgams to verify that these functions have the properties specified in
Corollary 1.3, but our constructions are motivated by that theory. We now outline how
it can be used to prove the two statements above.

The Hausdorff-Young theorem for amalgams (cf. [13]) states that if \<p, q<2
and if a function belongs to (Lp, lq), then the Fourier transform of the function belongs
to (Lq\ lp), where p' and q' are the indices conjugate to/? and q\ note that these conjugate
indices occur in the reverse order in the specification of the amalgam (Lq\ lp). Moreover,
there is a constant C so that \\f\\q',P'<C\\f\\qίP in these cases. The theorem also applies
to the inverse Fourier transform.

The counterpart of Young's inequality for convolution states that if fγ e(LP l, lqi)
and if/2e(Z/2,/*2), then \R\f1{x-y)f2{y)\dy is finite for almost all x provided that
1/Pi + 1/P2^1 a n d V<7i + 1/<72̂ 1> a n d i n that case the convolution fx */2 defined by
letting

/ i * / 2 M = fi(x-y)f2(y)dy for almost all x
JR

belongs to (Lp, /*), where 1/p = I/Pi + l/p2 — 1 and 1/q = 1/^ + l/q2 -1; moreover, there
is a constant C so that \\fγ*f2 \\p,q<>C\\fγ \\Puqi | |/2 | |P 2 f ί 2 for all such functions fx and

Λ
It is known (cf. [11]) that the indices in these theorems are best possible. The

following statement addresses the sharpness of these conclusions in another context.

THEOREM 1.4. There is a function in L2(R) that does not belong to L\R\ but whose
Fourier transform belongs to (L1,

The condition that the transform belongs to (L1, l*/3)(R) and the Hausdorff-Young
theorem for the inverse transform guarantee that the function above must belong to
the amalgam (L4, /°°)(Λ), which is a slightly larger space than L4(,R) = (L4,14){R). The
point of the theorem is that adding the requirement that the (transform of the) function
be square-integrable still does not force the function to belong to L*(R).

To deduce Theorem 1.2 from Theorem 1.4, split the Fourier transform of the
function above into real and imaginary parts, and write these parts as differences of
minimal nonnegative functions. These four nonnegative functions will all belong to
(L1, /4/3)CR) and to L\R). So they all have inverse transforms in L2(R), but at least
one of them does not have an inverse transform in L*(R), since the function in the
statement of the theorem does not belong to L*(R).

Hence the conclusion of Theorem 1.4 holds for some function, / say, that has a
nonnegative Fourier transform. Then/2 belongs to LX(R) but not to L2(R). The trans-
form of/2 is the convolution square/*/of the nonnegative function/ Hence/2 is also
nonnegative, and being the convolution of two functions in (L1, /4/3)(Λ), the function
f2 must belong to (L1,12)(R), that is,/2 has the properties specified in Theorem 1.2.

The first example in [16] also came from a suitable convolution, but that operation
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occurred on R rather than on R. The key properties of that example can be summarized

as follows. Given a function g on R, let g(x) = g( — x)~ for all x in R.

THEOREM 1.5. There is an integrable function g in (L 4 / 3,1 2) such that g*g$L2(R).

The function g * g is also integrable and has the nonnegative transform | g | 2 . Young's

inequality for convolution and the assumption that g belongs to (L4/3,12)(R) guarantee

that g*g belongs to (L2, /°°)CR); so g*g has all the properties specified in Corollary 1.3.

The conclusion that g * g e (L2, / °°)CR) follows without the assumption that g is integrable.

Part of the point of the theorem is that adding that assumption still does not force g*g

to belong to L2(R), which is a smaller space than (L2, /°°)CR). This also bears on the

Hausdorff-Young theorem, which guarantees that ge(L2, l*)(R) if ge(L*/3,12)(R); by

the theorem above, adding the assumption that g e L1(R) still does not force g to belong

to L4(R), which is a smaller space than (L2, 14)(R).

Finally, we consider variants of parts of Theorem 1.1 where the index 2 is replaced

by other numbers in the interval (1, oo]. We first state the counterpart of the theorem

in [1].

THEOREM 1.6. Let 1 <p<2. If f is an integrable function on R with the property

that / > 0 and if\f\p is integrable in some neighbourhood o/0, then fe (L1, lp)(R).

In contrast to the situation in Theorem 1.1, the converse is false here. In fact, it

does not even help to replace (L1, lp)(R) by the smaller amalgam (L00, lp)(R).

THEOREM 1.7. There is an integrable function f on R with the properties thatf>0

andfe{U°, lq)(R)for all indices q>2, but for which there is no index p>\ such that\f\p

is integrable in some neighbourhood ofO.

The main part of Theorem 1.1 is that the condition (a) implies the condition (b)

when the transform is nonnegative. The fact (a) implies (c) in this case is also of interest,

and a version of that fact survives for some other indices.

THEOREM 1.8. Let p be an even positive integer, or let p=cc. If j is an integrable

function on R such thatf>0 and if there is a neighbourhood U of0 for which the restric-

tion off to U belongs to LP(U\ thenfe(Lp,

The requirement that p be even or infinite is essential here.

THEOREM 1.9. Let pe(l, oo), and suppose that p is not even. Then there is a func-

tion f in L1(R) with the properties that / > 0 and \f\p is integrable in some neighbour-

hood 6>/0, but such that every nonempty open set V in R has a translate t+ V for which

ft+κl/l'=°°

In Theorem 1.1, the implication (c)=>(a) was obvious and did not require any

further assumptions about the function. The corresponding rephrasing of Theorem 1.8

is that if p is even or infinite, then the following statements are equivalent for an
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integrable function/with a nonnegative transform.

(a) The restriction of / to some neighbourhood of 0 belongs to Lp of that

neighbourhood.

(c) /e(LV°°)(K).
In this context, the counterpart of the statement (b) in Theorem 1.1 is that

(b) fe{L\lp')(R).

Our Theorem 1.1 says that this statement is equivalent to the other two when p = 2

and/>0. It was pointed out in [16, Theorem 3.1] that this is also the case when/?= oo

and/>0; then (b) asserts that /eZA For the other values of p arising in Theorem 1.8

the condition (b) implies the condition (c), and hence (a), by the Hausdorff-Young

theorem for amalgams, without assuming that/>0. Adding the latter assumption and

more does not make the converse true.

THEOREM 1.10. There is a function that belongs to (Lp, l^R) for all p<co and

that has a nonnegative transform that belongs to (L1, lq)(R) only when q>2.

Since I2 c lq when q>2, Theorem 1.1 guarantees that the transform of the function

above must belong to (L1, lq)(R) for all such values of q. None of these values have

the form p' for any p>2. So the conditions (a) and (c) above and the positivity of/do

not imply the condition (b) when 2<p<co.

2. Proofs on the real line. Dilating or translating the variables leads to the same

amalgam spaces with equivalent norms. Except for constants in estimates, our results

are not affected by rescalings of the variables used in computing the Fourier transform

and the amalgam norms. For deίiniteness, we choose a specific version of the transform,

namely the one given by letting

(2.1) ?{y)=\ f(x)e"2πixydx when feL\R).

Then the inverse transform follows the same pattern except that the integration runs

over the dual copy R of the real line, and there is no minus-sign in the exponential.

We will repeatedly use properties of the functions φδ defined for positive values of

the parameter δ by letting

(2.2) W x ) = n Λ .
[0, otherwise.

Then

•2.3) εω-
πy \

for all yφO. This is also true for the inverse transform of φδ. We note that 'φδeL1{R).
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So the Fourier inversion theorem applies and allows us to write φδ as the inverse
transform of φδ.

To prove that (a)=>(b) in Theorem 1.1, let / be an integrable function that is
square-integrable near 0 and has a nonnegative transform. Choose δ small enough to
make the restriction off to ( — δ, δ) square-integrable, and small enough that sin(πyδ)/
(πy)>δ/2 for all values of y in [— 1, 1), that is,

(2.4) Uy)>^r if J > e [ - l , l ) .
4

Then the product /• φδ is both integrable and square-integrable. By the Plancherel
theorem, the ZΛnorm of this product is equal to the ZΛnorm of its transform. We have

(2.5) (/ φδ)
Λ(y) = ί /(y- t)φδ(t)dt = / * Uy).

J R

Since / and φδ are both nonnegative, there is no cancellation in the integral giving the
convolution in the formula above. So the condition (2.4) gives that

z=y+l

/

s [z=y+l

-
4 }z=y-i

J_ (/ tf^Of rf3,>i!| J /(ί)dt]2 for all n .

Note that if y e/„, then /„ a [y— 1, y+1). Therefore,

(2.7)

Summing with respect to n then gives that

(2.8) \
0

This completes the proof that (a)=>(b) in Theorem 1.1. As noted earlier, the fact that
(b)=>(c) was already known, and it is obvious that (c)=>(a); moreover, these steps do
not require/to be nonnegative.

The assumption that the function belongs to L1 is not essential here. Replacing
φδ with a suitable nonnegative test function with a nonnegative transform show that if
/is a tempered distribution that coincides with a square-integrable function near 0 and
if the (distributional) transform of/is a nonnegative function, then again fe{Lx, 12)(R),
with an estimate for | |/ | | 1 > 2 in terms of the ZΛnorm of the restriction of/to any fixed
neighbourhood of 0. Assuming square-integrability of /near 0 and that/is a non-
negative distribution forces that transform to be a nonnegative Borel measure, μ say,
and then the conclusion is that
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(2.9) t lμl(/n)
2<oo;

n= — oo

again there is an estimate for the square root of the left side above. Conversely, (cf.

[4]) if a distribution on R has a transform that is a Borel measure satisfying the con-

dition (2.9), then that distribution is given by a function in (L2, /°°)CR), and its norm

in that space is bounded above by a constant times the square-root of the left side of

(2.9).

We will give an independent proof of Theorem 1.2, but we note first that if follows

immediately from Theorem 1.1 and Corollary 1.3, which is the main result in [16].

Theorem 1.2 also follows easily from the Hausdorff-Young theorem for amalgams and

Theorem 1.5, which specifies some properties of the first example in [16]. Indeed, since

the function g in the statement of Theorem 1.5 belongs to (L4/3,12)(R), its transform

must belong to (L2, l*)(R), and hence \g\2 belongs to (L1, 12)(R). Also, \g\2 is non-

negative, and it is the transform of the integrable function g*g. Since that function

does not belong to L 2, neither does \g\2. So \g\2 has all the properties specified in

Theorem 1.2.

To prove that theorem directly, we consider linear combinations of translates of

functions φδ on R. Given any function F on R, and a number /, we use the symbol

/(• — i) to denote the translate of F that maps y to F(y — t) for all y in R. Given two

positive integers j and k, we let

(2-10) FJJt = Σ
-k<m<k \ J

In contrast to our use of the functions φδ in Theorem 1.1, we now take their domains

to be R and the domains of their (inverse) transforms to be R.

Clearly, these functions Fjk are nonnegative. Because the translates φί/{2j)(' —m)

are supported by the distinct intervals /m, the amalgam norm H/^JIp,, is simply the

product of the ZΛnorm of φ1/{2j)
 a n d t n e '* norm of the coefficients multiplying the

translates of φ1/i2j) i n formula (2.10). In particular,

2"/2
(2.11) • \\F2n^\\lt2^^29 but

for all n. So the series

(2.12) f 2 / 4

n = l

converges in the norm || | |1 > 2 to some function, F say. Then F>0, and Fe{Lι, 12){R).

On the other hand, because the terms in (2.12) are all nonnegative,

l | i Γ l l2=II^Ίl2,2>2- π / 4 | |F f I | | 2 , 2 >i-2' /4 for all n.
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Hence FφL2(R).
To verify that F is the transform of some integrable function, consider the inverse

transforms of the terms in the series (2.12). As noted earlier, the inverse transform of

φδ coincides with the transform of φδ. Translating φδ by m on R corresponds to

multiplying φδ(x) by e2πίmx on R. So the (inverse) transformfjk say, oϊ Fjk is the product

of the transform of φ1/(2j)
 a n d the function

Now hk is a periodic Fejer kernel with period 1. So its ZΛnorm over every interval of

length 1 is equal to 1, and hence ||Afc||i>00 = l. On the other hand, it is easy to verify

from formula (2.3) that

(2.13) ll0Jαo.i<;4 when 0 « 5 < l .

Then

for all positive integers j and k. Hence the series

(2.14) Σ 2-»f*f2nAn

n= — oo

converges in norm in ^(R), to a function/say. T h e n / = F .

This completes our proof of Theorem 1.2. Corollary 1.3 then follows from Theo-

rems 1.1 and 1.2. A reader who wants to avoid the use of the less-obvious theorems

about amalgams can verify Corollary 1.3 as follows. The argument immediately above

shows in an elementary way that the series (2.14) converges in ZΛnorm and that its

sum/has the nonnegative transform F. Since F does not belong to L2, neither does/.

One can show that/belongs to (L2,/°°) by estimating ||Afc||2,oo a n d \\(Φι/(2j))A II oo ύi

terms of the /2-norm of the Fourier coefficients of the restriction of hk to [—1/2, 1/2)

and the L1 norm of φ1/{2j) This provides estimates for \\fjtk\\2,oo t n a t force the series

(2.14) to converge in the space (L2, /°°)(^).

Proving Theorem 1.4 is easier because of the lack of a positivity requirement. If

the theorem were false, then the inverse transform would map the intersection of the

spaces L2{R) and (L1, /4/3)(J?) into the space L\R). That intersection space is complete

with respect to the norm || | |2 + || * II 1,4/3, and the inverse transform mapping into

L\R) would then have a closed graph. To verify the latter claim, suppose that g^-^G

in the norm on the intersection space on R, and that gn -* g in the L4-norm on R. Then

the sequence (gn) converges to the inverse transform G of G in L2(R), and hence in

measure, but that sequence also converges in measure to g\ so g = G.
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By the closed graph theorem, there would be a constant C so that

(2.15) | |<7lL<C(||0| |2 + II g \\ίA/3) whenever geL2(R) n (L\

To see that there is in fact no such constant C, consider the functions

(2.16) 9J=-^AP a n d g J = ^

As in our proof of Theorem 1.2, the transforms #, form bounded sequences in both of

the spaces L2(R) and (L1, /4/3)(i£); moreover, the norms \\g]\\2 are also bounded away

from 0, so that the same is true for the norms \\gj\\2 On the other hand, || gf_, || i -• 0 as

j-> oo, and by Holder's inequality,

The numbers on the left stay bounded away from 0, while the first factors on the right

tend to 0; so the second factors on the right tend to oo. This contradicts the inequality

in line (2.15).

To prove Theorem 1.5, simply inspect the first example in [16]. Theorem 1.6 follows

by the same method that was used to prove that (a)=>(b) in Theorem 1.1, with the

Hausdorff-Young inequality for the indices p and p' replacing the equality between

ZΛnorms on R and R. Theorem 1.7 follows easily from the corresponding fact for

Fourier series; lacking a reference for the latter, we prove it first.

We claim that it suffices in that setting to construct a function, g say, in L 1 [—1/2, 1/2)

so that its Fourier coefficients

ru-
in) =

J - i

•1/2

g{ή)= I g(x)e-2πinxdx
-1/2

are nonnegative and belong to lq for all q > 2, but for which

(2.17) Σ ^ 2

To verify this claim, note first (cf. [23, Chapter XII, Theorem 7.6]) that the coefficients

of any function in any of the spaces 77[—1/2, 1/2) with p>\ have the property that

their restriction to the set {y}f=ι belongs to I2. So the condition (2.17) guarantees that

g does not belong to any of these spaces.

If \g\p is integrable near 0 for some p>\, and if δ is small enough, then the

restriction to {3J}JL i of the coefficients of the product g φδ must belong to I2. But, as

in the proof that (a)=>(b) in Theorem 1.1, the nonnegativity of the coefficients of g and

φδ and the fact that φs(O) > 0 would then force the restriction of the coefficients of g

to {3J}f=1 to belong to I2. So the condition (2.17) and the condition that g > 0 guarantee

that there is no index p> 1 for which | g \p is integrable near 0.

To get an integrable function g with coefficients satisfying the conditions above,
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use Riesz products. Start with any nonnegative sequence (dj)p=ί that belongs to lq for

all q>2 but does not belong to /2, and rescale the sequence, if necessary so that d}< 1/2

for all j . Define functions gm by letting

(2.18) gm{x) = f [ [1 +2^cos(3^2πx)] = f\ [1 + ̂ 3 J 2 π ί * + ̂ - 3 J 2 π ί ^ for all x .

Then (cf. [23, Chapter V, §7]) these functions have the following properties. The norm

of gm in L * [ - 1/2, 1/2) is equal to 1. Moreover, g^(ή) = 0 unless

m

(2.19) n= X εp;

with each number ε7 taking one of the values —1,0, and 1. There is at most one such

representation of any particular integer n, and then

(2.20) rm(n)=f[(djp^

with the convention that 0 ° = l . Since the sequence (gm) is bounded in L1^—1/2, 1/2)

it has a weak-star limit point, μ say, in the space of bounded Borel measures on the

set [—1/2, 1/2). For each integer n, the Fourier-Stieltjes coefficient μ(n) must be a limit

point of the sequence (&n(ri))™=1. In fact, that sequence is ultimately constant for each

n, and it follows that μ(ή) = 0 unless n has a representation in the form (2.19) for some

m, in which case μ(ή) is equal to the right side of the equation (2.20).

One consequence of this is that when 2 < # < oo,

(2.21) f \μ(n)\«< f[ [l+2|</m|«]< fj [e2|

Another is that X ^ = x | μ(3m) I2 = °° There are functions in L1 [ —1/2, 1/2) whose Fourier

coefficients are nonnegative and tend to 0 as slowly as one likes. Choose such a function,

h say, so that

Then the convolution g = h*μ has the desired properties.

To lift this example from L1 [— 1/2, 1/2) to Z^CR), extend g to have period 1 on R,

thereby getting a function in (L1, /°°)(^), and multiply that extension by the inverse

transform of φ 1 / 2 . It follows from the line (2.13) that this product, / say, belongs to

LX(JR). From the line (2.3), the (inverse) transform of φί/2 is bounded away from 0 in

all small enough neighbourhoods of 0. When 1 <p< oo, the factor g is not /7-th power

integrable in any such neighbourhood, and so neither is/.

The following statements should be clear in a formal sense. First, the distributional

transform of the periodic extension of g is a discrete measure on R supported by the
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set of integers n with representations in the form (2.19) for sufficiently large values of

m. Second, the mass assigned by that measure to such a point n is equal to the right

side of the formula (2.20). Third, /is the convolution of the compactly supported func-

tion φδ with that measure on A. This makes it plausible t h a t / > 0 and that/eίL 0 0 , lq)

for all q>2.

This argument can be made rigorous using a theory (cf. [9]) of distributions and

Fourier transforms where the function φί/2 and its transform are test functions. An

alternative is to use the conventional theory of tempered distributions, replacing φιj2

in the construction of/ by any nontrivial test function with a nonnegative transform.

Both approaches produce a function/with all the properties specificed in Theorem 1.7.

One can also bypass theories of distributional transforms and construct such a

function as a sum of a series in the style of our proof of Theorem 1.2. Each term in

the series would be the product of a periodic trigonometric polynomial and the (inverse)

transform of φδ for some fixed δ>0. The «-th trigonometric polynomial would be

required to have a relatively small norm in L*[ —1/2, 1/2) and to have nonnegative

coefficients with a relatively small /Pn-norm, where (pn) is a strictly decreasing sequence

converging to 2, but to have the /2-norm of the restriction of those coefficients to the

set {y}jL1 be relatively large.

To prove Theorem 1.8, let U be a neighbourhood of 0 for which f\UeLp(U).

Choose a smaller neighbourhood Fof 0 so that V+ V<^U. Then choose a sequence of

functions (̂ fc)£°= γ so that each function φk vanishes outside V and has a nonnegative

transform belonging to LX(R), and so that \\f—f*ψk\\ι^>0 as fc->oo. Rescale, if neces-

sary, so that || φk || x = 1 for all k.

Since || φk \\ x = 1, Young's inequality for convolution yields that

(2.22) Uf*Ψk)\V\\P<\\f\U\\p for all k.

Choose a positive number δ so that the interval ( — <5, δ) is contained in the set V. Then

(2.23) \\(f*Ψk) φs\\P<\\f\U\\p for all k.

Both factors (/* φk) and φδ above have nonnegative, integrable transforms. So the

transform of the product (f*ψk) φδ is the convolution of these nonnegative transforms.

The same reasoning applies to the transform of the product of (f*ψk) with any translate

of φδ, except that the transforms of those translates are unlikely to be nonnegative.

Translating φδ does not change the absolute value of its transform, however, so that

absolute value of the transform of the product of (/* φk) with any translate of φδ is

majorized by the transform of (/* ψk) φδ.

The values of the index p in Theorem 1.8 are precisely those for which LP(R) has

the upper majorant property (cf. [18]) with constant 1, that is, if g and h are integrable

and have integrable transforms, and if | g \ <h, then || g \\p< \\ h \\p. Applying this with

g = (f*Ψk) LΦs( -W and h = (f*ψk) φδ
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yields that

(2.24) Uf*ψJ'ίφδ( -m\\p<\\(f*ψk)'φδ\\p<\\f\U\\p for all r e a l / .

Letting A;->oo through a subsequence for which/*φk converges to/almost everywhere,

and applying Fatou's theorem then gives the conclusion that

(2.25) Wf lΦs( -m\\P<\\f\U\\p for all real t.

Since φδ>\β on the interval \_-δβ, (5/2), the ZΛnorms of the restrictions of/to the

translates of that interval are all majorized by 21|/ | U\\p. This completes the proof of

Theorem 1.8.

The counterpart of Theorem 1.9 for Fourier series is already known (cf. [21]). As

in the case of Theorem 1.7, it can be lifted to R. Given a noneven index p in the interval

(1, oo), choose a function g in Lι{— 1/2, 1/2] with nonnegative Fourier coefficients so

that I g \p is integrable in some neighbourhood of 0 but so that g does not belong to

Lp[—1/2, 1/2). Extend g to have period 1 on all of R, and then multiply it by φx to

get/

The function/belongs to L^R) and has a nonnegative transform. Moreover, \f\p

is integrable in a neighbourhood of 0, but the fact that φ1 > 1/2 on [—1/2, 1/2) implies

that the restriction of/to [-1/2, 1/2) does not belong to Lp, because gφLp[-1/2, 1/2).

Theorem 1.9 follows since the interval [—1/2, 1/2] can be covered by finitely-many

translates of any nonempty open subset of R.

The same lifting procedure that made Theorem 1.7 follow from its periodic

counterpart also works for Theorem 1.10. The periodic version of the latter theorem

asserts that there is a function that belongs to Lp\_—1/2, 1/2) for all finite values of p

and has nonnegative Fourier coefficients that belong to lq only when q > 2. To get such

a function, start with any nonnegative sequence (dj)JL x that belongs to I2 but not to lq

for any q<2. Then (cf. [23, Chapter V, §8]) the ZΛfunction represented by the series

Σ J l i dje3i2πix belongs to L p [- l/2, 1/2) for all finite values of p.

3. Extensions to locally compact abelian groups. Each of the theorems in Section

1 is a special case of a more general statement on some class of locally compact abelian

groups. We now specify those statements and outline proofs of them. Our methods do

not cover the counterparts [15], [5], [17] and [14] of some of the results in Section

1 on many nonabelian groups.

We use the same system for numbering theorems and corollaries as in Section 1.

The symbols G and G always denote a locally compact abelian group and its dual

group, with the Haar measures on these groups normalized for the inversion theorem.

Various equivalent definitions of amalgam of LP and I9 in this setting can be found in

[3]. We write the groups operation on G as addition and denote the identity element

in G by 0.
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THEOREM 3.1. The following conditions are equivalent for a function in LX(G) with

a nonnegative transform.

(a) The function is square-integrable in some neighbourhood of 0.

(b) The transform of the function belongs to (L1,12)(G).

(c) The function belongs to (L2, /°°)(G).

Again (b)=>(c)=>(a) without the assumption that the transform of the function is
nonnegative; the first of these implications is part of the Hausdorff-Young theorem for
amalgams, and the second is obvious. The fact that (a)=>(b) when the transform is
nonnegative has a proof along the lines of [19]. Given a function / that has a non-
negative transform and is integrable near 0, choose a neighbourhood U of 0 so that
| |/ | U\\2 < oo. Then choose a symmetric neighbourhood V of 0 so that the closure of V
is compact and so that V+Va U. Let φ be the convolution of lκ, the indicator
function of V, with itself.

The φ is continuous and has compact support. The symmetry of V implies that φ
can also be written in the form lv* 1 _κ, and this means that φ is equal to the square
of the modulus of the transform of 1F, and hence that φ>0. It also follows here that
IIΦ II1 = (II l7ll2)2 = (ll lκ ID2, and therefore that φeL^G). The product φ -/belongs to
L2(G), so that its transform belongs to L2{G). Writing φ as the inverse transform of
the integrable function φ confirms that the transform of φ f is indeed equal to the
convolution of the two functions φ and /. The same reasoning as in Section 2 then
shows that this convolution of nonnegative functions can only belong to L2{G) if
fe(L\l2)(G).

It is again not essential that the function be integrable. If a distribution on G has
a transform that is a nonnegative function, then the distribution must coincide with a
measurable function, and the three conditions in Theorem 3.1 are still equivalent. If
the transform is a nonnegative measure, μ say, then the conditions (a) and (c) are both
equivalent to the requirement that

(3.1)
ό

If G is compact, then G is discrete, and the amalgam (L1,12)(G) is just 12{G) with
an equivalent norm. In this case, (L2, /°°) also coincides with L2(G). The conditions (b)
and (c) become the requirements that feL\G) and feL2(G) respectively, and Theorem
3.1 becomes the version of Wiener's theorem proved for compact abelian groups in [19].

If G is discrete, then the singleton set {0} is a neighbourhood of 0, and all functions
are square-integrable in that neighbourhood. In this case, G is compact, and (L1,12)(G)
is just LX(G) with an equivalent norm. The main assertion of the theorem, that (a)=>(b)
when/>0, reduces in this case to the statement that if a function on the discrete group
G has a nonnegative transform, then that transform must belong to L^G) if it is a
function, and the transform must assign only finite mass to G if it is a measure.
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While these two cases of the theorem seem to contain nothing new, the method of

proof also provides estimates for amalgam norms. Combinations of such estimates at

various scales can be useful (cf. [2]) even when the groups are compact or discrete.

THEOREM 3.2. IfG is neither discrete nor compact, then the amalgam (L1,12)(G)

contains nonnegative functions that are transforms of integrable functions but that do not

belong to L\G).

COROLLARY 3.3. If G is neither compact nor discrete, then there are functions in

Lι(G) that have nonnegative transforms and that belong to (L2, /°°)(G) but that do not

belong to L2(G).

The assumptions about the groups G and G in the two statements above are essential.

The corollary follows from Theorem 3.2 and the Hausdorff-Young theorem for

amalgams. We opt to deduce the theorem above from the two statements below. It

follows from them in the same way that Theorem 1.2 followed from Theorems 1.4

and 1.5.

THEOREM 3.4. IfG is neither compact nor discrete, then there is a function in L2(G)

that does not belong to IΪ(G) but whose transform belongs to (L1, / 4 / 3 ) ( ( J ) .

THEOREM 3.5. If G is neither compact nor discrete, then there is an integrable

function that belongs to (L 4 / 3, /2)(G) but whose transform does not belong to L*{G).

The function, g say, in Theorem 3.5 must then also have the property that g*gφ

L2(G), because the transform of g*g is equal to \g\2. The same method proves both

theorems. We used it to prove Theorem 1.4, which is a special case of Theorem 3.4.

Here, we will concentrate instead on Theorem 3.5. The results in [14] cover that theorem

when G = Rd for some positive integer d. Our method is slightly different.

We use the fact (cf. [20, §2.4]) that G must have an open subgroup of form

H=RdxK, where K is compact. If d>0, then we can construct a function with the

properties specified in Theorem 3.5 and vanishing off H. To this end, let Φδ be the

function on Rd that is the tensor product of d copies of the function φδ that was used

in Section 2. Regard Φδ as a function on G by composing it with the projection of H

onto the factor Rd to lift it to H, and then extending it to be equal to 0 off H.

Amalgams on G can be defined by covering G with disjoint translates, (Iβ)βeB say,

of the set /=[—1/2, \/2)dxK, computing ZΛnorms on each such translate of /, and

then forming the /"-norm of the resulting function on the index set B. In any case, Φδ

has norm 1 in Lι{Gf). For values of δ < 1/2, the functions Φδ are all supported by the

set /; it follows (cf. [4]) from this and the fact that the L1 -norms of the transforms of

these functions are all equal that

for all such values of δ, with a constant C that depends only on the dimension d.
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Take the functions hk of Section 2, and redefine them on the dual group Rd by

applying them to the first coordinate; then extend them to all of G as was done for Φδ

on G. Then ||Ak | |i f00 = l for all k. So the product of hk with the transform of Φ1/(2ji/d)

has ZΛnorm at most C for all positive integers j and k. In this setting, denote the

inverse transform of this product by Fjtk.

This function is a sum of translates of Φ1/i2jί/d) multiplied by the same scalars as

in the formula (2.10). That makes it easy to control the sizes of various amalgam norms

of Fjk. This time, let gj = (\/j)Fjj2; then there is a positive constant c so that the norms

||gj\\2 and ll^ IU/3,2 all lie between \\c and c. On the other hand,

(3.2) Il0}lli-+O as 7^<x).

Since | |§}| |2 stays between l/c and c, Holder's inequality implies as in the proof of

Theorem 1.4 that

(3.3) II^IL-*°o as j-+QO.

This case of Theorem 3.5 then follows from the closed graph theorem. We can also

form a series that converges in norm in L^G) and (L 4 / 3, /2)(G) to a function with the

properties specified in the theorem.

Suppose now that d = 0. Then the compact group K must be infinite because G is

not discrete. The quotient group G/K must also be infinite because G is not compact.

The idea again is to form functions on K with the essential properties of the functions

Φδ as δ-+0, and then to take suitable linear combinations of suitable translates of these

functions.

The first part of this, on the compact group K, was carried out by the referee of

[10] in Lemma 0 of that paper. The second part requires suitable functions on the

infinite compact abelian group that is dual to the discrete group G/K. These functions

should have the following properties of the functions hk that were used when d>0.

First, II λk II1 = 1, next the support of hk is finite and of cardinality comparable to k9 and

finally h^> 1/2 on a large part of its support.

If the group G/K includes a copy of the integers, simply transfer the functions Λ̂ ,

as defined in Section 2, to G/K. Also do this if G/K has subgroups of arbitrarily large

finite order. All that remains is the case where there is a finite upper bound on the

orders of the members of G/K. In that case, there is a prime number P for which G/K

has subgroups that are products of arbitrarily many copies of the cyclic group ZP with

P elements. Then the inverse transforms of the indicator functions of these subgroups

have the desired properties, with the same subgroup being used and yielding the same

function hk for many different values of k. The rest of the proof is essentially the same

as in the case where d>0.

THEOREM 3.6. Let 1 </?<2, and let f be an integrable function on G with the prop-

erties thatf>0 and \f\p is integrable in some neighbourhood ofO. ThenfeiL1, lp)(G).
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The statement above is again proved in the same way as the implication (a)=>(b)

in Theorem 3.1.

THEOREM 3.7. IfG is not discrete, then there is an integrable function f on G with

the properties that/>0 αra//e(L°°, lq){G) for all q>2 but such that there is no index p

for which \f\p is integrable in some neighbourhood ofO.

The proof of this splits into cases as in the proof of Theorem 3.5. If the dimension

d is positive, then the function used in the proof of Theorem 1.7 on R can be lifted to

have the specified properties on the group G. If d=0, then the compact open subgroup

Kπmst be infinite. One can again use suitable Riesz products and convolution to obtain

a suitable function on this subgroup, and then extend that function to all of G by setting

it equal to 0 off K.

THEOREM 3.8. Let p be an even integer or let p= oo. Iff is an integrable function

on G with the properties thatf>0 and \\f\ U\\p< co for some neighbourhood U ofO, then

fe(Lp,r)(G).

The proof is essentially the same as in the case where G = R. If G is discrete, then

L\G) is included in all the amalgams (Lp,lq) for which the indices satisfy the condition

that 1 < p, q < oo. So in this case the conclusion of Theorem 3.8 holds without any special

conditions on p or | | / | U\\p.

THEOREM 3.9. Suppose that G is not discrete, that pe(l, oo), and that p is not even.

Then there is a function f in Lx(g) with the properties that / > 0 and \\f\U\\p<co for

some neighbourhood U of 0, but such that every neighbourhood V of 0 has a translate

x+Vfor which \χ+v\f\p=oo.

As noted in Section 2, the case of this where G is the unit circle was proved in

[21]. The case where G is a general infinite compact abelian group was proved in [19].

When G is not compact, consider the open subgroup that was used in the proof of

Theorem 3.5. If d> 1, use the special case of the theorem that was proved in Section

2. Apply the function from that case to the first coordinate in Rd, and then multiply

that function on Rd by a suitable compactly supported function to prove the theorem

on Rd. Extend that product to G as before. If d=0, use the result in [19] to get a

suitable function on K, and then extend it to all of G by setting it equal to 0 off K.

THEOREM 3.10. If G is not discrete, then there is a function that belongs to

(Lp, lι\G)for allp< oo and that has a nonnegatίve transform that belongs to (L1, lq)(G)

only when q>2.

Again, this can be lifted from the case where G is compact and infinite. In that

case, proceed as in Section 2 with the set {3j}JL x replaced by any infinite Sidon subset

of <?.
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